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Fine temporal patterns of firing in much of the brain are highly
irregular. In some circuits, the precise pattern of irregularity
contains information beyond that contained in mean firing rates.
However, the capacity of neural circuits to use this additional
information for computational purposes is not well understood.
Here we employ computational methods to show that an ensemble
of neurons firing at a constant mean rate can induce arbitrarily
chosen temporal current patterns in postsynaptic cells. If the
presynaptic neurons fire with nearly uniform interspike intervals,
then current patterns are sensitive to variations in spike timing. But
irregular, Poisson-like firing can drive current patterns robustly,
even if spike timing varies by tens of milliseconds from trial to trial.
Notably, irregular firing patterns can drive useful patterns of current
even if they are so variable that several hundred repeated
experimental trials would be needed to distinguish them from
random firing. Together, these results describe an unrestrictive set
of conditions in which postsynaptic cells might exploit virtually any
information contained in spike timing. We speculate as to how this
capability may underlie an extension of population coding to the
temporal domain.
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Introduction

Past theoretical and experimental work has shown how in-

terneuronal communication through firing rates supports

a wide range of computational processes. In some systems,

additional information is contained in the precise timing of

action potentials (e.g., Optican and Richmond 1987; Wright

et al. 2002). Information--theoretical studies have extensively

characterized the amount of information carried by action

potential timing in sensory systems (e.g., Rieke et al. 1997).

Although less widely studied, timing also appears to be

important in motor and frontal areas (Abeles et al. 1993; Riehle

et al. 1997). However, the functional relevance of information

contained in spike timing depends entirely on what post-

synaptic neurons can do with this information. This has

motivated us to focus in this study on the effects that timing-

based information can have on postsynaptic cells.

It is well-established that action potential timing plays a role

in synaptic plasticity (see reviews by Kepecs et al. 2002; Dan and

Poo 2004), but spike timing can also underlie computational

processes. For example, activity in a neuron can depend on the

degree of synchrony between the presynaptic neurons that

converge onto it (Abeles 1982; Softky and Koch 1993; Singer

1999; Salinas and Sejnowski 2000). This phenomenon underlies

perception of the horizontal location of low-frequency sound

sources (Yin and Chan 1990; Brand et al. 2002) and has been

suggested to play a significant role in high-level visual percep-

tion (although see Shadlen and Movshon 1999; Dakin and Bex

2002) and the recognition of odors (MacLeod et al. 1998; Brody

and Hopfield 2003). Notably, synchrony-based computations

can also be performed with asynchronously generated spikes,

provided propagation times differ so that spikes arrive synchro-

nously at their target (Hopfield 1995; Natschläger and Ruf 1998;

Izhikevich 2006).

Less is known about how the timing of action potentials can

affect computational processes in the absence of synchrony. But

a number of cases demonstrate that the effects can be sub-

stantial. For example, information about tactile stimuli that are

applied to human fingertips is encoded in the relative timing of

the first spikes from different sensory neurons (Johansson and

Birznieks 2004). This information can be extracted effectively

by a projection with unequal excitatory synaptic weights and

parallel inhibition (Thorpe et al. 2001). Similarly, information

contained in the timing of consecutive spikes (in one neuron)

can be extracted by certain types of synapses (Natschläger and

Maass 2001), neurons (Segundo et al. 1963), or specific circuits

(Ahissar 1998; Buonomano 2000; Knüsel et al. 2004). Also, some

learning rules can lead simple neuron models to support a wide

variety of mappings between incoming spike patterns and

output (e.g., Legenstein et al. 2005; Gütig and Sompolinsky

2006). These examples illustrate that in a variety of situations,

postsynaptic neurons may read out information contained in

spike timing without relying on synchrony. However, the

relevance of nonsynchronous spike timing to the operation of

cortical circuits in general remains uncertain.

In particular, it is not yet clear whether nonspecialized

neurons can use information encoded in arbitrary spike patterns

in a flexible manner, that is, to compute arbitrary functions of

the encoded signals. In this direction, Legenstein et al. (2005)

have shown that spike timing--dependent plasticity can lead to

input/output mappings that correspond to arbitrarily chosen

sets of synaptic weights. However, this does not clarify whether

mappings to arbitrarily chosen output spike patterns are

possible. As we discuss below, the latter question has important

implications for the interpretation of electrophysiological data.

Therefore, we address here the question of whether there exist

sets of synaptic weights that will transform arbitrarily selected

patterns of spike timing into arbitrarily selected temporal

patterns of current in a postsynaptic neuron model.

To answer this question, we use a conductance model to

characterize synaptic currents, adjusting weights so that syn-

aptically induced current at the soma optimally approximates

preselected target patterns. We show that commonly observed

types of firing patterns can drive a wide variety of current

patterns in postsynaptic cells, regardless of whether their mean
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rates vary over time. This remains true even if spike times vary

randomly with a standard deviation (SD) of more than 10 ms. In

some cases, effective postsynaptic currents (PSCs) can be

driven by firing patterns that are so variable that the probability

of distinguishing them from random firing is remote. Thus, in

very general circumstances, the information contained in

patterns of spike timing can be read out as arbitrary patterns

of current in a postsynaptic cell. We conclude by suggesting

how this phenomenon may underlie a versatile population--

temporal coding scheme.

Materials and Methods

Simulations were performed using MATLAB� code that is available from

the authors’ web site (http://compneuro.uwaterloo.ca/).

Approximation of Current Patterns
The key procedure in this study is the assessment of how well given

firing patterns can induce preselected patterns of current in a post-

synaptic cell model. The target current was never induced exactly, but

for a given presynaptic firing pattern, approximations of varying quality

could be obtained by adjusting synaptic weights. We were interested in

the best approximations that could be obtained for each firing pattern/

target current pair.

