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1. Introduction

Face and object recognition can be viewed as statistical classification due to the copious amounts
of intra-class variations. Existing face and object recognition algorithms either attack it as a
pattern classification problem, or use feature extraction as an intermediate step [28, 29, 46, 29].
The main challenge is that the probability density which defines a face or an object in <d is hard
to model due to the extremely high dimensionality and to the highly nonlinear density distribution
(as can be seen by translation/scaling [41]). Feature Extraction methods are a way of dealing
with this problem, but they often create inter-class overlappings in the feature domain. Due
to the high dimensionality of the data and the fact that there are only finite types of natural
transformations that can occur to any given face, it is only reasonable to utilize dimensionality
reduction techniques. By natural transformations, we take this to mean the changes to a face in
our everyday environment, such as lighting intensity or direction changes, pose (3D rotation and
2D similarity), expression changes, as well as small occulsions such as glasses or hair placement.
A finite number of transformations mean that intra-class points lie on a manifold with an intrinsic
dimension equal the number of transformations [40]. Intuitively all face points that lie on an
intra-class manifold should belong to the same person. We therefore deem the intrinsic divergence
(henthforth refered to as InDiv), which is a measure of similarity, to be 0 for all points on an
intra-class manifold.

In section 2, related work using distances is examined. Various other recognition algorithms
are viewed in the framework of the intrinsic divergence. We also demonstrate why the intrinsic
divergence is plausible for recognition by looking at 3 assumptions, which we show are most likely
to be true. In section 3, we survey ways to learn the intra-class manifolds. The intricacies of
the recent autoassociative network is also examined and we use it to find the intrinsic divergence.
Section 4 proposes two possible improvements by using neural networks to find the InDiv.



Figure 1. Visualizing euclidean distance, tangent distance, and intrinsic divergence in state space

2. Intrinsic Divergence

Distances and divergences provide a measure of dissimilarity between vectors and functions in
high dimensional space and is often involved in statistical classification. In nonparametric cases,
the distance measure between points is at the core of methods such as kNN, CART, SVM, and
kernel density estimators. In parametric cases such as LDA and QDA, the Mahalanobis distance
provides the first step in computing the likelihood [11, 16]. In information theory, KL-divergence
is a functional that can measure the dissimilarity between two probability distributions, among
other uses. In this project, we formulate the concept of intrinsic divergence as a measure of the
dissimilarity between two manifolds, where each manifold is composed of class specific faces under
various natural transformations. More formally, we define

InDiv = min
x̂
‖x− x̂‖2 (1)

Where x is the test point and x̂ ∈ M, and M is an intra-class manifold. The intuition behind
intrinsic divergence is simple: the real or intrinsic dissimilarity between two faces should be the
minimum distance between all possible natural transformations. The InDiv is always ≥ 0 and
is 0 only if two points lie on the same class specific manifold. This concept is related to tangent
distance [41], where the tangent distance between two data vectors is the minimum distance
between their respective tangent hyperplanes. There are two major differences between intrinsic
divergence and tangent distance: 1) the manifold is not restricted to be linear and 2) whereas
known transformations such as translation, rotation, scaling, and distortion must be specified in
order to construct the tangent hyperplane, manifold learning for InDiv is unsupervised and is
more flexible (to facial expression and nonlinear lighting changes, etc).

2.1. InDiv Assumptions

There are 3 assumptions that must be true in order for InDiv to make sense. First, for any
2 faces from 2 classes (2 persons), there are no natural transformations that makes the InDiv
between them 0. Second, for any 2 faces within the same class, there exist a natural transformation
which would make the InDiv close to 0. Third, for any 2 faces from 2 classes, the InDiv is the
smallest when the pose, lighting conditions, and facial expression are approximately the same.
Figure 2 provides some demonstration to these three assumptions respectively. They only provide



(a) Assumption 1

(b) Assumption 3

(c) Assumption 2

Figure 2. The number below each face is the mean pixel squared error between the test (top) face and
training faces. Note that the value of InDiv cannot be treated absolutely. For example, the correct
match in (c) has higher error than the wrong matches in (b).

illustrations to support the validity of these 3 assumptions, and the more sound proofs will be left
for future work.

