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Abstract
We discuss the notion of “discrete function bases” with a particular focus

on the discrete basis derived from the Legendre Delay Network (LDN).
We characterize the performance of these bases in a delay computation
task, and as fixed temporal convolutions in neural networks. Networks
using fixed temporal convolutions are conceptually simple and yield state-
of-the-art results in tasks such as psMNIST.

Main Results
(1) We present a numerically stable algorithm for constructing a matrix

of DLOPs L in O(qN).
(2) The Legendre Delay Network (LDN) can be used to form a discrete

function basis with a basis transformation matrix H ∈ Rq×N .
(3) If q < 300, convolving with the LDN basis online has a lower run-time

complexity than convolving with arbitrary FIR filters.
(4) Sliding window transformations exist for some bases (Haar, cosine,

Fourier) and require O(q) operations per sample and O(N) memory.
(5) LTI systems similar to the LDN can be constructed for many discrete

function bases; the LDN system is superior in terms of having a finite
impulse response.

(6) We compare discrete function bases by linearly decoding delays from
signals represented with respect to these bases. Results are depicted
in fig. 20. Overall, decoding errors are similar. The LDN basis has
the highest and the Fourier and cosine bases have the smallest errors.

(7) The Fourier and cosine bases feature a uniform decoding error for all
delays. These bases should be used if the signal can be represented
well in the Fourier domain.

(8) Neural network experiments suggest that fixed temporal convolutions
can outperform learned convolutions. The basis choice is not critical;
we roughly observe the same performance trends as in the delay task.

(9) The LDN is the right choice for small q, if the O(q) Euler update is
feasible, and if the low O(q) memory requirement is of importance.

1



1 Introduction
The “Delay Network” is a recurrent neural network that approximates a time-
delay of θ seconds (Voelker and Eliasmith, 2018). That is, given an input signal
u(t), the output of the network is approximately u(t− θ). Voelker (2019) points
out that the impulse response of a variant of the dynamical system underlying
this network traces out the Legendre polynomials. We hence refer to the Delay
Network as the “Legendre Delay Network” (LDN), and to the linear time-invariant
(LTI) system underlying the LDN as the “LDN system”.

Voelker, Kajić, and Eliasmith (2019) demonstrate that a generalised neural
network architecture derived from the LDN, the “Legendre Memory Unit” (LMU),
can outperform other recurrent neural network architectures such as Long Short-
Term Memories (LSTMs) in a wide variety of tasks. Preliminary work by
Chilkuri and Eliasmith (publication in preparation) furthermore suggests that
most weights in the LMU can be kept constant without negatively impacting the
performance of the network. Surprisingly, this includes the recurrent connections
in the LMU. Constant recurrent weights can be replaced by a set of static feed-
forward Finite Impulse Response (FIR) filters arranged in a basis transformation
matrix H. This facilitates parallel training, leading to significant speed-ups.

The basis transformation matrix H can be interpreted as a discrete function
basis. This report is concerned with characterizing such function bases, including
the related “Discrete Legendre Orthogonal Polynomials” (DLOPs) introduced
by Neuman and Schonbach (1974). Our goal is to gain a better understanding
of the LDN system and to explore whether it could make sense to instead use
other discrete function bases.

Structure of this report We first review the notion of a “discrete function
basis” and “generalised Fourier coefficients”. In particular, we discuss the Fourier
and cosine series, as well as the Legendre polynomials. We review Discrete
Legendre Orthogonal Polynomials (DLOPs), a discrete version of the Legendre
polynomials proposed by Neuman and Schonbach (1974). We compare DLOPs
to a discrete version of the LDN basis used by Chilkuri et al., followed by a
method to reverse this process, i.e., to derive an LTI system from a (discrete)
function basis. Furthermore, we discuss applying anti-aliasing filters to discrete
function bases. We perform a series of experiments in which we characterise
these bases in terms of the decoding error when computing delayed versions of
signals represented in each basis. Lastly, we test each basis as a fixed temporal
convolution in multi-layer neural networks and compare their performance to
fully learned convolutions.

Many of the equations in this technical report are accompanied by a Python reference
implementation; the name of the corresponding Python function is indicated in the
margin. The latest version of this code is on GitHub, see

https://github.com/astoeckel/dlop_ldn_function_bases
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2 Function Bases
As we will discuss in more detail in Section 4, the LDN system can be character-
ized as continuously computing the generalised Fourier coefficients of an input
signal u(t) over a window [t − θ, t] with respect to the orthonormal Legendre
function basis. The point of this section is to define more thoroughly what we
mean by that.

To this end, in Section 2.1, we first review some basic concepts from func-
tional analysis, a field of mathematics that generalises linear algebra to infinite-
dimensional function spaces. In Section 2.2, we review the orthonomal Legendre
polynomials as an example of an orthonormal continuous function basis. Read-
ers already familiar with the topic are welcome to skip ahead to Section 2.3,
where we introduce the non-canonical notion of a discrete function basis and the
corresponding notation, roughly following Neuman and Schonbach (1974).

2.1 Review: Function and Hilbert Spaces
The concept of vector spaces in linear algebra is general enough to include
infinite-dimensional spaces, or, in other words, spaces that can only be spanned
by an infinite number of basis vectors. A mathematically useful subset of possible
vector spaces that encompasses both finite- and infinite-dimensional spaces are
so-called “Hilbert spaces”. We review this concept and discuss function bases
that span the L2(a, b) Hilbert space, such as the Fourier and cosine bases.

Most of the material in this subsection closely follows Young (1988). We
strongly advise the reader to consult this book for a more thorough (and undoubt-
edly more correct) treatment of the topic. A recommended gentle introduction to
linear algebra itself is Hefferon (2020). Since we are not concerned with complex
numbers in this report, we generally define all concepts over R instead of C.

Definition 1 (Inner product space, induced norm, induced metric; cf. Young,
1988, Definitions 1.2, 1.6, Theorem 2.3). An inner product space is a vector
space1 V with an associated inner product 〈·, ·〉 : V × V −→ R. The inner
product must fulfil the following properties

1. Symmetry: 〈x,y〉 = 〈y,x〉 .

2. Linearity: 〈αx + y, z〉 = α〈x,y〉+ 〈y, z〉 for any α ∈ F.

3. Positive definite: 〈x,x〉 > 0 if x 6= 0 .

If 〈x,y〉 = 0, then x and y are called orthogonal. The norm ‖x‖ =
√
〈x,x〉 is

the induced norm of an inner product space; the metric d(x,y) = ‖x− y‖ is its
induced metric.

Definition 2 (Function space). A function space is an inner product space with
V = {f | f : X −→ Y }. In other words, each f ∈ V is a function mapping from
a domain X onto a codomain Y . In this report we are concerned with X,Y ⊆ R.

1A vector space is a set V with an addition and scalar multiplication operation over a field
F . These operations must fulfil a set of requirements; see Hefferon, 2020, Definition 1.1.
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Definition 3 (Function basis). A function basis of a function space V is an
infinite sequence (en)n∈N of linearly independent functions en ∈ V that span
V . This is equivalent to demanding (cf. Theorem 1.12 in Hefferon, 2020) that
each function f ∈ V must be representable as a unique linear combination of en.
There exists a unique sequence (ξn)n∈N over R such that f(x) =

∑∞
n=0 ξnen(x)

for each f ∈ V . Conversely, each function f constructed through such a linear
combination must be an element of V .

Definition 4 (Orthogonal and orthonormal function bases). A function basis is
orthogonal if 〈fi, fj〉 = 0⇔ i 6= j. A function basis is orthonormal if, additionally,
〈fi, fj〉 = 1⇔ i = j.2

Example 1 (Continuous function space C[a, b]). An example of a function space
would be the set of continuous scalar functions over an interval [a, b], denoted as

C[a, b] = {f | f : [a, b] −→ R and f is continuous} .

This set is a vector space when coupled with addition (f + g)(x) = f(x) + g(x)
and scalar multiplication (λf)(x) = λf(x) for λ ∈ R. Furthermore, it can be
shown that the following inner product over C[a, b] fulfils the above properties:

〈f, g〉 =

∫ b

a

f(x)g(x) dx . (1)

One might be inclined to think that the concept of a continuous function
space C[a, b] is sufficient for most purposes. However, when trying to find a basis
that spans C[a, b], one would eventually notice that any candidate basis can be
used to generate discontinuous functions. Thus, the candidate basis does not
span C[a, b], but a slightly larger space. The next example illustrates this.

Example 2 (Sign function as a series of continuous functions). Consider the
following sequence of basis functions (f ′n)n∈N over C[−π, π]

f ′0(x) =
1√
2π

, f ′2n+1(x) =
sin
(
nx
)

√
π

, f ′2n =
cos(nx)√

π
. (2)

This basis is a variant of the “canonical Fourier series”, an orthonormal function
basis. Each individual f ′n is obviously in C[−π, π], and a linear combination of
these basis functions can approximate any function in C[−π, π] (this follows from
Theorem 5.1 in Young, 1988). However, the same basis can be used to express
discontinuous functions. For example, one can show that a weighted series of
the sine terms of fn is equal to the sign function (see also fig. 1):

sign(x) = lim
q→∞

q∑
n=1

4 sin
(
(2n− 1)x

)
(2n− 1)π

=


1 if x > 0 ,

0 if x = 0 ,

−1 if x < 0 .

(3)

Hence C[−π, π] has no basis that spans the space, which is slightly problematic.
2Note that the concept of a (function) basis being orthogonal is confusingly different from

that of a matrix A being orthogonal, which is defined as ATA = I and thus closer to the
concept of an orthonormal basis.
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q = 1 q = 2 q = 4

q = 8 q = 16 q = 32

q = 64 q = 128 q →∞

Figure 1: Approximating the discontinuous sign function (bottom right) using
a sum of continuous sine waves according to eq. (3). Cauchy sequences of
continuous functions can converge to a discontinuous function.

The notion of a “Hilbert space” restricts inner product spaces to those in
which “well-behaved” sequences, so-called Cauchy sequences, converge to an
element within that space. The sum of sines sequence implicitly defined in eq. (3)
is an example of such a Cauchy sequence. Correspondingly, the function space
C[a, b] cannot be a Hilbert space.

Definition 5 (Hilbert space; cf. Young, 1988, Definition 3.4). A Hilbert space is
an inner product space V in which all Cauchy sequences (relative to the metric
induced by the inner product) converge to an element in V .

Example 3 (The Hilbert space L2(a, b); cf. Young, 1988, Example 3.5, Theorem
5.1). The Fourier series in eq. (2) spans L2(−π, π). In general L2(a, b) is a
function space V with the inner product defined in eq. (1). Each f ∈ V is a
function f : [a, b] −→ R for which the following Lebesgue integral converges; i.e.,
the function is square Lebesgue integrable:∫ b

a

f(x)2 dt <∞ , where “
∫
” is the Lebesque integral.

Note that L2(a, b) is a superset of all square Riemann integrable functions.

Since the canonical Fourier series defined in eq. (2) spans L2(−π, π), any
function in L2(−π, π) can be represented as a linear combination of Fourier basis
functions. Of course, the same holds for any orthonormal function basis.

Definition 6 (Generalised Fourier series and coefficients; cf. Young, 1988,
Definition 4.3). Consider an orthonormal basis (en)n∈N, where each en ∈ L2(a, b),
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as well as a function f ∈ L2(a, b). Then the series

f =

∞∑
n=0

〈f, en〉en =

∞∑
n=0

ξnen

is the generalised Fourier series of f and ξn are the generalised Fourier coefficients,
also called the spectrum of f .