Target currents were approximated by a linear combination of the

PSCs that were induced at each synapse in a model cell. The optimal

synaptic weights for approximating a given target current were found

by adapting a method for decoding neural representations of scalars

(Eliasmith and Anderson 2003). The following error function was

minimized (using the Moore-Penrose pseudoinverse) with respect to

synaptic weights w :

E =

Z T

½I ðt Þ –+wiIiðt Þ�2dt

where E = error, I(t) is the current pattern to be approximated,wi is the

weight of the ith synapse, Ii is the unweighted PSC pattern at each

synapse, and t is time. In cases where firing patterns varied from trial to

trial due to noise, the above integral was evaluated over 32 repeated

trials to find optimal weights, and performance was then evaluated as

the average mean-squared error (MSE) over 5 additional trials. Accuracy

improved with greater numbers of trials but improved little with 64 as

opposed to 32 trials.

The model of current dynamics at each synapse was adapted from

a model of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid

receptors (Destexhe et al. 1998). This model determined the temporal

shape of the current at each synapse, whereas the optimal synaptic

weights determined the absolute scale. The results of this study were

not sensitive to alternate PSCmodels, different time constants of current

decay, or diverse time constants at different synapses. We adopted the

common simplifying assumption that synaptic currents combine linearly

at the soma (e.g., Gütig and Sompolinsky 2006; Izhikevich 2006). This is

a reasonable approximation of some, but certainly not all, cases of

synaptic integration, depending on factors such as intrinsic currents and

the spatial distribution of synapses (e.g., Poirazi et al. 2003). Linear

combination was achieved by holding membrane potential (at the

synapse) at –65 mV, a constant far from the reversal potential. By

summing conductances instead of currents, the analysis can be gener-

alized to any case in which there is a monotonic relationship between

conductance and current, but this additional complexity is avoided here.

We focused on target current patterns in the 0- to 5-Hz band, which

approximates the range of frequencies over which neural firing rates

change in many circuits. For example, muscle activation patterns in

humans (which are rate coded) consist mainly of frequencies under

5 Hz. A selection of band-limited target currents was generated by

assigning random coefficients to different frequency components and

calculating the inverse fast Fourier transforms.

Presynaptic Firing Patterns
Presynaptic firing patterns were obtained in 2 different ways. First, an

initial study was performed with firing patterns produced by a cortical

network model. Second, synthetic spike trains with desired statistical

features were generated by drawing interspike intervals (ISIs) from

appropriate probability distributions. These methods are described in

detail below.

Network Simulation

The cortical network model (Izhikevich 2003) consisted of 200 fast-

spiking inhibitory and 800 excitatory neurons, the latter mainly adapting

with some bursting neurons. In some simulations, the coefficient of

variation (CV; i.e., the SD divided by the mean) of ISIs (within the spike

train of each neuron) was increased. CV was increased by shifting the

excitatory neuron distribution to favor bursting neurons and decreasing

excitatory coupling by 40%.

Synthetic Spike Trains

Synthetic spike trains were used to explore in detail how the results

obtained from the cortical network model related to its patterns of

firing. ISIs for synthetic spike trains were drawn from 3 types of

probability distributions: Gaussian centered on a mean firing rate

(repetitive spiking), a shifted exponential distribution with zero

probability between 0 and 2 ms (Poisson-like pattern with refractory

period) and a bimodal distribution consisting of the sum of 2 Gaussians,

chosen so as to obtain a specified mean rate and CV = 2 (irregular

bursting). To obtain spike trains with CV < 1, the Gaussian and

exponential distributions were combined in a weighted average. Spike

trains with CV between 1 and 2 were obtained by averaging the

exponential and bimodal distributions.

Because each synthetic firing pattern was generated from a single ISI

distribution, we refer to these patterns as having constant firing rates.

Because the mean rates do not change over time, ISI ordering makes up

all the information content of these firing patterns. This means that, for

example, the Poisson patterns in this study are not treated as Poisson

noise, but as information with Poisson statistics. Noise was introduced

separately, either as spike time jitter or in the form of additional spikes

that were introduced at random from trial to trial.

It was hypothesized that firing time correlations across different

neurons might also affect performance, separately from the effects of

the temporal regularity of firing patterns. Spike trains with different

levels of pairwise correlation were produced in 2 ways.

Method A. Spikes were distributed in a Gaussian pattern (SD = 3 ms)

around Poisson-distributed correlation times (Benucci et al. 2004). The

degree of correlation was varied by changing the rate of correlation

times relative to the firing rate. For example, when the rates were

similar, each spike train contained a spike at almost every correlation

time, and pairwise correlations were very high. Correlations were low

when the firing rate was much lower than the rate of correlation times.

Method B. Poisson firing rates R in each spike train were varied over

time according to the template function: R = Amaxð0; sinð2pBt Þ–CÞ;
where B = 10, 22, or 55 Hz, t is time, C is a threshold between –2.0 and

0.9, and A is a constant that normalizes the template to produce the

desired mean firing rate. At higher thresholds, firing only occurred at

peaks of the sine wave, resulting in high correlations.

As an index of pairwise correlation, we report the peak cross

correlation R = ðRAB–NANB=N Þ=½ðNA–N
2
A=N ÞðNB–N

2
B=N Þ�1=2; where RAB

is the number of coincidences in each 1-ms bin, NA and NB are the

numbers of times that cells A and B fire, and N is the number of bins (e.g.,

Tomita and Eggermont 2005). These methods result in similar degrees

of correlation between different pairs in an ensemble. This is a simpli-

fication, in that there is typically substantial variation between pairwise

correlations in a real neural ensemble.