2.2. Project-Out Operation

If the class specific manifold M is linear, then

InDiv = ‖x− x̂‖2 (2a)

= ‖x− UdUT
d x‖2 (2b)

where Ud is column matrix of the orthonormal eigenvectors which span M. In order to extend
InDiv to a nonlinearM, we define a ProjOut operator g(x) : x→ x̂, where x ∈ <d, x̂ ∈ <d, and
x̂ is the closest point to x on M . Therefore,

InDiv = ‖x− g(x)‖2 (3)

In essence, to find the InDiv, we first need to find x̂ using g(x). Figure 3 provides a graphical
visualization of the ProjOut operation. The top right plot shows a 1D linear manifold (pink)
embedded in <2. All regions in <2 which have the same colour should project to the same x̂
on the 1D linear manifold. The top left plot shows what an optimum ProjOut operator would
look like. The z-axis is the latent variable that must be estimated. The regions of same colour
must all be level since they need to be mapped onto the same latent variable. section 3 discuss



Figure 3. Optimum ProjOut mapping for linear and nonlinear 1D manifold in 2D space. See text for
details

the ProjOut operation as it corresponds to decoding. Notice that eq. 2 performs this operation
perfectly with the exception of the end regions of the manifold. The bottom plots shows the
mapping of the optimum ProjOut operator on a nonlinear 1D manifold. The function is much
more complicated. The goal of this project is to look at the plausibility of using autoassociative
encoders to approximate g(x).

2.3. Related Algorithms

There are numerous other algorithms used for face recognition. We briefly discuss the 3 big
genres and how they are essentially trying to approximate the InDiv. The first genre is the
subspace methods that include Eigenfaces and Fisherfaces [45, 3]. These methods find a linear
subspace to project the high dimensional data to, and then perform classification in the lower
dimensional space. The Eigenface approach performs PCA on face data, and after discarding the
first 3 eigenvectors (found by trial and error), classification is performed on the subspace composed
by the remaining eigenvectors. The reason for discarding the first 3 eigenvectors is because they
typically comprise of variations in lighting and pose changes. The method basically assumes that
natural transformations results in linear variations of the data. If the variations on all faces were
linear and span only 3 dimensions, then the Eigenface approach would find the InDiv. The
second genre consists of alignment based approaches. This includes the 3D morphable model [7]
and Active Appearance Models [9]. These methods require iterative nonlinear optimization to
align or match the model to the test image. This method corresponds to the traversal along the
intra-class manifold to minimize the InDiv. The third genre is based on feature extraction applied
at interesting locations within the face. This includes algorithms such as Elastic Bunch Graph
Matching [46], and local descriptor methods [28, 29]. The key characteristic of these approaches
is that the filters are local (over small region, e.g. corner of eyes, nose, mouth) and the features
extracted are invariant to classes of variation such as illumination, rotation, scaling, and small
deformations. This corresponds to transforming the data to the feature space and this will be
further discussed in section 4.



Figure 4. Nearest Neighbor suffers from the curse of dimensionality and is generally not the same as
InDiv.

3. Manifolds

As the amount of training sample data approaches infinity, the InDiv becomes nearest neighbor
distance. However, since a large number of prototypes is both hard to obtain as well as compu-
tationally expensive to search, a nonlinear manifold must be learned from the data in order to
find the InDiv. Figure 4 shows that when data points are limited, NN distance 6= InDiv in gen-
eral. There are many techniques for learning manifolds such as LLE [35], Isomap [44], SOM [24],
GTM [6], Eigenmaps [32], SNE [18], NCA [14], and Autoassociative encoders [17]. Bengio et al.
have nicely fit most of these methods into the same eigendecomposition framework [4]. Qualita-
tively speaking, most of these algorithms could be divided into the generative or non-generative
types. The non-generative approaches LLE, Isomap(MDS), and SNE tackle the problem by learn-
ing some property in original data space (the local linear reconstruction weight matrix W in LLE,
the geodesic distance in Isomap, the Pr(·) of being a neighbor in SNE), and then put each point
in a lower dimensional space such that these properties are as best preserved as possible. On the
other hand, generative approaches look at the manifold that has been generated by a set of latent
variables which are in low dimensional space. This assumption guarantees a generation/decoding
step which allows the latent variable to generate a data vector in the original space. PCA, GTM,
and Autoassociative Encoders (henceforth referred to as AE) can all be classified as the generative
type. Since non-generative manifold algorithms lack the ability to decode back into the original
space, it makes them poor choices for the ProjOut algorithm. Since PCA is only linear, we will
focus on utilizing AE to compute the InDiv.