Note that the canonical Fourier series from eq. (2) and the associated Fourier
coefficients ξn are related to, but not to be confused with, the Fourier trans-
formation. The Fourier transformation represents any integrable function f in
terms of a another function f̂(ξ).

In the following, we provide equations for the Fourier, cosine, and Legendre
basis. We already introduced the canonical Fourier series in an example above
over the interval [−π, π]. From now on, we define all bases over the interval [0, 1]
for the sake of consistency. Any orthonormal basis function en over [0, 1] can be
easily converted to an orthonormal basis function e′n over [a, b]:

e′n(x) =
1√
|b− a|

en

(
x− a
b− a

)
. (4)

Definition 7 (Fourier series). The Fourier series (fn)n∈N over [0, 1] is given as

f0(x) = 1 , f2n+1(x) =
√

2 sin
(
2πnx

)
, f2n =

√
2 cos

(
2πnx

)
. (5)

This orthonormal basis spans L2(0, 1) and is depicted in Figure 2a.

Definition 8 (Cosine series). An arguably simpler alternative to the Fourier
series is the cosine series. The cosine series skips the “sine” terms of the Fourier
series and increments the frequency in steps of π instead of 2π.

c0(x) = 1 , cn(x) =
√

2 cos(πnx) . (6)

The orthonormal cosine series spans L2(0, 1) and is depicted in Figure 2b.

2.2 Review: Legendre Polynomials
In this report, we are mostly interested in the orthonormal Legendre basis
generated by the Legendre polynomials. We first review the orthogonal Legendre
polynomials p′n; the orthonormal polynomials pn are a scaled version of p′n

Definition 9 (Legendre polynomials). Legendre polynomials are uniquely de-
fined as a sequence of functions (p′n)n∈N over [−1, 1] with the following properties

1. Polynomial: p′n is a linear combination of nmonomials p′n(x) =
∑n
i=0 αn,ix

n .

2. Orthogonal: 〈p′i, p′j〉 = 0 exactly if i 6= j .

3. Normalisation: p′n(1) = 1 .

Below we summarize two methods to construct p′n that fulfil these properties.
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A
f0(x) f1(x) f2(x)

f3(x) f4(x) f5(x)

f6(x) f7(x) f8(x)

f9(x) f10(x) f11(x)

Fourier series

B
c0(x) c1(x) c2(x)

c3(x) c4(x) c5(x)

c6(x) c7(x) c8(x)

c9(x) c10(x) c11(x)

Cosine series

C
p0(x) p1(x) p2(x)

p3(x) p4(x) p5(x)

p6(x) p7(x) p8(x)

p9(x) p10(x) p11(x)

Legendre series

Figure 2: First functions in the orthonormal bases discussed in this section.
All functions are plotted to the same scale; axes were omitted as the functions
can be rescaled as described in eq. (4). Dotted line is zero.
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Recurrence relation Starting with the base cases p′0(x) = 1 and p′1(x) = x,
p′n(x) is given as a recurrence relation (Press et al., 2007, Section 5.4, p. 219):

(n+ 1)p′n+1(x) = (2n+ 1)xp′n(x)− np′n−1(x) . (7)

Rewriting this in terms of the polynomial coefficients αn,i (see above) we get

(n+ 1)αn+1,i =

{
−nαn−1,i if i = 0 ,

(2n+ 1)αn,i−1 − nαn−1,i if i > 0 .

Closed form equation Alternatively, the Legendre polynomial p′n is given in
closed form as

p′n(x) =

n∑
i=0

(
n

i

)(
n+ i

i

)(
x− 1

2

)i
.

The Legendre Delay Network approximates the shifted Legendre polynomials p̃n
over [0, 1] given as p̃n(x) = pn(2x− 1). This substitution yields

p̃n(x) = (−1)n
n∑
i=0

(−1)i
(
n

i

)(
n+ i

i

)
xi . (8)

This equation can be easily decomposed into the monomial coefficients αn,i.

Definition 10 (Orthonormal Legendre series). We can derive an orthnormal
function basis (pn)n∈N over [0, 1] simply by dividing each shifted polynomial by
the norm ‖p̃n‖. The basis is depicted in Figure 2c. It spans L2(0, 1), just like
the Fourier and cosine basis.3

pn(x) =
p̃n(x)

‖p̃n‖
=
√

2n+ 1 (−1)n
n∑
i=0

(−1)i
(
n

i

)(
n+ i

i

)
xi . (9)

2.3 Discrete Function Bases
From a mathematical perspective, the notion of “discrete function bases” is at
most moderately exciting. Once we discretise functions over an interval, we
end up with boring, finite-dimensional vectors. Unfortunately, in practice, we
more often than not have to work with discrete functions. Still, there is some
potential for defining the concept of “discrete function bases” in relation to their
continuous counterparts more rigorously.

Below, we define the notion of a “discrete function basis”, as well as the
corresponding “basis transformation matrix”. Although our definitions are non-
canonical, our notation roughly follows Neuman and Schonbach (1974).

3Sketch of a proof: for a bounded function space, an orthogonal polynomial function basis
can be used to construct any analytic function over that interval. This includes sine and cosine,
which can be made to span L2(0, 1) by forming a canonical Fourier series.
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Definition 11 (Discrete Function Basis). A discrete function basis with an
associated continuous function basis (en)n∈N is a finite sequence of discrete
basis functions (En(k;N))n<N . n ∈ {0, . . . , N − 1} is the basis function index,
k ∈ {0, . . . , N − 1} is the sample index, and N ≥ 1 ∈ N is the number of samples.
The codomain of En(k;N) is R. In the limit of N →∞ it must hold

lim
N→∞

En (k;N) =
1√
N
en

(
k

N − 1

)
. (10)

Intuitively, when sampling densely, an En fulfilling the above definition is
indistinguishable from a scaled continuous basis function en. The scaling factor
1/
√
N ensures that inner products are preserved. It holds:

〈ei, ej〉 = lim
N→∞

N−1∑
k=0

Ei(k;N)Ej(k;N) .

Definition 12 (Basis Transformation Matrix). Let En(k;N) be a discrete
function basis. Given an order q ≤ N , the basis transformation matrix E ∈ Rq×N
is defined as(

E
)
ij

=
Ei−1(j − 1;N)√∑N−1
k=0 Ei−1(k;N)2

, where i ∈ {1, . . . , q} , j ∈ {1, . . . , N} .

The denominator ensures that each basis vector (E)n (the nth row in E) has unit
length. We call E orthogonal if ETE = I, where I is the q × q identity matrix.
In contrast to the canonical meaning of “orthogonal”, this includes non-square E.

Interpreting E as a basis transformation Let u = (u1, . . . , uN ) be a
discrete signal consisting of N samples. The matrix-vector product Eu = m
results in q inner products m = (m1, . . . ,mq) between the input signal u and
each of the discrete basis functions in E. For orthogonal E, the resulting m
can be interpreted as a set of discrete generalised Fourier coefficients. That
is, the vector m represents the signal u with respect to a normalised version
of the discrete function basis En(k;N). Correspondingly, this operation is
a basis transformation in the same sense as the discrete Fourier and cosine
transformations (discussed below).

Interpreting E as a set of FIR filters Another way to think about E is as
a set of finite impulse-response (FIR) filters. Let ut represent the last N samples
of an input signal relative to a time t. Specifically, ut = (ut−(N−1), . . . , ut); i.e.,
the newest sample is shifted in from the right. Then, m = Eut can be written as

mn =
〈(
E
)
n
,u
〉

=

N−1∑
k=0

(
E
)
n,N−kut−k . (11)

This is exactly the definition of a FIR filter of order N − 1 (cf. Press et al., 2007,
Section 13.5.1, p. 668); but notice the inverted matrix column order N − k.
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k = 1

x = 1

en(x)x = 0

k = 0 k = 2 k = 3 k = 4 k = 5

Figure 3: Illustration of the sampling process in eq. (12). The function en(x)
is sampled at the centre of N = 6 intervals.

Now that we have defined discrete function bases and the corresponding
normalised basis transformation matrix, we should discuss how to construct
discrete function bases. Unfortunately, there is no universal method, and the
next two examples are only two of many possible methods.

Example 4 (Naive sampling). Equation (10) directly suggests a way to generate
discrete function bases. This “naively sampled discrete function basis” is

En(k;N) =
1√
N
en

(
k + 1

2

N

)
. (12)

The offset of one half ensures that samples are taken at the centre of the N
discrete intervals (cf. fig. 3).

Example 5 (Mean sampling). Another way to construct a discrete function
basis is to compute the mean over each of the N intervals. That is

En(k;N) =
√
N

∫ x1

x0

en(x) dx , where x0 = k/N and x1 = (k + 1)/N . (13)

Unfortunately, one caveat with both sampling methods is that they do not
necessarily preserve orthogonality of the function basis that is being sampled.
This is illustrated in the three examples below. While naive sampling perfectly
preserves orthogonality of the Fourier and cosine series, neither method results
in an orthogonal basis transformation matrix for the Legendre polynomials.

Maintaining orthogonality can be important. Mathematically, having or-
thogonal matrices can simplify some equations, as we will see later. From
an information-theoretical perspective, orthogonal bases minimize correlations
between individual state dimensions and thus (when considering a probability
distribution of input signals) minimize pairwise mutual information between the
generalised Fourier coefficients, maximizing their negative entropy (cf. Comon,
1994, Sections 2.1-2.3 for definitions and the relationship between mutual infor-
mation and negentropy). It should be noted that this can be undesirable if the
resulting representation is subject to noise.

Example 6 (Discrete Fourier Basis). As mentioned above, applying naive
sampling from eq. (12) to the Fourier series in eq. (5) yields an orthogonal
basis transformation matrix F. This F can be interpreted as the linear operator
implementing the discrete Fourier transformation (DFT). That is, multiplying
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a real signal u with F computes the DFT of u. The individual discrete basis
functions are given as

F0(k;N) =
1√
N
,

F2n+1(k;N) =

√
2√
N

sin

(
2πn

k + 1
2

N

)
,

F2n(k;N) =

√
2√
N

cos

(
2πn

k + 1
2

N

)
.

(14)

Normalisation of the matrix F as defined in eq. (10) is not required if one special

This equation is
implemented in
the function
mk_fourier_basis .

case is taken into account. The normalisation factor needs to be updated in the
case n+ 1 = q = N for even N

FN−1(k;N) =
1√
N

sin

(
2πn

k + 1
2

N

)
=

(−1)k

2π
if N = q even.

Taking this special case into account, the discrete Fourier function basis is
orthonormal, i.e., it holds

N−1∑
k=0

Fi(k;N)Fj(k;N) =

{
1 if i = j ,

0 if i 6= j .

The corresponding basis transformation matrix F is depicted in Figure 4.

Example 7 (Discrete Cosine Basis). Similarly to the discretisation of the Fourier
series, applying naive discretisation from eq. (12) to the cosine series results in
the discrete Cosine transformation (DCT). Again, the resulting equations are
significantly simpler than the discrete Fourier transformation:

This equation is
implemented in
mk_cosine_basis .

C0(k;N) =
1√
N
, Cn(k;N) =

√
2√
N

cos

(
πn

k + 1
2

N

)
. (15)

This discrete function basis is orthonormal. The corresponding basis transforma-
tion matrix C is depicted in Figure 4 as well.

Time complexity The matrices F and C can be computed in time O(qN); a
constant number of operations is required to evaluate each cell.