Statistical Power Analyses
Statistical power analyses were performed in order to determine the

numbers of experimental trials that would be needed to detect the

subtlest firing patterns that could drive reproducible activity in post-

synaptic targets (see details in Appendix). These analyses apply to

experiments that consist of repeated recordings of a single excitatory

cell from a population with Poisson firing statistics. Cells that are
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postsynaptic to this population may also receive inputs from other

populations, but the net effect of other inputs is assumed to be nearly

constant.

Results

Cortical Network Simulation

A simulated network of 1000 irregularly firing cortical neurons

(Izhikevich 2003) was able to generate PSCs that closely

approximated a wide variety of target patterns. Figure 1 shows

current patterns generated simultaneously by this network in 3

different postsynaptic cell models, which differ only in terms of

synaptic weights. The current pattern in the first cell is

a smoothed and scaled version of the network’s mean firing

rate. This is the type of current pattern that would emerge with

uniform or random synaptic weights, so it is not surprising that

this target pattern can be approximated very closely when

synaptic weights are optimized specifically for this purpose.

The current pattern in the second cell is an arbitrarily chosen

square pulse. In contrast with the current pattern of the first

cell, this current pattern is not related to the network’s firing

rate or to any other time-varying statistic of the network’s

activity. However, with appropriately chosen synaptic weights,

this pattern is also approximated accurately. The current pat-

tern in the third cell consists of randomly selected frequency

components in the 0- to 5-Hz band. Like the square pulse, it

bears no obvious relationship with the network’s firing pattern,

but it is also well approximated. Somatic current in each of

these cells deviates less than 1% from the target, in the mean-

squared sense. These examples show that a given pattern of

firing may drive an extremely wide variety of PSCs given appro-

priately chosen synaptic weights.

Firing Pattern Regularity

This basic result does not address how statistical features of

a population firing pattern might constrain the current that it

can induce in a postsynaptic cell. Synthetic spike trains were

used to explore this question in detail. Approximation error was

found to depend strongly on the regularity of spike trains over

time. Figure 2 (panels A--D) shows approximations of band-

limited current patterns by firing patterns with differing

temporal regularity. Notably, spike trains with essentially

constant firing rates (e.g., Fig. 2A,B) could approximate arbi-

trarily chosen time-varying current patterns in the postsynaptic

cell model. However, error was markedly reduced as the CV of

ISIs increased.

These results are not surprising when the currents at

individual synapses are considered in the frequency domain.

The currents at individual synapses can be viewed as temporal

basis functions, which are weighted and summed to approxi-

mate the target pattern. The frequency content of these basis

functions depends on the firing pattern of the corresponding

presynaptic cell. For example, the current that arises from

regular firing consists of harmonics of the firing frequency,

whereas that arising from Poisson firing has a broad spectrum.

This can be seen in the lower traces of Figure 2A--D, which

show the power spectra of the first several principal compo-

nents of the PSCs that are induced by each ensemble. Approx-

imation error decreases with increasing power in the frequency

range of the target current and increases with increasing power

at other frequencies.

As a result, both Poisson-refractory and irregular-burst firing

patterns can accurately generate target currents with a wide

range of frequencies. Burst firing is more effective than Poisson-

refractory firing for driving low-frequency current patterns.

However, Poisson-refractory firing is effective over a slightly

wider frequency range (Fig. 2E). Firing patterns in most neural

circuits tend to have high CV. These results begin to suggest

Figure 1. Pattern generation example. A model of 1000 cortical neurons (Izhikevich
2003) can generate arbitrarily chosen current patterns in a postsynaptic cell. (A) Spike
times (one neuron per row). (B) Membrane potential of a typical excitatory neuron in
this network (scale bar 20 mV). (C) Current induced in 3 different postsynaptic cells, to
which the network projects with different synaptic weights. Currents are optimal
approximations (gray) of target patterns (black dashed). Top: smoothed and scaled
reflection of the network’s mean firing rate, middle: an arbitrarily chosen square
current pulse, bottom: an arbitrarily chosen band-limited target (scale bars: 1 nA and
100 ms). Timescale in (C) applies to all panels.
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that information contained in such patterns can be extracted in

an accurate and flexible manner.

Spike Jitter and Noise Spikes

The results described so far are highly idealized in that they are

based on noise-free firing patterns. In order to quantify the

dependence of current generation accuracy on precise spike

timing, simulations with synthetic spike trains of different

CV were repeated with random (Gaussian distributed) spike

time jitter.

Spike jitter with a given variance had the effect of increasing

MSE by a near-constant multiple, regardless of CV. Thus at high

CV, where error without spike jitter was minimal, error

remained relatively low even when substantial jitter was

applied. For example, with bursting spike trains (CV > 1), 8-ms

jitter resulted in error of at most 5% of root-mean-squared

current (Fig. 2F). Similar results were obtained when firing

patterns were corrupted by inserting additional ‘‘noise spikes,’’

at random times (determined by a constant-rate Poisson-re-

fractory process) that were uncorrelated between repeated

trials (Fig. 2G).

Figure 3 shows an example in which half of the spikes are

noise spikes and the other half are subject to extreme Gaussian

jitter (r = 20 ms). The target pattern is nevertheless approxi-

mated with reasonable accuracy, illustrating that meaningful

population output requires very little consistency in the fine

temporal firing patterns of individual neurons, even in the

absence of coarse firing rate variations.

Population Size and Firing Rate

For firing patterns with a given CV, error decreased with

increasing presynaptic population size (Fig. 4). However, very

large populations were not needed. For example, with 1-ms

spike jitter, 1000 presynaptic Poisson-refractory neurons were

adequate to generate 500-ms signals with roughly 2% MSE.