3.1. Autoassociative Encoders

Autoassociative networks originated in works in Connectionism and neural network research [20,
2, 23, 25]. If however, a feed-forward architecture is used with a bottleneck layer (a layer with a
smaller number of nodes than the inputs and outputs), then an compression/encoding followed by
decoding is possible. Applications of these networks include content addressable memory, noise
suppression, and associative memory. It is known that a multilayer perceptron with 2 layers of
weights can be trained to minimize reconstruction SSE and therefore is equivalent to PCA [8, 33].
These types of networks are essentially linear AEs. When presented an unseen vector in original
data space, the network projects the vector onto the subspace spanned by the 1st layer weights.
The 2nd layer weights decode back into the original data space, and the reconstructed vector is the



closest point to the original vector constrained by the subspace. Therefore, for linear manifolds, a
PCA network would be a perfect ProjOut operator. If more layers with nonlinear activation nodes
are added to the 2 layer PCA network, nonlinear autoassociative encoding can be achieved [5].
See [5, 26, 10] for graphical visualizations of these networks.

These AEs (nonlinear PCA networks) have been used to reduce the dimensionality of data [26,
10]. Backpropagation and regularization were used to train the network to minimize reconstruc-
tion error. However, it was noted that due to the number of layers and nodes in the network,
optimization was very prone to local minima. Reconstruction for face data was noticeably bad [10].
Recently, using unsupervised methods in a pre-training procedure, an new type of AE was found
to perform superior dimensionality reduction [17].

3.2. Intricacies of RBM based AE

The new approach to AE in [17] and the reason for its superior performance lies with the fact
that it uses an unsupervised learning stage called pre-training to try and find initial weights close
to the global minimum. Boltzmann machines (BM) are a fully symmetrically connected recurrent
network with stochastic binary units that can be used to model the joint probability density of
data [1]. For any given network, an energy can be defined as:

E = −
∑
i,j

Wijsisj (4)

where W is the weight matrix and si, sj are the nodes. The probability of any configuration or
state γ is:

Pr(γ) ∝ exp(−Eγ) (5)

The dynamic update rule for the stochastic node si is defined as:

Pr(si = 1) =
1

1 + exp(−∆E)
(6)

where ∆E = Esi=0 − Esi=1. It turns out that the stochastic updating of all the nodes or the
“running” of the network is actually performing Gibbs sampling on the joint probability density
defined by the network [13]. Learning is achieved by maximizing the likelihood of the data or
minimizing the KL-Divergence [1]:

∆Wij = ε(〈sisj〉data − 〈sisj〉model) (7)

Therefore, the BM is an MCMC generalization of the Hopfield network [20] and are well suited
to represent the distribution of data. Modelling the distribution of data is unsupervised and it is
this ability which pre-training for AE exploits.