Multiplication of a vector u with F or C can be performed in O(qN log(N)).
This is due each left and right half of F and C resembling a scaled and mirrored
version of the full matrix. This suggests a divide and conquer algorithm if N
is a power of two—the Fast Fourier Transformation (FFT; Cooley and Tukey,
1965) and the related Fast Cosine Transformation (FCT; Makhoul, 1980). Both
algorithms can be generalised to non-power of two N , and the publications cited
above discuss how to accomplish this.
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Figure 4: The discrete Fourier, cosine, Legendre and Haar basis transformation
matrices (top to bottom). Left: Visualisation of the outer product of each matrix.
Each pixel is a matrix cell i, j. Zero is white, one is black, negative values are
red. The matrices F, C, W are orthogonal; P is not orthogonal. Centre: Basis
matrices themselves, where white corresponds to zero, red to negative and blue
to positive numbers (colour maps rescaled to cover 95% of the represented values
without saturating). Right: Visualisation of the first basis vectors.
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Example 8 (Naive and Mean Sampled Discrete Legendre Basis). We can
similarly apply the naive sampling (eq. 12) to the shifted Legendre polynomials
(eq. 8). For the sake of consistency with the bases presented in the next sections,
we furthermore “mirror” the shifted Legendre polynomials, i.e., we compute
p̃n(1− x) instead of p̃(x). We get

P ′n(k;N) = p̃n

(
1−

k + 1
2

N

)
.

Unfortunately, as mentioned above, the corresponding basis transformation
matrix P′ is not orthogonal.

A slightly “more orthogonal” (in terms of the off-diagonal elements having a
smaller magnitude) discrete function basis can be obtained by applying mean
sampling as defined in eq. (13), resulting in

Pn(k;N) =
√
N

∫ b

a

p̃n(x) dx , where a = 1− k + 1

N
and b = 1− k

N
.

Since the p̃n are polynomials, the antiderivatives P̃n are given in closed form:
This equation is
implemented in
mk_leg_basis.

Pn(k;N) =
√
N

(
P̃n

(
1− k

N

)
− P̃n

(
1− k + 1

N

))
. (16)

The corresponding basis transformation matrix P is depicted in Figure 4.

Time complexity Computing the basis transformation matrix P has a time-
complexity in O(q2N)—evaluating one of the q ×N polynomials in P requires
up tp q multiplications using Horner’s method. The standard run-time costs
O(qN) for a matrix-vector multiplication apply when evaluating Pu.

Example 9 (Discrete Haar Wavelet Basis). Continuous and discrete wavelet
transformations are a popular alternative to Fourier-like transformations. The
basic idea of wavelet bases is to have a single “mother” wavelet from which the
individual basis functions are derived. In contrast to the Fourier series, wavelet
bases are sparse; basis functions tend to be zero for most of the covered interval.

One popular wavelet basis is the Haar basis (wn)n∈N. Aside from the first
basis function w0(x) = 1, each wn(x) for n ≥ 2 is a scaled and shifted version of
w1(x). The complete orthonormal Haar basis over [0, 1] is given as

A discrete version
of this basis can
be obtained using
mk_haar_basis.

w1(x) =


1 if 0 ≤ x < 1

2 ,

−1 if 1
2 ≤ x ≤ 1 ,

0 otherwise ,

and wn(x) =
√
ϕw1

(
ϕx− n+ ϕ

)
,

where ϕ = 2blog2(n)c .
(17)

A discrete version Wn(k;N) with basis transformation matrix W can be easily
computed in O(qN); such a (reordered) W is depicted in Figure 4. An interesting
property of this basis is that the “Fast Haar transformation” can be computed
in O(N) (Kaiser, 1998). This is even faster than the fast Fourier or cosine
transformations, which require O(N log(N)) operations.
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3 A Discrete Orthogonal Legendre Basis: DLOPs
The previous section introduced the notion of a discrete function basis. We saw
that the cosine and Fourier series could be trivially discretised while preserving
orthogonality. However, doing the same for the Legendre polynomials did not
preserve orthogonality.

In this section, we construct a discrete, orthogonal Legendre function basis.
In Section 3.1 we translate the definition of a Legendre polynomial to discrete
function basis, resulting in “Discrete Legendre Orthogonal Polynomials”, or
“DLOPs” in short. DLOPs were originally proposed by Neuman and Schonbach
(1974). Fortunately, Neuman and Schonbach present a simple equation that
can be used to construct DLOPs. We review this equation in Section 3.2. We
close in Section 3.3 with the description of an efficient and numerically stable
algorithm to compute DLOPs in O(qN).

3.1 Discrete Legendre Orthogonal Polynomials
We can apply the definition of a Legendre polynomial (Definition 9) to a discrete
function basis. The unique basis fulfilling this definition is a discrete function
basis of the Legendre polynomials in the strict sense of Definition 11.4

Definition 13 (Discrete Legendre Orthogonal Polynomials, DLOPs; adapted
from Neuman and Schonbach, 1974). DLOPs are defined as the discrete function
basis Ln(k;N) with the following properties

1. Polynomial: Each Ln(k;N) is a linear combination of n monomials. It

holds Ln(k;N) =
∑n
j=0 αn,i

(
k

N−1

)i
for k ∈ {0, . . . , N − 1} .

2. Orthogonal:
∑N−1
k=0 Li(k;N)Lj(k;N) = 0 exactly if i 6= j .

3. Normalisation: Ln(0;N) = 1√
N
.

Numerically solving for DLOPs This definition suggests a simple algorithm The function
mk_dlop_basis_linsys
implements this
algorithm.

that can be used to construct a discrete orthogonal Legendre basis matrix
L ∈ Rq×N . We initialize the first row of L as ones. To obtain a row n, we solve
for the polynomial coefficients αn,i such that the above conditions are fulfilled.
That is, the new row is orthogonal to all preceding rows and the entry in last
column is equal to one. Finding coefficients αn,i that fulfil these requirements is
simply a matter of solving a system of linear equations.

While this algorithm works in theory, it is numerically unstable in practice.
Monomials xk with |x| � 1 and k � 20 cannot be represented well using double-
precision floating point arithmetic. This mandates the use of arbitrary-precision
rational numbers. Fortunately, there is no need to actually implement this
algorithm since a closed-form solution exists.

4Sketch of a proof: for N → ∞ the sums over N turn into integrals that match the exact
definition of Legendre polynomials.
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Figure 5: Visualisation of the DLOP basis defined in eq. (18) for q = N = 40.
See fig. 4 for the complete legend and a description of the colour scheme.

3.2 Closed-Form Solution for DLOPs
Neuman and Schonbach show that the nth DLOP is given in closed form as

Ln(k;N) =
1√
N

n∑
i=0

(−1)i
(
n

i

)(
n+ i

i

)
k(i)

(N − 1)(i)
, (18)

where k(i) =

i−1∏
j=0

(k − j) =
k!

(k − i)!
is the ith fading factorial of k. (19)

Factoring out (N − 1)(n) facilitates the use of arbitrary precision integers
mk_dlop_basis_direct
uses arbitrary
precision integers
to evaluate this
equation.

Ln(k;N) =
1√

N(N − 1)(n)

n∑
i=0

(−1)i
(
n

i

)(
n+ i

i

)
k(i)(N − 1− i)(n−i) . (20)

The corresponding normalised matrix L ∈ Rq×N for q = N = 40 is depicted in
Figure 5. Notice that the resulting matrix is perfectly orthogonal. Comparing
the DLOP matrix L to the naive discrete Legendre basis P (cf. fig. 4), we find
that the two bases are strikingly different for higher-order terms. The last rows
in L have many near-zero entries with non-zero values centred around k = N/2.

The time-complexity of evaluating the corresponding basis transformation
matrix L ∈ Rq×N using eq. (18) in O(q2N).

3.3 Efficiently Computing DLOP Coefficients
As noted above, the time-complexity of evaluating eq. (18) is in O(q2N). Fur-
thermore, the equation can only evaluated reliably using arbitrary precision
integers. Neuman and Schonbach (1974) propose an O(qN) algorithm that relies
on a variant of the recurrence relation from eq. (7). In this section, we discuss a
version of this algorithm that generates an orthonormal matrix L using standard
double-precision floating point arithmetic.
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The discrete Legendre recurrence relation presented in the paper is

The function
mk_dlop_basis_
recurrence
implements this
particular
equation, using
an algorithm
proposed by
Neuman and
Schonbach.

L0(k;N) =
1√
N
,

L1(k;N) =
1√
N

(2k −N + 1)

N − 1
,

Ln(k;N) = Ln−1(k;N)
(2n− 1)(N − 2k − 1)

n(N − n)

− Ln−2(k;N)
(n− 1)(N + n− 1)

n(N − n)
.

Naively evaluating this recurrence numerically is not stable for n > 40. Some of
the columns k grow exponentially in magnitude with n.

For a numerically stable algorithm we suggest to ensure that each Ln(k;N)
is normalised. This normalised discrete function basis L′n(k;N) has the property

N−1∑
k=0

L′n(k;N)2 =

N−1∑
k=0

(√
αn(N)Ln(k;N)

)2
= 1 ,

i.e., it is orthonormal. According to Neuman and Schonbach (p. 746), the
normalisation factor αn(N) is

αn(N) =
(2n+ 1)(N − 1)(n)

(N + n)(n+1)
,

where k(i) is the ith fading factorial of k, as defined in eq. (19). Applying the
normalisation, we get the following recurrence relation for L′n:

The function
mk_dlop_basis
implements this
set of equations
and addresses the
numerical
instability
mentioned below.

L′0(k;N) =
1√
N
,

L′1(k;N) =
(2k −N + 1)

N − 1

√
3(N − 1)

N(N + 1)
,

L′n(k;N) = L′n−1(k;N)
(2n− 1)(N − 2k − 1)

n(N − n)

√
αn(N)

αn−1(N)

− L′n−2(k;N)
(n− 1)(N + n− 1)

n(N − n)

√
αn(N)

αn−2(N)
.

(21)

Multiplying with the square root of αn(N) applies the normalisation, dividing
by the square roots of αn−1(N) and αn−2(N) reverts the normalisation applied
to the lower-order discrete basis function. These fractions can be simplified to

αn(N)

αn−1(N)
=

(2n+ 1)(N − n)

(2n− 1)(N + n)
,

αn(N)

αn−2(N)
=

(2n+ 1)(N − n)(N − n+ 1)

(2n− 3)(N + n)(N + n− 1)
.
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Figure 6: Comparing the basis transformation matrix L obtained when evalu-
ating the recurrence relation L to the matrix Ldirect obtained when evaluating
the closed-form equation eq. (18). Even for large q, errors do not exceed 10−7.

Numerical stability Applications requiring utmost numerical robustness
should use eq. (20) with arbitrary precision integers and subsequent normalisation;
the recurrence relation in eq. (21) inadvertently propagates numerical errors.

In particular, special care must be taken when implementing eq. (21). When-
ever a cell in column k is close to zero in two consecutive rows n − 1, n, all
consecutive cells in column k of rows n+ i must be zero as well. Ensuring this
is important, since small non-zero values caused by numerical instabilities can
rebound exponentially when applying the recurrence relation.

Figure 6 shows the maximum absolute difference between the matrix Ldirect

obtained when using eq. (20) and L computed using our proposed recurrence
relation in eq. (21). Errors do not exceed 10−7, even for q = 500.

4 Constructing a Discrete LDN Basis
In this section, we focus on the Legendre Delay Network (LDN) and the corre-
sponding basis transformation matrix H ∈ Rq×N . We first review the Linear
Time Invariant (LTI) system underlying the LDN and observe that the impulse
response of the LDN system resembles a continuous Legendre function basis over
the interval [0, θ]. The impulse response sharply decays to zero for t > θ, that is,
the system has an almost finite impulse response. Second, as originally proposed
by Chilkuri, we construct the matrix H to approximate the impulse response.