In contrast with population size, firing rate had little effect on

the accuracy of current generation. Errors arising from Poisson-

refractory inputs were consistent over a wide range of in-

termediate firing rates, increasing slightly both below 5 spikes/s

and above 100 spikes/s (Fig. 5). The increase in error with

higher rates is related to the fact that the refractory time causes

a more pronounced deviation from Poisson statistics (lower CV)

Figure 2. Decreasing error with decreasing spike pattern regularity. All data are from simulations with 500 synthetic neurons, with mean firing rate 30 Hz, but different ISI
distributions. In panels (A--D), dots represent spike times of example neurons, black dashed lines are target currents, and gray lines are actual net synaptic currents flowing into the
postsynaptic cell model. Traces below are power spectra of the first 5 principal components of the PSCs (range 0--100 Hz; shaded area 0--5 Hz). (A) Neurons that fire at near-
constant rates (CV 5 0.08; MSE 5 0.117 nA). (B) Constant rates with wider rate distribution (across neurons) than in (A) (CV 5 0; MSE 5 0.015 nA). (C) Poisson-refractory
neurons (CV5 0.94; MSE5 0.002 nA). (D) Irregular-bursting neurons (CV5 1.7; MSE5 0.0003 nA). (E) MSE (as a proportion of root-mean-squared target current amplitude) in
approximating sinusoids of different frequencies (mean over 5 different phases at each frequency) for a wide range of CV. Error is generally high with low CV, except when sinusoid
frequency is close to the mean firing frequency. (F) MSE versus CV. Separate lines are degrees of Gaussian jitter (SD as labeled). Error bars on top and bottom traces indicate SD
over 5 randomly selected band-limited signals. Symbols O and X indicate means for a 500-neuron version of cortical network and for the same network adjusted for higher CV (see
Materials and Methods), respectively. (G) As (F) but with noise in the form of additional, randomly timed spikes instead of jitter. Number of noise spikes given as percentage of
number of nonnoise spikes. Dashed lines of the same shade indicate errors with the same proportion of noise spikes plus 4-ms jitter.

Cerebral Cortex August 2007, V 17 N 8 1833

 by guest on July 10, 2013
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/


at higher rates. This can be seen by comparing the solid and

dashed lines in Figure 5.

Correlated Firing

We have essentially characterized synaptic currents as having

low-frequency components that form an overcomplete tempo-

ral basis of possible somatic currents, over some range of

frequency and time. Because such functions span a larger space

if they are linearly independent, we hypothesized that spike

timing correlations would impair performance. Synthetic spike

trains were used to test this prediction (note that we did not

study correlated variability here, as others have done, e.g.,

Abbott and Dayan 1999; Schneidman et al. 2003). Error generally

increased with correlated spike timing because when spikes

were concentrated around correlation times, there were fewer

spikes in the intervening periods, which is analogous to the

population briefly consisting of fewer neurons (see previous

section). However, the increase in error was minimal when

correlation times were periodic at high frequencies (Fig. 6).

This can be explained by noting that when correlation times are

frequent, some of the PSCs that begin flowing around one

correlation time will continue to flow until the next, so that the

effective population size remains large throughout. These

results suggest that although correlated firing may underlie

some forms of temporal coding, it may preclude other forms

that rely on diverse timing to support a wide range of temporal

transformations. Another possibility is that correlated firing may

gate such codes dynamically.

Learning

The results presented above are based on synaptic weights that

were obtained using an artificial optimization method. The

physiological relevance of these results depends on whether

Figure 3. Moderate error with highly variable spike trains. The presynaptic population
consists of 1500 synthetic Poisson-refractory spike trains. Each train consists of 2
interlaced 20 spike/s components. One component is subjected to large spike jitter
(SD5 20 ms) that is uncorrelated between trials. The other component is completely
uncorrelated between trials (i.e., in each trial, this component consists of a new set
of spikes from a Poisson-refractory process, which is independent of previous sets).
(A) Spike times of an example presynaptic neuron, over 32 trials used to find synaptic
weights (dots), and 2 separate trials shown in panel (C) (circles). (B) Spike time
histogram of a single example neuron (scale bar: 10 spikes/s). (C) Approximations
(gray) of target current (black) for the 2 trials shown as circles in (A) (scale bar: 2 nA).
(D) Membrane potential of a Hodgkin--Huxley model (Koch 1999) driven by the 2
current approximations shown in (C) (scale bar: 100 ms applies to all panels).

Figure 4. Error decreases with increasing population size. Results from Poisson-
refractory neurons (40 spikes/s), with different degrees of Gaussian spike time jitter are
shown (jitter SD as labeled). Error bars on top and bottom traces indicate mean ± SD
of MSE over 5 randomly selected band-limited target currents (as a proportion of root-
mean-squared target current amplitude). Error varies with spike jitter as in Figure 2.

Figure 5. Error is nearly constant over a broad range of firing rates. Separate lines
correspond to Gaussian jitter with SD as labeled. Solid black: Poisson-refractory
neurons. Dashed gray: Poisson neurons. Error bars on top and bottom traces indicate
mean ± SD of MSE over 5 randomly selected band-limited target currents (as
a proportion of root-mean-squared target current amplitude).
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each synaptic weight can be independently learned, using only

information that is available at the corresponding synapse. We

found that synaptic weights can indeed be learned in this

manner, provided some explicit error or target signal is available.

The derivative of the error function defined earlier (see

Materials and Methods), with respect to each synaptic weight,

equals the inner product of the current and the error over time.

This suggests a supervised learning rule in which each synaptic

weight is updated at each instant, by Dwi = –jI syni E ; where j is

a constant learning rate, I
syn
i is the instantaneous current at the

i synapse, and E is the instantaneous error in net current. This

learning rule quickly converges on results similar to those

obtained with the optimization method (Fig. 7). This remains

true in the presence of spike jitter.