Due to the fact that Simulated Annealing needs to be applied for proper MCMC convergence [31,
22], the BM training algorithm is extremely slow. First introduced in [42] as “Harmoniums”, the
restricted BM or RBM is a type of BM which has two sets of nodes, visible and hidden. It can
be visualized as a 1 layer network with the hidden nodes occupying the hidden layer. Visible
nodes are connected to data (e.g. pixels); while hidden nodes encode interactions or discover
features among visible nodes. In an RBM, there are no visible to visible or hidden to hidden



Figure 5. How AE performs the ProjOut operation. The AE is trained using the training set of person
on the right. When a test face (on the left) is presented to the network, the reconstructed output will
lie on the training class manifold.

connections. This property gives conditional independence to all hidden nodes given the activation
of all visible nodes and vice versa. This essentially allows 〈vihj〉data to be calculated without using
sampling. The need for sampling to find 〈vihj〉model is eliminated by replacing 〈vihj〉model with
an approximation 〈vihj〉recon. The new term is known as Contrastive Divergence and is described
in detail by Hinton [19]. Experiments show that this approximation performs well and has huge
reduction in learning time.

Contrastive Divergence training methods allow RBMs to model the distribution of data vectors
presented to its visible nodes. In order to allow for more complexity of distribution modelling,
it is proposed that a hierarchy of RBMs be learned where the inputs to the visible nodes of the
higher level RBMs are the activations of hidden nodes of the level below [17]. This is exactly the
pre-training process for the AE. After pre-training, the RBMs are stacked on top of one another,
forming a feed-forward network from the input to the hidden layer of the top RBM. This feed-
forward network forms an encoding process; where the top layer nodes can be viewed as codes
or latent variables. For the decoding process, all the weights and nodes below the code layer are
mirrored up to form the decoding layers. This step creates the basic autoassociative network and
is called the unrolling process [17]. In order to achieve low reconstruction error, the second part of
AE training consists of fine-tuning the weights. Due to the large number of weights, conjugated
gradient methods are typically used to fine-tune the weights.

3.3. AE for ProjOut

Inspired by how linear PCA networks can perform ProjOut, it is natural to think that nonlinear
PCA networks can do the same thing for nonlinear manifolds. However, ProjOut using neural
networks might suffer from overfitting and the out-of-sample problem experienced by all neural
networks. The overfitting problem can occur if the AE performs reconstruction perfectly but has
an undefined behaviour for points in-between training data points. The out of sample problem
exist because neural network essentially performs regression and therefore are great interpolator
but terrible extrapolators. Since the RBM-based AE uses an unsupervised pre-training stage, we
want to use them to see how it performs the ProjOut operation. Figure 5 demonstrates how the
AE network is used to perform ProjOut operation. The training code for the AE were mainly
from code provided by Hinton [36]. Modification and related optimization of code layer nodes
were implemented by us.



Figure 6. Facial data reconstruction of person A with indepth rotation. The top row is the original and
the bottom is the reconstructed faces. A 1000-500-250-10 (# of nodes from the 1st hidden to the code
layer) AE was used with a mean pixel squared error of .014.

Figure 7. The 1st, 3rd, and 5th row contain unseen test faces. The 2nd, 4th, and 6th row contains the
faces found by the AE. Notice that the encoding+decoding process constrains the newly found face to
be on the manifold. See text for discussions.

To see how the AE performs on this problem, an AE was trained on 38 images of person A
from UMIST face data set [15]. The variations consist of in-depth rotations. Figure 6 shows the
original faces and the reconstructed faces using a 7 layer AE.

Now, we need to find out how this AE performs with unseen test faces. This is done by simply
encoding and decoding the unseen test face using the AE learned earlier. The hope is that the
encoding+decoding process will result in a reconstructed face which is closest to the test face but
is still on the manifold defined by the AE.

Figure 7 shows the results. The 1st, 3rd, and 5th row contain various test faces. Each face
is applied to the same AE that was shown in figure 6. The immediate image below is the re-
constructed face. Since the AE represent the manifold of person A, all reconstructed faces look
similar to person A. A striking resemblance in in-depth rotation is observed for most of the test
images. This remarkable result indicates that the encoding+decoding process actually found a
close face to the test face which also lies on the manifold. This suggest the applicability of using
the AE to find the InDiv, since the InDiv is the distance between a test face and the closest
face to it on the manifold. The result is perfect for the test subject in the 1st row and the result
is worst for the test subject in the 5th row. Possible explanation for why the result is bad for the
5th row is that the face in 5th row is very different from the face of person A. This can create
an out of sample problem in which the AE suffers from a lack of ability to extrapolate very far
away from training data. In particular, compare the frontal image of test subject 3 (Row 5 Col
12) and frontal of person A (Row 4, Col 12), the bright forehead of person A and the plethora of
dark hair for test subject 3 makes test subject 3 really far away from the manifold of person A.