We close by discussing why the LDN system may be particularly useful. To
summarize, since H was derived from an LTI system with an (almost) finite
impulse response, we can either use the basis transformation matrix H (i.e., a set
of FIR filters) or the LTI system itself to compute generalised Fourier coefficients
m of an input signal ut. The FIR filter representation is useful when training
neural networks; during inference the LDN LTI system can directly be used as a
fast “sliding transformation”. In contrast to other sliding transformations the
LDN LTI system requires a minimal amount of state memory.
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4.1 Review: The LDN System
The LDN system (Voelker and Eliasmith, 2018) can be thought of as continuously
compressing a θ second long time-window of a function u(t) into a q-dimensional
vector m(t). The system is derived from the Padé approximants (Baker, 2012) of
a Laplace-domain delay e−sθ, along with a set of transformations that make the
system numerically stable. Let A ∈ Rq×q, B ∈ Rq×1. Then, the LDN system is
given as

The function
mk_ldn_lti
generates the
LDN system
matrices A, B.

dθm(t)

dt
= Am(t) + Bu(t) ,

(
A
)
ij

= (2i+ 1)

{
−1 if i ≤ j ,
(−1)i−j+1 if i > j ,

(
B
)
ij

= (2i+ 1)(−1)i . (22)

As discovered by Voelker (2019, Section 6.1.3, p. 134), the normalised impulse
response m̃q(t) of this system over a time window [0, θ] resembles the first q
shifted Legendre polynomials scaled to the interval [0, θ]. Judging from numerical
evidence, it seems reasonable to assume that for q →∞ the impulse response and
the Legendre polynomials are exactly equal. Correspondingly, (m̃q

n(t))n∈N for
q →∞ forms a function basis over the interval [0, θ]. While empirical evidence
suggests that this is true, we do not have a rigorous proof for this.

Mathematically, the impulse response m̃q(t) of the normalised LDN system
and the presumed relationship to the Legendre polynomials is given as

m̃q
n(t) =

√
θ√

2n+ 1
eAtB =

1√
θ
pn

(
t

θ

)
, where t ∈ [0, θ], for q →∞ . (23)

A ∈ Rq×q and B ∈ Rq×1 are as defined in eq. (22); the orthonormal Legendre
polynomial pn is as defined in eq. (9) with the re-scaling from eq. (4) applied.

The LDN impulse response and the corresponding Legendre polynomials are
depicted in Figure 7. Two observations are worth being pointed out.

First, notice how the impulse response of the LDN system sharply converges
to zero for t > θ. In other words, the LDN system has no memory of anything
happening more than θ seconds ago. This is one of the key properties of the
LDN system, and we revisit this in the next section, when we discuss how to
construct LTI systems from discrete function bases (i.e., the inverse of what we
are doing in this section).

Second, for finite q, the implicit basis created by the LDN system is not
exactly the Legendre basis, but an approximation. We refer to the finite sequence
of q functions generated by the LDN as the LDN “basis”, although, technically,
a finite sequence of functions cannot form a continuous function basis.

4.2 Constructing the LDN Discrete Function Basis
To compute H, we could just apply the “mean sampling” discussed in Example 5
to the impulse responses m̃q

n(t). In fact, this is exactly what we will end up
doing. However, this was not how we derived H in the first place, and we find it
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Figure 7: Normalised impulse response of the first six state dimensions of
the LDN as defined in eq. (23) for different state dimensionalities q (coloured
lines). Solid black lines correspond to the orthonormal Legendre basis pn. As q
increases, the impulse response more closely resembles the Legendre basis.
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Figure 8: Diagram illustrating a perfect delay. A stair-step function u(t)
representing N = 5 values u1, . . . , u5 between t = 0 and t = θ is delayed by
exactly θ seconds, resulting in u(t− θ). When implementing the delay, the LDN
system must represent information about the last θ seconds in its state vector
m(t). In this example, all samples must be represented in m(θ).

considerably more instructive to discuss our original derivation. We then prove
equivalence of the resulting expression to mean sampling. Impatient readers
interested in the main result may wish to skip ahead to the end of this subsection.

Compressing signals using the LDN Feeding a signal u(t) into the Legen-
dre Delay Network allows us, as the name suggests, to decode a delayed signal
u(t − θ) from its state vector m(t). Consider what happens if we present N
samples u1, . . . , uN to the LDN system over the time-window θ, for example
using a stair-step function

u(t) =

{
ui if 0 ≤ t < θ ,

0 otherwise,
where i = 1 +

⌊
Nt

θ

⌋
. (24)

At time t = θ all samples have been presented to the LDN. If the LDN were to
implement a perfect delay, we would decode u(t− θ), which is equal to the first
sample u1. A bit later, at time t = N+1

N θ, the network would output u2, and so
on (cf. fig. 8). This means that at t = θ, the network has “compressed” all N
samples into its q-dimensional state vector m(t). Of course, the LDN system
acts as a basis function transformation that represents u = (u1, . . . , uN ) as a
vector m(θ) = (m1(θ), . . . ,mq(θ)) with respect to a discrete function basis.

Our goal is to find a linear expression mapping u onto m(θ). Given such an
expression, we could extract the corresponding basis transformation matrix H.

Naive Euler recurrence relation In a first step, let us coarsely discretise
the so far continuous functions. Let θ = N∆t, where ∆t is the timestep. In this
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2.

case, each sample ui will be presented for exactly one timestep, and we need to
derive an expression for the state vector at timestep N , i.e., mN .

Let m0 = 0. Using Euler integration, we get the recurrence relation
This equation is
implemented in
mk_ldn_basis_
euler.

mi+1 = mi + ∆t

(
Ami

θ
+

B

θ
ui

)
=

1

N

(
(A +NI)mi + Bui

)
. (25)

Unfortunately, using an Euler integrator in this manner without finer-grained
update steps is generally a bad idea. Judging from numerical experiments (fig. 9),
it must approximately hold N > 2.78q2 for Euler’s method to not introduce large
errors. If N < 0.35q2, this method will diverge within the first N timesteps.

Closed-form solution with zero-order hold assumption There is a rel-
atively simple solution to this problem that is in the spirit of the above idea.
Since our system is purely linear, we can advance the system ∆t seconds into the
future given an initial state m(t), under the condition that u(t) stays constant for
the next ∆t seconds. This is exactly how we defined u(t) in eq. (24) if θ = N∆t.
In general, assuming that u(t) is a stair-step function is called a “zero-order hold
assumption”. We obtain a new recurrence relation that uses a matrix exponential

mi = Ãmi−1 + B̃ui ,

where Ã = exp

(
∆t

A

θ

)
= exp

(
A

N

)
,

B̃ = A−1(Ã− I)B .

(26)

This is a standard technique for the discretisation of LTI systems (cf. Voelker,

This equation is
implemented in
the function
discretize_lti.
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Figure 10: Illustration of the unnormalised LDN basis transformation matrix
H′ (eq. 28). The same principle can be applied to other LTI systems.

2019, Section 5.1.1, p. 100). Expanding the recurrence relation for mN we get

mN = ÃmN−1 + B̃uN

= Ã
(
ÃmN−2 + B̃uN−1

)
+ B̃uN

= Ã2mN−2 + ÃB̃uN−1 + B̃uN

= Ã3mN−3 + Ã2B̃uN−2 + ÃB̃uN−1 + B̃uN

= . . .

=

N∑
i=1

ÃN−iB̃ui =

N−1∑
i=0

ÃiB̃uN−i . (27)

As desired, this is a linear equation. We can write this sum in terms of a matrix-
vector product H′u, where H′ ∈ Rq×N is an unnormalised basis transformation
matrix. The kth column of H′, denoted

(
H′T

)
k
is simply given as (cf. fig. 10)(

H′T
)
k

= ÃN−kB̃ . (28)

The time-complexity of evaluating this matrix is in O(q2N). Importantly, and in
contrast to all other discrete function bases discussed so far, the corresponding
discrete function basis H ′qn (k;N) = H′n,k depends on the state-dimensionality
q. In other words, when q is changed, all q discrete basis functions change; in
general, Hq

n(k;N) 6= Hq′

n (k;N).

Qualitative comparison to the Legendre and DLOP bases The nor-
malised function basis transformation matrix H is depicted in Figure 11. H is
almost orthogonal and is similar to both the DLOP and the Legendre basis in
some respects. The left half of H somewhat resembles DLOPs, whereas the right
half is very similar to the discrete Legendre basis from eq. (16).

Equivalence to the mean-sampled impulse response Applying mean
sampling as defined in eq. (13) to the LDN system impulse response for θ = 1

Hq
n(k;N) =

√
Nθ√

2n+ 1

∫ b

a

(
eAtB

)
n

dt , where a =
k

N
, b =

k + 1

N
.
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Figure 11: Visualisation of the LDN basis as defined in eq. (28) for q = N = 40.
See Figure 4 for the complete legend and a description of the colour scheme.

The integral of a matrix exponential is (cf. DeRusso et al., 1998, pp. 171-172)∫ b

0

eAt dt =
(
eAb − I

)
A−1 ⇒

∫ b

a

eAt dt =
(
eAb − eAa

)
A−1 .

Abbreviating the normalisation term as γ and factoring out B we get

Hq
n(k;N) = γ

((∫ b

a

eAt dt
)
B
)
n

= γ
((
eAb − eAa

)
A−1B

)
n

= γ
((

Ãk+1 − Ãk
)
A−1B

)
n

= γ
((

Ãk
(
Ã− I

)
A−1B

)
n
.

The exponential of matrix eαA and its inverse A−1 are commutative (cf. DeRusso
et al., 1998, p. 170 for the definition of the matrix exponential)

A−1eαA = A−1
∞∑
i=0

Aiαi

i!
=

∞∑
i=0

Ai−1αi

i!
=

∞∑
i=0

Aiαi

i!
A−1 = eαAA−1 .

Hence, we can move the A−1 to the left-hand side of the term Ã− I. We get

Hq
n(k;N) = γ

((
ÃkA−1

(
Ã− I

)
B
)
n

= γ
(
ÃkB̃

)
n
. (29)

Scaling and ordering (k and not N − k, cf. eq. 11) aside, this is exactly eq. (28).

4.3 When to Use the LDN Basis
Up to this point, it may seem as if the LDN was merely a convoluted way to
construct a discrete function basis that resembles the Legendre polynomials. So,
why—compelling connections to biology aside (Voelker and Eliasmith, 2018)—
should we care about the LDN system at all, and not just use exactly orthogonal
discrete function basis such as DLOPs?

The answer to this is not clear-cut. The gist is that the LDN is the optimal
online, zero-delay (or “sliding”) transformation that weighs each point in time
equally and only requires O(q) state memory (see Gu et al., 2020, for the “equal
weight” aspect). Still, there are some trade-offs that are worth discussing.
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Sliding transformations As mentioned at the beginning of this section, one
way to think about the LDN system is as a means to convolve an input signal
u(t) with the Legendre polynomials at every point in time t, or, in other words,
to compute the generalised Fourier coefficients ξn(t) online; i.e.,

ξn(t) =
〈
u[t−θ,t], m̃

q
n

〉
,

where u[t−θ,t] : [0, θ] −→ R corresponds to a function representing the past θ
seconds of the input u, and m̃q

n is as defined in eq. (23). That is, by simply
advancing a q-dimensional LTI system for an input u(t), the generalised Fourier
coefficients are stored in the momentary LTI system state m(t).