Assuming an error signal were available, it is doubtful whether

this signal would propagate instantly to each synapse. We

therefore investigated the performance of the learning rule

when Dwi was based on low-pass filtered error and current

signals. Filtering obscured high-frequency errors from the

learning mechanism. Consequently, learning was slowed, and

the resulting approximations contained more noise in the

frequency range corresponding to the stop band of the filter

(Fig. 7). However, these limitations were not severe. Reasonable

approximations were obtained even when the filter time

constant was greater than the duration of the target signal. This

demonstrates that learning can proceed on the basis of error

information that is substantially lagged and temporally smoothed.

Experimental Detection of Subtle Repeated Patterns

As previously demonstrated, spike patterns with little trial-to-

trial consistency can drive highly consistent activity in a post-

synaptic target (Fig. 3). This raises the question of whether

spike patterns that have a stereotyped relationship with

behavior might be driven by spike patterns that are so variable

with respect to behavior that any underlying consistency evades

experimental detection. Statistical power analyses were per-

formed to address this question. The analyses estimate the

numbers of repeated trials that would be needed to find

perievent variations in firing rate, under the assumption that

such variations are as small as possible while still producing

relatively reliable spiking in a postsynaptic cell.

Figure 8 shows the numbers of trials that would be needed to

detect the subtlest presynaptic firing patterns that could drive

postsynaptic firing with various levels of consistency. The

number of trials needed depends strongly on how reliable

postsynaptic spiking is assumed to be. This is because the more

pronounced variations in presynaptic firing that would be

needed to cause more reliable postsynaptic firing would also

require fewer trials to detect. However, even if postsynaptic

spiking were highly stereotyped (1% of spikes timed inconsis-

tently from trial to trial), 50 or more repeated trials may be

needed to distinguish the driving patterns from random firing.

Throughout the range of error rates shown in Figure 8A, trial-to-

trial consistency is greater in postsynaptic than in presynaptic

firing patterns. So, presynaptic firing patterns that are so subtle

as to require over 1000 trials to detect may nevertheless drive

much more stereotyped activity in postsynaptic cells. Although

Figure 6. Increasing error with increasing spike time correlation. (A) MSE versus
correlation (4-ms jitter) with 500 Poisson-refractory neurons (40 spikes/s). Solid and
dashed lines indicate Poisson and periodic correlation times, respectively (see
Materials and Methods; a 5 10 Hz; b 5 22 Hz; c 5 55 Hz). MSE reported as
proportion of root-mean-squared target current amplitude; bars indicate SD over five
300-ms targets. (B--D) Examples of approximations with Poisson, a, and c correlations
of roughly equal strength. Dots represent spike times of example neurons, black lines
are target currents, and gray lines are the actual synaptic currents flowing into the
postsynaptic cell model. Scale bars: 100 ms and 1 nA.

Figure 7. Learning. (A) Decrease in error over 1000 iterations of a Poisson-refractory
spike pattern (500 neurons; 30 spikes/s), under the learning rule described in the text
(see Results under the heading ‘‘Learning’’). All synaptic weights initially set to zero;
target current as shown in other panels. Thick black lines indicate learning trials with
no spike jitter. Three cases are shown, each with error data temporally filtered using
a different first-order low-pass filter (time constants as labeled; s 5 0 indicates no
filter). The thin gray lines that diverge from the black lines after ~10 iterations indicate
corresponding cases repeated with 4 ms (SD) jitter in the spike trains (only the s5 0 s
and s 5 0.05 s cases are shown). Interestingly, there were substantial differences in
error after a single iteration (left extreme of each line), depending on the filter time
constant. Substantial filtering allowed the learning mechanism to accurately
approximate the mean magnitude of the target signal in a single pass, although
subsequent learning of the signal shape was slowed. Learning continued after 1000
iterations (not shown). For example, with s5 0.5, error was further reduced by about
half, after 10 000 as opposed to 1000 iterations. Panels (B--D) show target current
(black) and approximation (gray) in various cases, after 1000 iterations. (B) Neither
filter nor spike jitter. (C) Filter with s5 0.05 s. (D) Spike jitter with SD5 4 ms. Scale
bars: 100 ms and 0.5 nA.
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the specific results of this analysis clearly depend on the

assumptions made (e.g., degree of convergence; Poisson firing

statistics),we take it that the sameor similar assumptions describe

many cortical and subcortical areas. The key observation is that

substantially more trials may be needed to detect useful repeated

firing patterns (e.g., over 100 trials, if a 10% rate of postsynaptic

spike mistiming is assumed) than are typically collected in

experimental studies (except in studies in which repeated trials

consist only of brief sensory stimuli, e.g., Bair and Koch 1996).

In fact, these results may underestimate the capacity for

highly variable spiking to produce stereotyped behavior be-

cause the power analyses ignore potential dynamic effects.

Specifically, firing at the output of a network will have greater

consistency if the network is more responsive to underlying

firing patterns than to random fluctuations. Figure 8D shows

the results of a simulation that illustrates this point using

a Hodgkin--Huxley model (Koch 1999) of a postsynaptic neu-

ron. In this simulation, the receiving neuron is made less

responsive to high-frequency random fluctuations in excitation,

simply by including PSC dynamics with a relatively long time

constant of 20 ms. Depending on the frequency content of

signals in a given circuit, this particular filtering mechanism

might not be useful. However, there are other more sophisti-

cated neural circuits that can perform, for example, band-pass

filtering with any choice of corner frequencies (Tripp and

Eliasmith 2006). This reinforces the conclusion that precise,

reproducible behavior can in theory arise from highly variable

neural activity.