3.4. AE for Face Recognition

We tested face recognition on the UMIST and Olivetti [37] data sets by using the AE to find
the InDiv. The UMIST data set consists of 20 individuals and the main variations are in-depth
rotation. The data set is randomly divided in various portions to form the training and testing
sets. 20 AEs were trained using the training data to form 20 nonlinear manifolds. For every test
face, 20 ProjOut operations were performed by encoding and decoding using all 20 AEs. The
InDiv between the test face and a manifold is the Euclidean distance between the test face and
the reconstructed face from that AE. The classifier chooses the manifold with the smallest InDiv
as output. A 1-NN classification results is obtained for comparison.

Table 1 shows the results between AE and NN classifiers. Except for one set of parameters,
NN is better or equal to the AE. We can think of two reason for this result. First is that the
transformations represented in the training set is not large enough. For example, the UMIST
images are mostly in-depth rotation and Olivetti images are mostly expressions and poses. The

Table 1. Recognition results: AE based InDiv and NN classifiers.
Column Labels

PCNT % of face data given to training
CLN # of code layer nodes
EBP # of epochs for backpropagation during fine-tuning
TF # of test faces
AEM # missed by AE
AER AE error rate
NNM # missed by NN
NNR NN error rate

UMIST Data Set
PCNT CLN EBP TF AEM AER NNM NNR

50 5 10 290 10 3.45% 8 2.76%
50 10 5 290 40 13.79% 8 2.76%
50 10 10 290 9 3.10% 8 2.76%
50 10 20 290 13 4.48% 8 2.76%
50 10 30 290 10 3.45% 8 2.76%
50 15 10 290 8 2.76% 8 2.76%
30 10 10 413 27 6.54% 27 6.54%
40 10 10 353 21 5.95% 13 3.68%
60 10 10 239 3 1.26% 6 2.51%
70 10 10 180 4 2.22% 4 2.22%

Olivetti Data Set
PCNT CLN EBP TF AEM AER NNM NNR

50 10 10 200 27 13.50% 20 10.00%
60 10 10 160 21 13.13% 16 10.00%
70 10 10 120 11 9.17% 6 5.00%
80 10 10 80 8 10.00% 4 5.00%
90 10 10 40 3 7.50% 3 7.50%
70 15 10 120 20 16.67% 7 5.83%
70 5 10 120 13 10.83% 6 5.00%
70 10 30 120 10 8.33% 6 5.00%
70 10 20 120 10 8.33% 6 5.00%
70 10 5 120 11 9.17% 6 5.00%



small amount of training set data therefore caused bad generalization of the AE and thus worse
results. The second reason might be due to the fact that the manifold built from raw image pixels
is simply too nonlinear for the AE to be a good ProjOut operator.

4. Improvements and Extensions

In this section we propose two extensions which could improve finding InDiv using the AE. The
first extension uses research in computational neuroscience to build a hierarchical representation
which results in more linear class-specific manifolds. The second extension looks at finding a
smaller InDiv by using nonlinear optimizations in the code layer of the AEs.

4.1. Vision Science

Human vision has not yet been surpassed by computer vision systems. The ease at which we can
recognize the identity of family, old friends, and foe under extreme lighting, pose, and expression
variations suggest that algorithms can be inspired by biological vision. However, due to the
highly complex nature of the visual cortex, viable models only appeared after the seminal work
by Hubel and Wiesel exploring the cortical cells of cats [21]. Their work revealed that neurons
in the primary visual cortex are selective or tuned towards stimulus of different orientations,
blob sizes, and spatial frequencies. It was subsequently discovered that there is a massive feed-
forward pathway from the primary visual cortex (V1) to the V2, V4, and Inferotemporal (IT)
cortex, forming a hierarchy [39]. Along this pathway, neurons are selective towards more and more
complex shapes. In the IT, neurons that are selective towards faces has been discovered [43].