A transformation that is evaluated at every point in time over a window of
the input history is also called a sliding transformation. Most of the discrete
transformations we discussed so far have sliding versions; examples being the
sliding discrete Fourier (SDFT; Jacobsen and Lyons, 2003), cosine (SCT; Kober,
2004) and Haar transformations (Kaiser, 1998). These “classic” sliding transfor-
mations mandate that a window u[t−θ,t] is kept in memory, i.e., O(N) memory
in the discrete case. Each update step requires only O(q) operations.

Efficiency of the LDN compared to FIR filters In contrast, the discrete
LDN LTI system only requires O(q) state memory (in addition to storing the
q× q matrix Ã) and can be advanced using eq. (26). Each update requires O(q2)
operations and yields the updated discrete generalised Fourier coefficients mt.

For bases where we do not have an efficient sliding transformation (as, for
example, for DLOPs), we must treat the basis transformation matrix E as a
set of q FIR filters (cf. eq. 11). Filtering a signal u with q FIR filters requires
holding the past N input samples in memory in addition to the q ×N matrix E.
When done naively, convolution with the filters requires O(qN) operations in
every timestep. Hence, updating the discrete LDN system is more efficient than
repeated convolution if q < N .

Efficient zero-delay FIR filtering The above characterization is a bit mis-
leading. The time complexity of O(qN) for online convolution of a signal with a
set of q FIR filters only applies to the naive algorithm. In general, this opera-
tion can be performed using O(q log(N)) operations and O(N log(N)) memory
(amortized; cf. Gardner, 1995). Note that the corresponding algorithm has a
relatively large constant scaling factor of approximately 34 in the number of
operations (cf. Section 5.2, p. 132 of Gardner, 1995).

This means that—much lower memory requirements aside—using eq. (26)
to compute the discrete generalised Fourier coefficients mt of the LDN basis is
still attractive when compressing a large number of samples N into relatively
few dimensions q. To be precise, using an LTI system to implement a sliding
transformation is more efficient as long as q < 34 log2(N). This relationship is
depicted in Figure 13. As a rule of thumb, and assuming that memory is not a
constraint, FIR filters should be used if N ≥ q > 300.
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Figure 12: LDN impulse response power spectrum and low-pass characteristics.
Left: Power spectrum for different q assuming θ = 1 s; the LDN system acts as a
low-pass. Right: Error Hu−Hû for a white-noise signal u and a band-limited
version û thereof with band-limit f̂ . It must approximately hold f̂ > 2q for the
NRMSE to not surpass 0.1 (dashed line).

Fast Euler update Requiring O(q2) operations per update step and O(q2)
of memory in total for the zero-order hold discrete LDN system may be a little
disappointing. After all, the standard sliding transformations mentioned above
only require O(q) operations per update steps in exchange for O(N) memory.

In fact, Voelker (2019, Figure 6.6) shows that the LDN can be advanced
using only O(q) operations per step and O(q) total memory when using the
Euler update from (cf. eq. 25). This low memory requirement can be seen as the
defining property of the LDN. After all, the LDN was derived from first principles
to represent a window of data using q state variables over time.

Limitations of the fast Euler update While the low memory requirements
of the Euler method can be important, the time-complexity O(q) comes with
a caveat. Remember from above that the Euler update is only feasible approx-
imately if N > 2.78q2. Consequently, and as we will explain in the following,
both the O(q2) zero-order hold algorithm and the O(q) Euler update have the
same asymptotic time-complexity in practice under the condition that the input
signal u(t) is appropriately band-limited and sampled near the Nyqist limit.5

To see this, consider a q-dimensional LDN. As depicted in the left half of
Figure 12, the LDN system acts as a low-pass filter. That is, higher frequencies in
the input signal barely have an influence on the output of the system. The high
frequencies can even be filtered out completely without changing the generalised
LDN Fourier coefficients (the “LDN spectrum”) much.

5Down-sampling to the band-limit introduces latency, which is not desirable in real-time
control applications; the O(q) Euler update is optimal in this case.
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This is depicted in the right half of Figure 12. Band-limiting a signal u(t) to
a maximum frequency f̂ > 2q results in an NRMSE of at most 0.1 in the LDN
spectrum, even if u(t) is a white noise-signal. A discrete representation of this
band-limited signal would require N > 2f̂ = 4q samples per second according
to Nyquist-Shannon (we discuss this in more detail in Section 6.1). The q2
zero-order hold update algorithm then requires 4q3 operations per second, plus a
low-pass filter, which can be cheaply implemented as a short FIR filter on u(t).

The Euler update on the other hand requires at least N = 2.78q2 samples
to reach an NRMSE of 0.1, resulting in a total of 2.78q3 operations per second.
While this is a little smaller than 4q3, remember that the estimate N > 2f̂ = 4q
was derived under very conservative circumstances (i.e., a white noise signal as
an input); lower band-limits can likely be used in practice.

Sliding transformations and neural networks In the context of neural
networks, we can use basis transformations in their FIR filter representation
for training. This avoids recurrences and can increase throughput, particularly
when training the network on GPUs.

During inference, a more efficient update rule can be used for the sliding
transformation. A summary of the memory and run-time costs for the various
transformations discussed in this report is given in Table 1.

As a side note, Gu et al. (2020) derive sliding transformations similar to the
LDN LTI system for different polynomial bases and weightings. Our discussion
of the LDN in terms of run-time and memory applies to these systems as well,
although the low-pass filter characteristics may be different.

5 LTI Systems From Discrete Function Bases
In the previous section, we derived a basis transformation matrix E from the
LDN system A, B. We also saw that the LDN system can be used to directly
compute discrete generalised Fourier coefficients mt; all we need to do is to
simply advance the LTI system for each input sample ut. For small q this can
be more efficient than repeated convolution with the past N input samples.

Of course, this raises the question whether we can reverse what we did above;
in other words, derive an LTI system A, B from arbitrary discrete function bases
E. This problem is known in the literature as a “system identification problem”.
See Verhaegen and Verdult (2007) for a thorough treatise; the solution presented
in this report is as crude as it is simple.

5.1 Solving For Ã, B̃ Using Least Squares
In the last section, we constructed the unnormalised transformation matrix E as This method is

implemented in
reconstruct_lti.

(
ET
)
k

= ÃN−kB̃ , and correspondingly
(
ET
)
N

= B̃ ,
(
ET
)
i

= Ã
(
ET
)
i−1 ,
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Figure 13: Combinations of state dimensions q, and sample counts N for
which a suitable LTI system (such as the LDN) can compute discrete generalised
Fourier coefficients mt more efficiently compared to a FIR filter. Advancing an
LTI system requires on the order of q2 operations, whereas online evaluation of q
FIR filters requires about 34 q log2(N) operations per timestep (Gardner, 1995).

Table 1: Run-time and memory costs for performing discrete function basis
transformations of order q and filter length N (generally we assume q ≤ N ; for
the batch FFT, FCT and FHT q = N). “Batch” describes transforming a N
samples into a different basis at once. “Sliding/Online” corresponds to computing
the basis transformation for each incoming sample, where N is the length of the
filter. All memory costs include constant matrices.

Batch
(N samples)

Sliding/Online
(per sample)

Basis Algorithm Run-time Memory Run-time Memory

FIR Naive O(qN2) O(qN) O(qN) O(qN)

FFT conv. O(qN logN) O(qN) / /

Gardner[1] / / O(q logN) O(qN logN)

Haar FHT[2] O(N) O(N) O(q) O(N)

Fourier FFT[3] O(N logN) O(N) / /

SDFT[4] O(qN) O(N) O(q) O(N)

Cosine FCT[5] O(N logN) O(N) / /

SCT[6] O(qN) O(N) O(q) O(N)

LDN ZOH LTI O(q2N) O(N + q2) O(q2) O(q2)

Euler LTI[7] O(qN) O(N) O(q) O(q)

“FIR” corresponds to an arbitrary set of FIR filters. “ZOH LTI” refers to the zero-order-hold
discrete LTI system (eq. 28). [1] Gardner, 1995; [2] Kaiser, 1998; [3] Cooley and Tukey, 1965;
[4] Jacobsen and Lyons, 2003; [5] Makhoul, 1980; [6] Kober, 2004; [7] Voelker, 2019, Figure 6.6.
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Figure 14: Constructing a discrete LTI system Ã, B̃ from any discrete basis
transformation matrix E. B̃ ∈ Rq×1 is the last column of E. Ã can be obtained
by solving E′Ã = E. Dampening encourages a finite impulse response.

where k is the kth column of E and Ã, B̃ are as defined in eq. (26). We can
directly read B̃ off E, and estimate Ã by solving for a matrix that translates
between individual columns using least squares. This is illustrated in Figure 14
(ignore dampening for now). Reverting discretisation yields an LTI system A,B:

A =
N

θ
log(Ã) , B =

1

θ
(Ã− I)−1AB̃ . (30)

One caveat with this approach is that the discrete basis transformation matrix
E must be at least of size q × (q + 1), the total number of degrees of freedom in
Ã ∈ Rq×q and B̃ ∈ Rq×1. Methods for solving for Ã, B̃ with fewer degrees of
freedoms exist (see Verhaegen and Verdult, 2007, Chapter 7 onward).

Description of the resulting LTI systems The left half of Figure 15 depicts
feedback matrices A and impulse responses for LTI systems constructed from
the transformation matrices discussed so far. We now briefly discuss each system.

LDN system. Notably, the LDN system is—apart from some scaling factors
due to regularisation—perfectly reconstructed. This should not surprise; our
reconstruction method reverts the steps taken to construct H from A, B.

DLOP system. The DLOP LTI system perfectly generates the Legendre poly-
nomials over the interval [0, 1] as its impulse response. Unfortunately, being
able to do so is rather pointless, since the impulse response quickly diverges for
t > 1. Notice how the DLOP system A matrix is strictly positive. The positive
coefficients in the LDN system matrix are very similar to the positive DLOP
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Figure 15: Constructing LTI systems from discrete function bases using least
squares. Parameters are q = 16, N = 128, and θ = 1. Left half: LTI systems
reconstructed without dampening. Right half: LTI systems reconstructed with
dampening. Left: Feedback matrix A. Positive values are blue, negative values
red. Colour map is rescaled such that 95% of the values are depicted without
saturation. Right: Impulse response of the first six state dimensions.
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system coefficients; hence, the LDN system can be thought of implementing
the Legendre basis with some dampening through the added negative coefficients.

Fourier system. As one would expect, the Fourier system consists of N
2 inde-

pendent oscillators with increasing frequency. Just like the DLOP system, the
Fourier system has an infinite impulse response, but unlike the DLOP system,
the system is stable.

Cosine system. Apart from some scaling and shifting issues, the cosine system
reconstructs the cosine basis over the interval [0, 1]. For t > 1 the impulse
response no longer resembles the cosine basis.

Haar system. We cannot expect a finite-dimensional LTI system to reproduce
the discontinuities in the Haar basis. In contrast to the other systems, the Haar
system has a finite impulse response for q = 16, but this is not guaranteed.

5.2 Dampening the Reconstructed System
Most of the reconstructed systems have an infinite impulse response. This is not
desirable unless the system is never advanced beyond θ, or, in other words, only
a fixed number of samples is processed.

In this report, we are more concerned with online processing, which implies
a potentially unbounded number of samples and the inability to perform batch
updates. To be suitable for online processing, the LTI system must not only
optimally approximate a function basis, but also “optimally forget” information
originating from more than θ seconds in the past.

In the following, we discuss two extensions to the above method, that encour-
age, but do not guarantee, a finite impulse response. The first method adds a
“dampening” term to the least-squares equations. The second method explicitly
erases information older than θ seconds from the state m.