Discussion

We have shown that even in the absence of coarse rate

variations, irregular firing patterns can drive nearly any given

pattern of activity in a postsynaptic neuron. Importantly, such

transformations can be obtained through learning. These results

have 2 main implications in terms of the interpretation of

experimental data. First, a neuron’s pattern of firing around an

event may not have an obvious temporal relationship with the

neuron’s role in the event. For example, although a group of

neurons fires faster only at the end of a movement, subtle

differences in spike timing between neurons may drive some

aspect of movement initiation. This is particularly true with

respect to irregular and highly stereotyped firing patterns, such

as those arising in middle temporal responses to some visual

stimuli (Bair and Koch 1996) or in songbird vocalization

(Hahnloser et al. 2002; although the same cannot be said if

responses lack diversity across the population, e.g., see Reinagel

and Reid 2002). Furthermore, accuracy degrades gracefully

with firing pattern variability, so that even firing patterns that

are difficult to distinguish from random firing can drive

relatively stereotyped activity. Therefore, the second main

conclusion to be drawn from this study is that neither precise

spike timing nor observable rate fluctuations can be relied on to

expose all the significance of a cell’s activity.

Although we have studied projections from a single neural

ensemble to a single postsynaptic neuron, the results also have

implications for larger circuits. A single ensemble of neurons

can drive different postsynaptic neurons in entirely different

patterns (e.g., Fig. 1C). As we have shown, several hundred

neurons driven in diverse patterns would form a rich basis

from which to drive activity in a subsequent layer. Therefore,

although it remains to study how errors propagate through

multiple layers, the present results clearly apply to larger

circuits as well as to single projections.

Our findings are in general agreement with the results of

Gütig and Sompolinsky (2006) on the classification of firing

patterns. If a neuron can be trained to spike in response only to

selected population--temporal input patterns, as they have

shown, then it would be expected that the same neuron could

be made to exhibit arbitrarily chosen firing patterns by training

it to respond only to selected short segments of a longer

presynaptic pattern.

Medina et al. (2000) present a model of a specific neural

circuit that they take to function in similar manner to the

abstract circuits in the present study. Theirs is a classical

conditioning model, in which cerebellar granular cells respond

to a conditioned stimulus with diverse temporal firing patterns.

An unconditioned stimulus serves as a training signal, decreas-

ing or increasing the strength of granular cell synapses onto

Purkinje cells, depending on whether granular cell activity is

coincident with the unconditioned stimulus or not. After

training, Purkinje cells in effect decode a temporal prediction

of the unconditioned stimulus from diverse granule cell firing

patterns. Synaptic weights are modulated on the basis of a target

output rather than error, so learning ends when some physio-

logical parameter is saturated, rather than when error is

minimized. Otherwise, this learning mechanism is analogous

to the one presented here.

The present study is also conceptually related to the liquid-

state machine (Maass et al. 2002). The liquid-state machine

relies on a diversity of neural responses to input, within

a recurrent circuit, in order to approximate a broad class of

temporal functions of the input. In contrast to the liquid-state

machine (the neurons of which fire at fluctuating rates), the

present study explores how computations are effected by firing

statistics in the absence of large-scale rate fluctuations. This

Figure 8. Trials needed to detect subtle firing patterns. Results of prospective power
analyses for (hypothetical) experiments to detect the smallest perievent firing rate
changes that could trigger reliably timed spiking in a postsynaptic cell. Assumptions
are as described in Materials and Methods. Details of the analysis are given in the
Appendix. (A) numbers of trials required for a type-II error rate of 0.2 with 1-way
ANOVA. More trials are needed to detect smaller presynaptic fluctuations in firing rate.
The expected size of presynaptic rate fluctuations depends on the number of neurons
contributing to each postsynaptic spike (black: 500; gray: 1000) out of a total of
10 000, and on the reliability with which the postsynaptic cell is assumed to spike. For
example, larger presynaptic variations in firing rate lead to more reliable postsynaptic
timing and also require fewer trials to detect. An impractically large number of trials
may be needed to detect subtle patterns, unless it can be assumed that the patterns
drive postsynaptic activity with a very low error rate. (B) 100-trial spike timing
histogram for an example neuron drawn from a population that drives postsynaptic
firing with a mistimed spike rate of ~60%. (C) 100-trial firing histogram for a Hodgkin--
Huxley neuron driven by the population exemplified in (B) with PSC time constant of
5 ms. (D) As (C) but with 20 ms PSC time constant.
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focus leads to new implications (as describe above) with

respect to the interpretation of electrophysiological data.

Effects of Firing Statistics on Performance

The relationships between the statistics of presynaptic firing

patterns and the accuracy of PSC generation are remarkable in

several respects. First, we have demonstrated that the irregu-

larity of experimentally observed spike trains can provide

a substantial functional advantage in terms of 1) the accuracy

with which neurons can drive current in a postsynaptic cell and

2) the robustness of the current pattern to noise. For slowly

varying current patterns, this advantage is even more pro-

nounced with bursting neurons, highlighting a possible di-

mension in the functional relevance of burst firing that has

received little attention (e.g., in Crick 1984; DeBusk et al. 1997;

Lisman 1997; Reinagel et al. 1999; Izhikevich et al. 2003; Kepecs

and Lisman 2003).

Second, although it is well-established that greater numbers

of neurons can drive current more accurately, we have

demonstrated that even in the absence of precise spike timing

or rate variations, very large numbers of neurons are not needed.

As shown in Figure 3, 1500 irregularly and inconsistently

firing neurons can drive useful PSC patterns. The degree of

convergence onto most neurons is far greater than this. For

example, some a-motoneurons receive about 50 000 synaptic

inputs, and cerebellar Purkinje cells receive as many as 200 000.

This indicates that multiple firing-rate--independent signals

could converge on a single neuron pool. Furthermore, the

same population firing pattern can induce vastly different cur-

rents in different cells (e.g., Fig. 1C), so the same small group

of neurons could drive a wide variety of activity elsewhere,

limited only by the number of different cells to which it

projects.