Over the decades, various computational models embodying the abovementioned ideas were
developed to be applied to recognition and classification, starting with the Neocognitron for digit
recognition [12]. Convolutional Neural Nets were developed for handwritten digits [27]; HMAX
model for 3D recognition [34]; state of the art object matching is achieved by SIFT [28]; GLOH [29],
which extended SIFT into log-polar form; the most neurobiologically plausible model was built
in [39]; and the recent generalization for multi-class recognition is described in [30]. What the
visual cortex has inspired is the hierarchy of increasingly more complex representation, along with
increasingly more tolerance to variances (small changes in position, lighting, or deformation).

Given that the intra-class manifold for faces is highly nonlinear and makes ProjOut operation
hard, it is natural to ask what if the manifold of some higher feature level is more linear and has
reduced variance. It certainly means that we can train the AE to perform the ProjOut operation
better. For example, we can reduce the complexity of the AE by reducing the number of hidden
nodes since the manifold will be of a lower complexity as well. If the manifold become linear
enough then it is even possible to use PCA. The question then becomes, does a hierarchical model
of the visual system achieve these two goals that we aspire to achieve? The hypothesis is yes and
is tested next.

4.2. Testing Hypotheses

To test whether or not the manifold becomes more linear we will measure the reconstructive
error

∑n
i ‖xi − UdUT

d xi‖2, where we fix the numer of columns of Ud to be the estimated number
of intrinsic dimensions. Basically the idea is that if the manifold is linear, then we should have
small SSE, whereas for highly nonlinear distribution of data, SSE would be large. To test the



Figure 8. Visual cortex hierarchy model. The bottom level represent neurons from the primary visual
cortex, the top layer represent neurons from the Inferotemporal cortex. As level increases in the hier-
archy, neurons become selective of more complex pattern as well as become more invariant to natural
transformations. Diagram is from [38].

spread of the manifold, we will use Tr(Σ), where Σ is the covariance matrix of the data. Tr(Σ)
is a good measure since Σ = UΛUT , Tr(Σ) = Tr(Λ) =

∑n
i=1 λi, where λi is the eigenvalues of

Σ and is the variance in the direction of the ith eigenvector. Other types of measure such as the
total edge weights in a minimum spanning tree could also be used.

The model hierarchical network tested is the one described by Serre et al. [38], see figure 8.
This network has four layers, consisting of alternating ‘S’ and ‘C’ layers. An S layer contains
neurons which detect small localized features within the big image. A C layer contains neurons
which are invariant to small transformation in the S layer below. The bottom input layer is
basically the retina or image pixel space. The first hidden layer is occupied by the so called S1
neurons. They are basically Gabor wavelets selective toward oriented edges. Pixels are connected
to (innervates) the S1 layer. The second hidden layer are occupied by the so called C1 neurons,
which will be active if its preferred type S1 neurons are active within a local window of the C1
neuron. The C1 neurons essentially perform a max operation and this step is vital to ignore some
small variances such as shift, scale, and rotation. The next layer is another S layer known as S2,
which is followed by the C2 layer. This type of alternating layering could continue but for the
purpose of the hypothesis, we compare the linearness and spread of the manifold at the image, C1,
and C2 layers. At C1 and C2 level, the measure is on the spread and linearness of the activation
of the neurons.

Table 2 shows the result performed on the Olivetti face dataset [37]. The C1 layer did not show
much reduction of both linearness and spread, but in the C2 layer, the reduction was dramatic.
Similar results were observed for the UMIST faces. The results for UMIST were averaged for 20
subjects. Due to the large number of neurons and the time consuming process of training AEs,
we are in the process of running experiments to test the recognition performance of InDiv with
using C1 or C2 layer neuron activities as input.



Figure 9. Visualizing what transformations the code layer activity represent. Images are decoded from
the 1st principle component of the code layer nodes. The leftmost and the rightmost image correspond
to 1 standard deviation away from code layer mean along the principle component.
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Figure 10. The sharp ”knee” shows that the AE has found that the data probably has only 1 intrinsic
dimension.