Dampening term in the least-squares system One way to encourage a This method is
implemented in
reconstruct_lti
when passing
dampen =
"lstsq" as a
parameter.

finite impulse response is to add the equation Ã(ET )1 = 0 to the least-squares
problem. As illustrated in Figure 14, multiplying the first column of the discrete
function basis (which corresponds to t = θ) with Ã should extinguish the impulse
response. This dampening term should be weighted by N−1

q−1 , maintaining a
weight ratio of 1 : q− 1 between the dampening term and the remaining samples.

The least-squares system now contains exactly N samples, so, in theory, it
could be used for matrices E of shape q ×N with N = q. However, in practice,
this often results in a singular (Ã− I) or non positive definite Ã, for which the
matrix logarithm cannot be computed.

This least-squares approach to system identification may not lead to optimal
results. It may be beneficial to iteratively enforce the dampening condition using
the actual impulse response of the reconstructed system.
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Dampening by information erasure For our system to have a finite impulse This method is
implemented in
reconstruct_lti
when passing
dampen =
"erasure" as a
parameter.

response, we must ensure that information older than θ seconds (or N samples) is
“forgotten”. We can enforce this by decoding the input ut−N+1 from the current
state mt and computing the state vector m′t encoding this input. Subtracting
m′t from mt erases ut−N+1 from the state. Hence, this “old” sample can no
longer influence the system state and the impulse response must be finite.

In practice, assuming that the discrete LTI system Ã, B̃ reconstructs the
discrete function basis E, the sample ut−N+1 can be decoded as follows

ut−N+1 =
(
E+
)
1
mt , where E+ =

(
ETE

)−1
ET ,

and
(
E+
)
1
denotes the first row of the pseudo-inverse. Re-encoding ut−N+1

under a zero-order hold assumption yields

m′t =
(
ET
)
1
ut−N+1 =

(
ET
)
1
⊗
(
E+
)
1
mt ,

where ⊗ is the outer product and
(
ET
)
1
is the first column of E. Sequentially

interleaving an “update” and an “erasure” step we obtain

mt ← Ãmt−1 + B̃ut , (Update)

mt ←mt −m′t =
(
I−

(
ET
)
1
⊗
(
E+
)
1

)
mt . (Erasure)

= (I−
(
ET
)
1
⊗
(
E+
)
1
)Ã︸ ︷︷ ︸

Ã′

mt + (I−
(
ET
)
1
⊗
(
E+
)
1
)B̃︸ ︷︷ ︸

B̃′

ut .

Applying the inverse discretisation from eq. (30) to Ã′, B̃′ results in a dampened,
continuous LTI system. Again, this is not an optimal solution, since the equations
assume that Ã and B̃ perfectly reconstruct the discrete function basis over [0, θ].

A continuous version of this method can be used to directly derive the LDN
system from the Legendre polynomials (Stöckel, 2021).

Description of the dampened LTI systems Surprisingly, both dampening
methods yield similar results—at least with respect to the impulse response of
the resulting systems. In the following, we discuss the results obtained when
using the information erasure method. The right half of Figure 15 depicts the
impulse responses of the dampened LTI systems and the corresponding feedback
matrices A. As before, we will quickly comment on these for each discrete
function basis.

Dampened LDN system. The LTI system and its impulse response remain almost
unchanged. This includes the higher order dimensions (not depicted).

Dampened DLOP system. The dampened DLOP system has—apart from a
different scaling of the individual systems—almost exactly the same impulse
response as the LDN system. For all practical purposes, the LDN and dampened
DLOP system seem equivalent.
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Dampened Fourier system. Dampening the Fourier system leads to some reduc-
tion in magnitude for t > θ. While the impulse response eventually does decay
to zero, it does so very slowly.

Dampened Cosine system. Especially the depicted lower order terms of the damp-
ened cosine system decay to zero quite quickly; however, this is not true for the
higher order terms (not depicted), which behave more like the dampened Fourier
system. Notice that the impulse response somewhat resembles the Legendre basis.

Dampened Haar system. The dampened Haar system behaves well; though it is
not clear whether the impulse response resembles a sensible function basis.

5.3 Summary
The technique we presented in this section could be improved by parametrising
A, B in a way that enforces stability and results in well-conditioned systems.
Nevertheless, our naive least-squares solution produces LTI systems that very
well approximate a discrete function basis En(k;N) over an interval [0, θ].

However, the true challenge lies in generating an LTI system that has a “finite
impulse response”, or, in other words, quickly converges to zero for t > θ. While
introducing a dampening term accomplishes this to some degree, most of the
systems that end up with a finite impulse response (LDN, DLOP, partially the
Cosine system) resemble the Legendre polynomials.

It is unclear whether LTI systems approximating bases other than the Leg-
endre polynomials are really necessary. If so desired, similar approximations
of other bases can be constructed by equipping the LDN system with a corre-
sponding readout matrix T ∈ Rq×q. Due to linearity, this generally yields results
superior to what was shown here in terms of the finiteness of impulse response.

6 Low-pass Filtering Discrete Function Bases
If the number of discrete basis functions q is smaller than the number of sam-
ples N , then a discrete basis transformation E ∈ Rq×N is a projection mapping
from a higher- onto a lower-dimensional space. Computing m = Eu can be
thought of as “packing” N samples u into a smaller q-dimensional vector m. In
general, projections are “lossy”, that is, they decrease the amount of information
present in m compared to u.

In this section, we talk about the conditions under which information loss
occurs, leading us to the Nyquist-Shannon sampling theorem discussed in Sec-
tion 6.1, as well as a simple related lemma that can be applied to discrete function
bases. Violating the conditions in the Nyquist-Shannon sampling theorem or the
lemma results in a phenomenon called “aliasing”. We discuss this in Section 6.2.
We close with a technique for constructing discrete function bases that apply an
anti-aliasing filter to u in Section 6.3. It is not immediately clear whether this is
necessary or beneficial in the context of discrete function bases.
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6.1 The Nyquist-Shannon Sampling Theorem
In most cases, projections such as E with q < N inadvertently destroy informa-
tion. That is, a signal u cannot be reconstructed from Eu. An exception are
signals u that are a linear combination of the q rows of the projection matrix E,
i.e., u = ETm, where m ∈ Rq. We express this formally in the lemma below.

Lemma 1. Let E ∈ Rq×N with q ≤ N , EET = I, and u ∈ RN . It holds
ETEu = u exactly if a unique m ∈ Rq exists such that u = ETm.

Proof. Consider the “⇐” direction. Let m ∈ Rq and u = ETm. We need to
show ETEu = u. Expanding the left-hand side of the latter expression we get

ETEu = ETEETm = ETm = u . X

Now, consider the “⇒” direction. We have ETEu = u and must show that a
unique m exists with u = ETm. Equating the two terms we get ETEu = ETm,
hence Eu = m. This is the only solution. Assume another solution m′ 6= m
with u = ETm′ exists. Then ET (m−m′) = 0. Hence, 0 6= m′ −m ∈ ker(ET ).
Contradiction: ker(ET ) is zero-dimensional and only contains 0. This is because
ET is of rank q (as EET = I) and dim(ker(ET )) + rank(ET ) = q. �

Essentially, this lemma states a condition under which a unique reconstruction
of a signal u with respect to any basis transformation matrix E is possible. Put
differently, the signal u must have been “bandlimited” to be constructed from at
most q functions of the function basis it is being transformed into and N ≥ q
samples are required. This is illustrated in Figure 16. For non-orthogonal
matrices E of rank q, the Moor-Penrose pseudo inverse E+ = (ETE)−1ET can
be used instead of ET .

The Nyquist-Shannon sampling theorem (Shannon, 1949) is similar to the
above lemma in spirit. It bridges the continuous and discrete time domains and
states a condition under which continuous signals can be perfectly represented
by a set of samples u = (u1, . . . , uN ). Specifically, if a function over [0, 1] only
contains frequencies up to ϕ Hertz, then N ≥ 2ϕ+1 uniform samples are required
to perfectly represent f(t).

Theorem 1 (Nyquist-Shannon Sampling Theorem). Let f(t) be a bandlimited
function over C[0, 1]; that is 〈f, fn〉 = 0 for all n > q̂, where (fn)n∈N is the
Fourier series as defined in eq. (5). f(t) is completely determined by N uniform
sample points over [0, 1] if N > q̂ (cf. Shannon, 1949 for the proof).

6.2 Aliasing
The above lemma and theorem state under which conditions signals can be
represented and transformed without information loss. But what happens if
we violate these conditions? If we discretise a signal f(t) with fewer samples
than necessary, or transform a signal u into a function space where it cannot be
represented using q coefficients? Besides losing information, the answer to this
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Figure 16: Illustration of Lemma 1. The discrete signal u has N = 15 samples.
The signal can be losslessly transformed using L ∈ Rq×N with q = 11 if u can be
constructed from the first q basis functions. Top left: Appropriately band-limited
signal. Top centre: The Fourier coefficients mn for n ≥ q (red) are all zero. Top
right: The signal can be perfectly reconstructed. Bottom: The depicted signal is
not properly bandlimited and cannot be losslessly reconstructed. Due to aliasing,
it is reconstructed as if it was the signal in the top of the figure.

question is aliasing, though to different degrees of severity. Aliasing means that
infinite “invalid” signals f(t) or u are mapped onto the representation of a single
“valid” signal.

Discrete case (violation of Lemma 1) In the discrete case, for a fixed
m ∈ Rq, there are an infinite number of u ∈ RN with m = Fu if N > q.
Fortunately, assuming that the basis vectors are sorted by frequency, computing
Fu merely discards higher frequency terms. We saw this in Figure 16, where the
“invalid” signal is aliased onto the signal with the same first q spectral coefficients.

Sampling continuous functions (violation of Theorem 1) Violating the
Nyquist-Shannon theorem causes distortions inside the frequency range repre-
sentable by N samples. This is depicted in Figure 17. Not only are frequency
coefficients outside the N/2 Hz range discarded when sampling a one-second
signal f(t) too sparsely, there are also changes (“distortions”) in the magnitude
of the frequency coefficients within that limit. That is, our incorrectly sampled
function is aliased onto a function with (potentially) completely different fre-
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quency content. See Press et al. (2007, Section 12.1.1, pp. 605-606) for more
information. This is significantly worse than what happens when we transform
a discrete signal u into a discrete function space that does not span u.

6.3 Anti-Aliasing Filters
To combat aliasing (i.e., “anti-aliasing”), we simply map each violating signal onto
a valid signal that does not violate any of the above constraints. For example,
continuous functions f(t) can be low-pass filtered in the continuous domain
to discard frequencies outside the N/2 Hz range. For discrete u, we similarly
discard components of u that cannot be represented in the target basis.

Put differently, “anti-aliasing” can be thought of as “controlled aliasing”. The
invalid signals are deterministically mapped (“aliased”) onto a valid signal. As
we saw, this is important when sampling continuous functions, as invalid signals
cause distortions in the representable frequencies.

Band-limiting discrete signals Given a basis transformation matrix E, a
valid signal u′ (in the sense of Lemma 1) is simply given as u′ = E+Eu, where
E+ = (ETE)−1ET is the Moore-Penrose pseudo inverse of E. This filtering does
not affect the generalised Fourier coefficients m. We have

m = Eu′ = EE+Eu = Eu .