Third, we have noted that under the conditions studied here,

errors in PSC are greater when the timing of presynaptic spikes

is correlated. However, we have also shown that the increase in

error is moderate when spike times are correlated at high

frequencies. It is interesting to consider this result in relation to

oscillations in local field potential (LFP), particularly in the

context of motor control. Lower frequency alpha and beta

oscillations in motor cortical LFP usually disappear during

movement and are sometimes replaced, around movement

onset, by higher frequency gamma oscillations (MacKay

1997). Similar changes in LFP oscillations during movement

occur in the cerebellum (Pellerin and Lamarre 1997) and basal

ganglia (Cassidy et al. 2002; Levy et al. 2002; Courtemanche et al.

2003; Kühn et al. 2004). Thus, patterns of LFP oscillation in

motor areas during movement and rest coincide with patterns

of synchrony that allow and preclude (respectively) the type of

coding presented here, pointing to the possibility of a role for

this type of coding in motor control.

Fourth, and finally, we have shown that errors in pattern

generation were dominated by high-frequency fluctuations,

a point that is also relevant to motor control. For example,

75% of the error in Figure 2A was at frequencies above 100 Hz,

much higher than the frequency content of skeletal movement.

The frequency spectrum of the error is relevant in the context

of motor control because the relationship between myoelectric

activity andmuscle forces resembles a low-pass filter (Olney and

Winter 1985), and limb inertia has a further damping effect.

Thus, most of the error observed in this study (i.e., error at high

frequencies) would not necessarily interfere with movement

kinetics if it were present in a motor circuit.

Timing versus Rate

Each of the synthetic firing patterns used in this study was

generated from a constant ISI distribution and in this sense has

a constant mean firing rate. However, instantaneous rates

fluctuated because the patterns (with the exception of those

in Fig. 2B) contained a range of ISIs. So, if these firing patterns

were repeated over multiple trials, rate fluctuations would ap-

pear in the multitrial spike histogram (although such fluctuations

might be quite subtle, as in Figs 3 and 8). However, repeated

task behavior does not guarantee that related neurons exhibit

repeated patterns. For example, a neuron’s activity may reflect

something that varies from trial to trial, such as an error signal.

Also, a neuron’s firing pattern might contain information about

a repeated feature of an event only when considered in con-

junction with the firing patterns of other neurons (Schneidman

et al. 2003). For example, there are nearly identical segments in

the final 2 rising slopes of the bottom trace of Figure 1C; one is

coincidentwith a gammaoscillation and theother is not. Because

instantaneous rate does not uniquely determine multitrial rate,

even if the neuron is noise free, and because it is otherwise

indistinguishable from timing, we use the term ‘‘rate’’ only to

indicate the inverse of the mean of the ISI distribution.

Limitations and Future Work

The most important limitation of this study is that the dendritic

model used here assumes linear combination of currents, as

might occur, for example, with synapses on separate distal

dendrites (Poirazi et al. 2003). Dendrites can also combine

synaptic input in much more complex and varied ways,

although some complexities of dendritic processing (including

dendritic spiking) serve partly to compensate for passive cable

properties rather than to implement nonlinear computations

(Magee 1999; Magee and Cook 2000; Williams and Stuart 2000;

Rudolph and Destexhe 2003). As noted in Materials and

Methods, the present results are relevant to any case in which

PSC is a monotonic function of total conductance. For any target

current, in such cases, there is a corresponding sum of

conductances that will produce it. In more complex cases,

the present results may only apply under limited conditions, for

example, to activity within a single dendritic branch or within

a certain voltage range. It is beyond the present scope to

explore how these results interact with more detailed models of

specific cell types, but we expect that in many cases, sophisti-

cated dendritic processing would enable further computations

on the results of the computations modeled here. For example,

several temporal current patterns that are generated by near-

linear synaptic integration might converge to be combined

multiplicatively. The possibility of such additional dendritic

processing does not seem to affect the basic conclusion that

arbitrary timing-based information can be exploited in a flexible

manner, under very general circumstances.

One aspect of dendritic processing that would be particularly

interesting to study, in relation to the current results, is

variability in the dendritic membrane time constant (e.g.,

through neuromodulation). Changes in membrane time con-

stant would alter the temporal relationships between somatic

currents arising from different parts of the dendritic tree. If

weights were tuned in relation to one time constant, such
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changes would be expected to result in additional noise in the

somatic current, at frequencies of about 50 Hz and higher.

However, it might be possible to tune synaptic weights in order

to exploit such changes functionally. For example, modulation

of the time constant might synchronize or desynchronize distal

excitatory inputs from more proximal inhibitory inputs, dra-

matically influencing the spiking pattern.

We have shown that in principle, timing patterns can be

exploited by the brain even if they are difficult to detect

experimentally. This result is in a sense its own limitation,

because it would be difficult to confirm that this was actually

happening in a given circuit. A prerequisite would be that some

functionality of a circuit could not be accounted for by firing

rates or precise timing. Specific results of this study (e.g.,

relationships between error and firing statistics) may also help

to resolve whether such a mechanism is feasible given other

knowledge of the circuit. However, the only obvious way to test

for this phenomenon directly is to perform large numbers of

trials.

Another limitation of this study is that although we have

identified a learning rule thatmakes use of information that could

plausibly be available at each synapse (i.e., each synapse does not

need information from other synapses), this rule is speculative

rather than being based on a known biological mechanism. It

remains either to map this learning rule onto a demonstrated

mechanism or to explore the viability of other rules, for example,

rules based on rewards rather than error signals.

Although we have focused on how an ensemble of neurons

can produce a single pattern of PSC in a given cell, it is unlikely

that a cell is dedicated to producing a particular pattern. As

a result, further work is needed to explore how our results

generalize to the production of different current patterns in the

same cell over short timescales, that is, without substantial

changes in synaptic weights. There are several possibilities. For

example, an ensemble could produce a family of pattern

primitives, which could be separately gated to produce a wide

range of PSC patterns. A circuit of this form might function as

a repository of arbitrarily complex motor programs, with

parameters varied through gating.