4.3. The Mind of AE

One criticism of neural networks is that they are like black boxes; it’s not easy to perceive the
representation and computation of the hidden nodes. With AEs, this is not a problem since the
network is an also a decoder. Therefore, the activities of the hidden nodes in the code layer and its
respective decoded image can give us a visualization of what the different values of the code layer
nodes represent. A 1000-500-250-10 AE was trained to model the manifold of 38 images of person
A from UMIST. The 10 code layer node’s activity was collected and the principle component
found. 11 locations spanning 1 standard deviation were found along the principle component.
Decoding is performed on all 11 points and their decoded or reconstructed images are displayed
in figure 9.

Figure 10 shows the eigenvalues of code layer node activations. The ”knee” is visible at the
2nd eigenvalue, suggesting that there is only 1 intrinsic variation in the input data. Given some
intuition regarding the behaviour of the code layer neurons, a natural and simple extension is to
fine-tune the activation of code layer nodes to find a more accurate InDiv between test face and
training manifold. It should be noted that the fine-tuning when AE is trained is with respect to
the weights. Here, the weights are fixed, since they represent the training faces manifold. What

Table 2. The linearness and spread measure of data at different hierarchy levels. The results are averaged
across 40 persons, each with 10 images. The entries are relative ratio with respect to the image layer
measures.
Olivetti faces Image Layer C1 Layer C2 Layer

Linearness 1.0 0.829 0.0334
Spread 1.0 0.830 0.0758

UMIST faces Image Layer C1 Layer C2 Layer
Linearness 1.0 0.885 0.0182

Spread 1.0 0.961 0.0333



we are proposing is that the feed-forwarding encoding process may be slightly off and optimization
is used to find a closer point to the test face which still lies on the manifold. Let the distance
between output face y and test face t be:

d(t) =
1

2
(y − t)T (y − t) (8)

The soft constraint error to minimize can be defined as:

E =
1

2
(y − t)T (y − t) + ξ

[
σ((z− µ)TΣ−1(z− µ)

)
] (9)

where z is the activation of the code layer nodes when t is presented to the input of AE, µ is
the mean vector activation of the code layer nodes averaged over all class specific faces, Σ is the
covariance matrix of the code layer nodes, and σ(τ) = 1/(1 + exp(−50(τ − 3))). By placing a soft
constraint on the deviation of z, we make sure the resulting optimized z stays on the manifold.
The σ(·) is used to allow no penalty for z as long as it is within the 3 standard deviation contour.
If we let η = σ((z− µ)TΣ−1(z− µ)), Differentiating with respect to z,

∂E

∂z
=
∂d(t)

∂z
+ 2ξη(1− η)Σ−1(z− µ) (10)

The conjugate gradient method was used for optimization using the first-order partial deriva-
tives. On the UMIST data set, it was found that on average, the ratio of InDiv distances after
optimization compared to before is 0.929. Recognition results using the newly optimized InDiv
have produced no significant changes currently. However, we believe that it is due to the restricted
types of transformations in training set and not due to the general concept of optimization in the
code layer.

5. Conclusion

In this project an intuitive measure of dissimilarity between class specific manifold is introduced.
The difficulty in its calculation has led to the idea of using the power for AE framework to serve as
a ProjOut operator. The inner workings of the recent RBM AE was explored. Good results were
obtained where the correct pose was found simply by an encoding and decoding process. However,
recognition rates were not great and didn’t perform as well as NN. This is somewhat expected
since the manifolds at the image level is very nonlinear. Two extensions were proposed to help
find better InDivs and they show great promise. The hypothesis that the manifolds becomes
more linear and less dispersed was verified. For future work, large collections of face data with
most of the natural transformations need to be collected into the training set. Recognition using
AE based InDiv at higher hierarchical levels need to be fully tested. With respect to the 2nd
extension idea, information from the higher levels can also be projected top-down to bias the
InDiv search.
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