Filtering basis transformation matrices To spice things up a little, we
can use two different discrete function bases; one for the transformation, and
one for filtering. For example, let E ∈ Rq×N be an arbitrary discrete basis
transformation matrix, and let F ∈ Rq′×N be the Fourier matrix. Projecting u
onto the first q′ coefficients of the Fourier basis, i.e., computing u′ = FTFu, and
then applying the transformation E yields This equation is

implemented in
lowpass_filter_
basis.

m = Eu′ = EFTFu = (FTFET )Tu = E`u . (31)

35



1 10 20 30 40

Column j

1

10

20

30

40

R
ow

i
L`L`

T

1 25 50 75 100

Column j

1

10

20

30

40

R
ow

i

L`

1 50 100

Column j

−0.2

0.0

0.2

First basis vectors (L`)i

Figure 18: Examples of a low-pass filtered DLOP basis L` for q = q′ = 40 and
N = 100. The filtered DLOP matrix L` is no longer orthogonal, and instead
exhibits ringing patterns similar to those found in the LDN basis.

Crucially, the term ET` = FTFET can be thought of as filtering the individual
discrete basis functions in E. That is, instead of filtering the incoming signal u,
we band-limit the basis functions with respect to the Fourier basis.

Figure 18 depicts a low-pass filtered versions of the DLOP function basis.
The DLOP basis transformation matrix is no longer orthogonal after filtering
and exhibits ringing artefacts similar to those seen in the LDN basis (cf. fig. 11).
This may suggest that the LDN basis intrinsically contains an “optimal low-pass
filter”, but this needs further investigation. Judging from the LTI experiments
in the last section, the ringing artefacts may instead be required to realize the
finite impulse response (e.g., compare the impulse response of the undampened
and dampened DLOP system in fig. 15 to that of the LDN system).

Connection to the Nyquist-Shannon theorem Of course, any other dis-
crete basis transformation matrix may be used for filtering instead of F (using
the pseudo-inverse E+ if E is not orthogonal). However, using F establishes a
connection to the Nyquist-Shannon theorem. Any signal u′ constructed from
a Fourier-filtered basis transformation matrix E` (i.e., u′ = ET` m) uniquely
corresponds to a continuous function f(t) as defined by Shannon (1949). This
f(t) is the same as the function we would obtain when increasing N →∞.

Filtering with the LDN system Using the LDN basis as a filter transforma-
tion can be beneficial when constructing LTI systems as discussed in Section 5.
This ensures that the desired impulse response is a linear combination of the
LDN system impulse response. The resulting LTI system is essentially a “rotated”
version of the LDN system, guaranteeing a finite impulse response while still
approximating the desired basis function reasonably well.

However, this approach is equivalent to applying a readout matrix T to
the LTI system state, as discussed in Section 5.3. This is generally the better
solution compared to using a different A, B, since the LDN system is already
well conditioned.
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7 Evaluating Discrete Function Bases
So far, we have discussed several discrete function bases, but we have not given
any practical recommendation as for when to use which discrete function basis.
This is because the notion of the “best” basis highly depends on the application.

In this section, we will first try to provide some very general recommen-
dations as for when to use which function basis. We then perform a series of
benchmarks. First, we evaluate how well delayed signals can be decoded from
the representations formed by each function basis. Second, we test the discrete
function bases as fixed temporal convolutions in a neural network context.

7.1 General Considerations
The continuous function bases discussed above can be divided into three cate-
gories: periodic, aperiodic, wavelets.

Periodic bases. A function basis (fn)n∈N over [0, 1] is periodic if for every fn the
following function f̃n is infinitely continuously differentiable over R:

f̃n(x) = fn (x− bxc) .

Intuitively, a function f(x) fulfilling this requirement has no observable boundary
between x = 1 and x = 0. Of all the bases we saw, only the Fourier basis (eq. 5)
fulfils this requirement. Periodic bases are particularly suitable for representing
periodic functions. While these bases can, of course, represent any aperiodic
function g ∈ L2(0, 1), a finite generalised Fourier series of g, that is,

ĝ =

q−1∑
n=0

〈g, fn〉fn ,

will always be periodic (e.g., observe the “spikes” at the boundaries in fig. 1).

Aperiodic bases. If a basis is not periodic in the sense defined above, it is aperiodic.
This includes the cosine (eq. 6), Legendre (eq. 9) and Haar basis (eq. 17). Analo-
gously to the above, such bases are well suited to representing aperiodic functions.

Wavelet bases. Without defining this concept thoroughly, wavelet bases, such
as the Haar basis (eq. 17), are characterized by being sparse. This is useful
when approximating localized functions g, i.e., functions that are exactly zero for
most x. Wavelet bases can also be thought of as intrinsically segmenting signals
u into smaller “chunks”. Hence, a small change at one point in time does not
affect all generalised Fourier coefficients at once. One issue with wavelet bases is
that increasing q by one (i.e., adding one basis function) does not decrease the
approximation error ĝ(x)− g(x) uniformly for all x.
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Properties of various discrete function bases This list briefly charac-
terises the discrete function bases we discussed in this report in terms of their
computational properties and common applications where applicable.

Discrete Fourier basis. This periodic basis provides natural interpretations of
signals in terms of “frequency” and “phase”. Periodicity can be important when
solving certain differential equations. Computing Fu for u ∈ RN and F ∈ RN×N
requires O(N log(N)) operations (Cooley and Tukey, 1965).

Discrete Cosine basis. This aperiodic basis tends to approximate the principal
components of natural signals (such as sounds or images) and is thus exten-
sively used in audio, video, and image compression. Furthermore, the derivative
of these basis functions is zero at the boundaries, which is another common
condition encountered when solving differential equations (Press et al., 2007,
Section 12.4.2, p. 624). Computing Cu for u ∈ RN and C ∈ RN×N requires
O(N log(N)) operations (Makhoul, 1980).

DLOP basis. As discussed by Neuman and Schonbach (1974), this aperiodic
basis is particularly useful when performing smooth polynomial interpolation.
In contrast to the LDN basis, the DLOP basis is orthogonal. To our knowledge,
there is no fast computation scheme; computing Lu for u ∈ RN and L ∈ Rq×N
requires O(qN) operations.

LDN basis. This aperiodic basis is similar to the DLOP basis; computing Hu for
u ∈ RN and H ∈ Rq×N requires O(qN) operations. Because of the underlying
LTI system, the LDN basis has a potentially faster online, zero-delay update
scheme, requiring O(q2) operations per timestep. Refer to Section 4.3 for a
thorough discussion.

Haar basis. As noted above, convolving a signal with this wavelet basis has a
low time complexity. It is therefore extensively used in classic computer vision
algorithms, including tasks such as face recognition (Viola and Jones, 2001).
Computing Wu for u ∈ RN and W ∈ Rq×N requires O(N) operations. Online,
zero-delay updates require O(q) operations per timestep (Kaiser, 1998). A
downside is that this basis is not orthogonal for non-power-of-two N , and that q
should be a power of two as well.

7.2 Delay Decoding Benchmark
An objective measure for the “quality” of a discrete function basis is the amount
of information lost when encoding a signal u. That is, we could simply compute

E = ‖u−E+Eu‖ = ‖u− (ETE)−1ETEu‖

to evaluate a discrete function basis with an associated basis transformation
matrix E ∈ Rq×N . We can vary the number of discrete basis functions q and see
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in how far this affects the decoding error E. In fact, this is essentially what we
will do, though a few details require further explanation.

Input signal selection One challenge with this approach is that the error
measurement depends on the specific u. Remember that each basis has a set of
signals u that can be represented without error; as stated in Lemma 1, these
are exactly the linear combinations of the basis vectors. If we are not careful,
we could generate test signals u that fall into this category and thus skew the
results favourably towards one particular basis.

We try to mitigate this in two ways. First, we average over a large number
of randomly generated input signals. Second, the input signal itself is a low-pass
filtered white noise signal. As such it contains frequencies up to the Nyquist
frequency N/2, though with a small magnitude. We explicitly do not use hard
band-limiting (eq. 31), as this would drastically bias the results toward the
Fourier basis. Still, one shortcoming of our methodology is that we do not test a
large corpus of different (natural) input signals. The neural network experiments
in the next subsection aim to address this.

Sample decoder Instead of using the pseudo-inverse E+ as suggested above,
we reconstruct individual input samples using a “learned” decoding vector dθ.
This emulates a simple machine learning context.

Let ut = (ut−(N−1), . . . , ut) ∈ RN be an input signal. Given the discrete
generalised Fourier coefficients mt = Eut, we would like to determine how well
a specific ut−θ with θ ∈ {0, . . . , N − 1} can be reconstructed from Eut. That is,
given a fixed dθ, we measure the error E = 〈dθ,Eut〉 − ut−θ over many u and t.

The decoder dθ is fixed for each pair of E and θ and is determined using
regularised least squares over a large set of separate test signals.6 In contrast to
the corresponding row of E+, the decoder is fine-tuned to the class of signals
ut encountered in this experiment. Regularisation enforces a robust dθ; the
decoder produces a correct result even if noise is added to m. As a side effect,
the individual coefficients of dθ have a relatively small magnitude. The delay
decoders dθ could be learned via stochastic gradient descent in a neural network.

Interpretation as “delay decoding” The technique described above can
be seen as decoding delayed versions of the discrete input signal ut. If the
generalised Fourier coefficients mt are computed over time for each new input
sample ut, then Eut describes a set of FIR filters (cf. eq. 11), and 〈dθ,Eut〉
reconstructs the sample from θ timesteps ago.

Figure 19 visualises this idea of “delay decoding” for an exemplary input
signal u and the discrete Function bases discussed in this report (except for
the naive discrete Legendre basis, which is very similar to the DLOP basis).
Furthermore, the figure depicts the first six generalised Fourier coefficients mt.
At each point in time, mt encodes the last N samples of the input signal.

6For regularisation we pass rcond = 10−4 to the Numpy lstsq method.
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LDN basis H h1 h2 h3 h4 h5 h6

DLOP basis L l1 l2 l3 l4 l5 l6

Fourier basis F f1 f2 f3 f4 f5 f6

Cosine basis C c1 c2 c3 c4 c5 c6

Haar basis W w1 w2 w3 w4 w5 w6

0.0 0.5 1.0 1.5 2.0

Time t (s)

0.0 0.2 0.4 0.6 0.8 1.0

Delay θ (s)

Figure 19: Approximating delays using discrete function basis representations
(q = 16 and N = 128). Dotted black line is a sampled low-pass filterd white noise
signal u with 256 samples. Light yellow to purple lines correspond to a delayed
version of u given as 〈dθ,Eut〉, where dθ is a decoding vector, and ut are the
last N samples leading up to t. The first dimensions of m = Eut are depicted
in the top half of each diagram. θ = 1 s corresponds to N = 128 samples.
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Results Figure 20 depicts the results of the experiment described above for
N = 128 and a signal length of 256. The figure depicts the overall average error
E for the discrete bases functions discussed in this report, including band-pass
filtered versions of each basis E` (cf. eq. 31). Furthermore, contour plots break
down the error for different delays θ and basis function counts q. Note that the
displayed error scale is logarithmic. Even though some plots look drastically
different, the absolute differences in error are not.

Discrete LDN basis. The LDN basis has the highest overall error with E = 0.35.
Even though it was derived from an LTI system that optimally implements a
delay of length θ = 1, information is gradually lost as it propagates through the
system. This is also visible in Figure 19, as well as the basis transformation
matrix H in Figure 11, where the left half of the matrix is “fading out” for larger
q. The lowest error is for a delay of length zero, which is of limited practical use.
Discrete DLOP basis. The DLOP basis has a slightly smaller overall error with
E = 0.33. In contrast to the LDN basis, it can both reconstruct a delay of
length θ = 0 and θ = 1 very well. The highest error is reached for θ = 0.5. This
can be explained by looking at the Legendre polynomials in Figure 2c. Half of
the polynomials are zero at x = 0.5, and the other half has a relatively small
magnitude for larger q, reducing the amount of information that can be decoded.