It may also be fruitful to explore how the firing patterns that

arise from varying input to a network could drive a useful set of

outputs. Certainly, the firing patterns that are produced by 2

different inputs could produce essentially any 2 patterns of PSC.

This is clear if one imagines that the spike pattern from 0 to 500

ms in Figure 1 is produced by one input and the pattern from500

to 1000 ms is produced by a second input. With a single set of

synaptic weights, the 2 inputs result in 2 different current

patterns. This remains true formore than 2 inputs, but error rises

roughly linearly with the summed duration of the input/output

mappings. However, if firing patterns reflected only a few milli-

seconds’ input, then multi-input--multioutput mapping might

result in good piecewise approximations of a large family of

desired outputs. This possibility is related to the liquid-state

machine (Maass et al. 2002), but differs in a significant respect.

Specifically, although computations in a liquid-state machine

require traces of long-past inputs,we are suggesting that a similar

architecture without such traces may enable population coding

of time-varying inputs without time-varying firing rates.

Population --Temporal Coding

The present results make it clear that patterns of irregular

spiking, perhaps generated by recurrent circuit dynamics, can

drive a wide range of time-varying activity in other cells. In this

light, we propose that it is reasonable to view any circuit that

produces a temporal firing pattern, regardless of whether the

pattern contains variations in firing rates, as being analogous to

a central pattern generator. That is, such a circuit is a versatile,

intrinsic source of time-varying activity patterns (although

mechanisms of pattern modulation may be different from those

of classical central pattern generators).

However, the ability of neurons to exploit timing-based

information may have much broader uses. One interesting

possibility is that a given pattern of input to a neuron might

be analogous to the neuron’s preferred direction, in a multidi-

mensional population code. For example, suppose a neuron was

to receive input from a number of synfire chains (Diesmann

et al. 1999; Ikegaya et al. 2004). The phase relationships among

N + 1 chains would span an N-dimensional vector space. Every

vector in this space, that is, every possible list of phases, would

correspond to a certain pattern of input to the receiving

neuron. As the present results demonstrate, almost any such

input pattern could be transformed into almost any pattern of

current. Moreover, deviations from this input pattern, either in

terms of phase relationships or spike timing precision, would

result in noisier current, much like deviations from preferred

direction in a rate-based population code result in reduced

current. An ensemble of neurons with different preferred phase

relationships could support a population code over the space of

phase relationships. The present results also suggest that

a population code of this form could drive either a similar

code in a receiving ensemble of neurons or a rate-based

population code (as evident from the square-pulse example

of Figure 1, in that a postsynaptic neuron would fire faster

during the excitatory pulse). Further work is needed to verify

that such a population code can be supported by realistic

neuron models and to explore its computational power.

In conclusion, the results of this study suggest that neurons

can use information contained in the timing of incoming spikes,

under very general conditions. Synchrony is not needed, and

specialized synapses, neurons, and circuit structures are also

unnecessary. Furthermore, incoming patterns can consist

mostly of noise and can therefore be very hard to detect

experimentally, yet still produce behaviorally useful patterns.

Finally, timing-based information can be transformed into

a wide variety of outputs, in a manner that seems to accommo-

date a versatile population code.
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Appendix: Details of Power Analyses

The effect sizes for power analyses were derived from the smallest

increases in the firing rates of a noisy excitatory population that could

be expected to produce a spike in a cell postsynaptic to this population.

For simplicity, it was assumed that PSCs would decay such that the

postsynaptic cell would fire if it received more than a fixed number of

spikes from excitatory sources within a 5-ms time bin. The rates of extra
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spikes and missing spikes in the postsynaptic cell were assumed to be

the same, so that noise could be expressed as a single index,

corresponding to the rate of mistimed spikes. For each spike in

a postsynaptic cell, let n be the number of excitatory neurons

converging onto the postsynaptic cell that have a slightly elevated,

noisy rate increase that contributes probabilistically to the spike. The

mean number of spikes in each bin, across these neurons, will be

different for each trial. For large n, these trial means cluster around

grandmeans in a Gaussian distribution with variance k/n (where k is the

Poisson spike rate per bin). Reliability of postsynaptic spiking in this

scenario will increase with greater differences between the grand

means of the normal and elevated rates of presynaptic spiking. The

grand-mean elevated rate of presynaptic spiking was set such that trial

means for each bin crossed an intermediate threshold at a rate

corresponding to a predetermined rate of mistimed postsynaptic spikes.

Because rates were elevated only in very short (5 ms) bins, this rate

modulation can also be viewed as a noisy manipulation of spike timing.

These analyses result in estimations of the numbers of trials in various

conditions, which provide a 0.8 probability of finding minimal rate

elevations (if they exist), with a 1-way fixed-effects analysis of variance

(ANOVA). The baseline and elevated rates were similar, so (because

variance equals mean in a Poisson process) the ANOVA assumption of

uniform variances was approximately satisfied. However, because the

ANOVA relies on the sampling distribution of variances, which is

sensitive to deviations from normality in the underlying distributions,

results are presented from numerical experiments rather than from

theoretical distributions. Each reported data point corresponds to the

number of trials (rounded to the nearest integer) in each of a set of 1000

experiments, in which the null hypothesis (i.e., the hypothesis that there

was no difference in firing rates across bins) was rejected between 799

and 801 times (a = 0.05). The validity of the ANOVA with Poisson-

distributed data in these circumstances was also confirmed, in that the

null hypothesis was rejected at the a = 0.05 level in roughly 50 of 1000

experiments in which there were no systematic rate differences,

regardless of the number of trials in each experiment.
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