Legendre basis. The discretised Legendre basis reaches the same overall error
as the DLOP basis with E = 0.33, and the overall shape of the contour plots is
the same. The error is a little higher for larger q compared to the DLOP basis,
which is likely a result of the DLOP basis being orthogonal.

Fourier and cosine basis. These two bases have the smallest overall error with
E = 0.31. In both cases, the decoding error is uniform over all delays θ.

Haar basis. Surprisingly, the Haar basis has an error of only E = 0.32, which is
slightly smaller than the overall error for the DLOP basis. However, as visible
in Figure 19, only a fixed number of delays can be decoded well from the Haar
basis; for q = 16, only 16 different delay values can be decoded. Furthermore, in
contrast to all other bases, increasing q does not uniformly decrease the decod-
ing error. This is because an individual basis function only provides local support.

Filtering. Filtering reduces the error for all bases to E = 0.32. This is not
surprising, since, after filtering, each basis function is expressed in terms of the
Fourier basis (cf. Section 6.3). The decoding vector dθ can partially “undo”
the corresponding linear combination and thus treat the generalized Fourier
coefficients as if they were with respect to the Fourier basis.

The most striking result is the effect filtering has on the Haar basis. After
band-limiting the basis, or equivalently—see Section 6.3—the input signal, the
error-over-delay plot for the Haar basis looks very similar to those of the Fourier
and cosine basis. This suggests that the Haar basis is an excellent choice if the
input signal u is band-limited in the Fourier domain.
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7.3 Neural Network Experiments
It is unclear in how far the results of the above experiments generalise to a neural
network context. To gain a better understanding of how basis transformations
behave in neural networks, we perform a series of experiments on two toy datasets:
permuted sequential MNIST (psMNIST), and the Mackey-Glass system.

Our experiments are mainly meant to answer to questions. First, we would like
to know in how far the performance of the network depends on the selected basis,
or, “temporal convolution”. Second, we compare fixed temporal convolutions
to networks with the same architecture, where the temporal convolution is
initialized in the same way, but trained along with the other parameters. This
latter approach is equivalent to “Temporal Convolutional Networks”, an older
idea that has lately been popularized by Bai, Kolter, and Koltun (2018).

There is an argument to be made that fixed convolutions can—under some
circumstances—be a better choice compared to learned convolutions. Reduced
run-time and memory requirements aside, fixed convolutions reduce the number
of parameters in the network and may thus lead to faster convergence. At
the same time, a fixed orthogonal basis spans a convenient space from which
arbitrary functions can be linearly decoded.

This is not to say that convolutional neural networks cannot learn good
function bases—they surely can. An example of this—albeit in image processing—
are Gabor-like filters found in the first convolution layer in deep convolutional
networks (cf. Krizhevsky, Sutskever, and Hinton, 2017). However, learning such
clean basis functions from scratch requires large datasets and many epochs of
training. Furthermore, judging from the examples provided in the Krizhevsky
paper, learned convolutions tend to be somewhat redundant. That is, they do
not achieve the same degree of orthogonality as a hand-picked basis.

7.3.1 psMNIST

This task has originally been proposed by Le, Jaitly, and Hinton (2015). The
MNIST dataset (Lecun et al., 1998) contains images of hand-written digits
between zero and nine. Each image consists of 28× 28 greyscale pixels.

The idea of the psMNIST task is to treat each image as a sequence of N = 784
individual samples over time. Once the final sample has been processed, the
system must correctly classify the digit. To eliminate spatial correlations in the
sequence, a random but fixed permutation π is applied to the samples. This
results in a signal of the form u = (uπ(1), . . . , uπ(784)).

Comparability of psMNIST implementations The psMNIST task as de-
scribed above is a little under-defined. When comparing different neural archi-
tectures, two additional constraints should be met. First, all architectures must
use the same amount of memory (Voelker, Kajić, and Eliasmith, 2019).

Second, the resulting architecture should support serial execution, or, bor-
rowing terminology from Chandar et al. (2019), have a good “forgetting ability”.
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N = 28 * 28; M = 346; H = mk_basis(q, N)
model = tf.keras.models.Sequential ([

tf.keras.layers.Reshape ((N, 1)), # (N, 1)
TemporalBasisTrafo(H, units=1), # (1, q)
tf.keras.layers.Dropout (0.5) , # (1, q)
tf.keras.layers.Dense(M, activation="relu"), # (1, M)
tf.keras.layers.Dense(10, use_bias=False), # (1, 10)
tf.keras.layers.Reshape ((10 ,)) # (10)

])

Algorithm 1: Code used for the psMNIST experiment. Comments (Nt, Nd)
indicate the output dimensions of each layer. Nt denotes the number of temporal
samples; Nd is the number of non-temporal dimensions. q is between 1 and N .

In other words, the network must still produce correct classifications over time,
even if multiple input signals are concatenated.

FIR filters intrinsically fulfil the serial execution constraint, but violate the
memory constraint. Each filter requires access to all N samples in memory. This
essentially reduces the task to a non-sequential MNIST task—despite a set of q
FIR filters with q < N forming an information bottleneck.

Hence, unless an LTI system with q state variables is used to implement the
system, our results are not directly comparable to other psMNIST benchmarks.
As we saw, reasonably good LTI systems can be constructed for most of the bases
discussed here (cf. Section 6.3). However, only the LDN basis has a near-finite
impulse response and supports serial execution without external state resets.

In the light of these constraints—and apart from the LDN basis results—our
experiments are merely meant to compare different sets of basis functions, and
not to contend with other approaches implementing psMNIST.

Methods Our model is specified in Algorithm 1. A single temporal basis
transformation layer7 applies a set of q FIR filters to N input samples; 346
ReLU neurons non-linearly processes the transformed input, followed by a linear
read-out layer. The psMNIST training set is randomly split into 50 000 training
and 10 000 validation samples. An Adam optimizer with default parameters
is used over 100 epochs with a batch size of 100. The reported test errors are
computed for the parameter set with the smallest validation error. For q = 468
the number of trainable parameters is ∼166k. Per default, the set of FIR filters
are fixed and initialised with one of the discrete function bases. Another ∼350k
parameters are added if the FIR filters are trained as well.

Results Results are depicted in Figure 21, Figure 22 and Table 2. For q > 20
there is no appreciable difference between the function bases, with the LDN

7The code for the TemporalBasisTrafo class can be found at https://github.com/
astoeckel/temporal_basis_transformation_network.
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Figure 21: Mean psMNIST classification accuracy for different discrete temporal
function bases. Data for the Haar basis are representative for the other fixed
function bases (omitted for clarity). Dotted lines are errors obtained when
learning the temporal convolution. Each data point is for n = 11 trials; error
bars correspond to the first and third quartile. Dashed vertical line is at q = 468;
detailed data for this q are given in Table 2 and Figure 22.

basis having slightly lower accuracies on average. When learning the temporal
convolution, differences between the individual initializations disappear. Learning
yields drastically better results for q < 200 with a peak at about q = 190 with
an accuracy of about 98.4%. The accuracy is monotonically increasing with q
when using fixed convolutions, reaching about 98.5% for q = 468. A random
initialization reaches error rates of about 98.1%.

7.3.2 Mackey-Glass

The point of this task is to predict the time-course of the chaotic Mackey-Glass
dynamical system for a certain number of samples. The Mackey-Glass system is

d

dt
x(t) =

ax(t− τ)

1 + x(t− τ)10
− bx(t) ,

where a = 0.2, b = 1.2, and x(t) = 1.2 + η with η ∼ N (µ = 0, σ = 1) for t < 0.
This system is chaotic for τ > 17 and has been extensively used as a benchmark
in time-series prediction (cf. Mendel, 2017, Section 4.3.1).

Dataset For our experiments, we choose τ = 30. As a training dataset we
generate 400 Mackey-Glass trajectories of length 10 000. The system as been
discretised with a timestep of ∆t = 1 using a fourth order Runge-Kutta integrator.
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Figure 22: Classification accuracies for the psMNIST dataset using different
discrete function bases as temporal convolutions with q = 468. Depicted are
standard box-plots over n = 101 trials for each basis. Box corresponds to the first
and third quartile; whiskers are the minimum/maximum after outlier rejection;
outliers are depicted as circles. Thick white line is the median, dashed black line
is the mean. Numerical values are given in Table 2.

Table 2: Test accuracies for the psMNIST experiment for q = 468. Data
over n = 101 trials and 100 epochs. Q1 and Q3 are the 25- and 75-percentile,
respectively. The best three results are highlighted in each column (darker
colours are better).

� Fixed convolution � Learned convolutionInitial
basis Mean Median Q1 Q3 Mean Median Q1 Q3

LDN 98.49 98.48 98.44 98.55 98.23 98.22 98.16 98.30
DLOP 98.54 98.54 98.48 98.60 98.23 98.23 98.14 98.30
Fourier 98.56 98.56 98.51 98.62 98.21 98.21 98.13 98.30
Cosine 98.54 98.54 98.49 98.60 98.22 98.22 98.16 98.29
Haar 98.47 98.46 98.40 98.53 98.22 98.22 98.14 98.29

Random 98.11 98.13 98.05 98.19 98.24 98.25 98.17 98.32
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N_units0 , N_units1 , N_units2 , N_units3 = 1, 10, 10, 10
N_wnd = N_wnd0 + N_wnd1 + N_wnd2 + N_wnd3 - 3
q0, q1 , q2 , q3 = 16, 8, 8, 4
H0, H1 = mk_basis(q0, N_wnd0), mk_basis(q1, N_wnd1)
H2, H3 = mk_basis(q2, N_wnd2), mk_basis(q3, N_wnd3)
model = tf.keras.models.Sequential ([

tf.keras.layers.Reshape ((N_wnd , 1)),
# (N_wnd0 + N_wnd1 + N_wnd2 + N_wnd3 - 3, 1)
TemporalBasisTrafo(H0 , n_units=N_units0 , pad=False),
# (N_wnd1 + N_wnd2 + N_wnd3 - 2, q0 * N_units0)
tf.keras.layers.Dense(N_units1 , activation="relu"),
# (N_wnd1 + N_wnd2 + N_wnd3 - 2, N_units1)
TemporalBasisTrafo(H1 , n_units=N_units1 , pad=False),
# (N_wnd2 + N_wnd3 - 1, q1 * N_units1)
tf.keras.layers.Dense(N_units2 , activation="relu"),
# (N_wnd2 + N_wnd3 - 1, N_units2)
TemporalBasisTrafo(H2 , n_units=N_units2 , pad=False),
# (N_wnd3 , q2 * N_units2)
tf.keras.layers.Dense(N_units3 , activation="relu"),
# (N_wnd3 , N_units3)
TemporalBasisTrafo(H3 , n_units=N_units3 , pad=False),
# (1, q3 * N_units3)
tf.keras.layers.Dense(N_pred , use_bias=False),
# (1, N_pred)
tf.keras.layers.Reshape ((N_pred ,))
# (N_pred)

])

Algorithm 2: Code used for the Mackey-Glass experiment. Comments (Nt, Nd)
indicate the output dimensions of the layer in the preceding line. Nt is the
number of temporal samples; Nd is the number of non-temporal dimensions.
Total number of trainable parameters (with fixed convolutions) is 2390.

All trajectories are different due to the stochasticity of the initial x(t) for t < 0.
We randomly extract 100 input sequences of length 33 followed by a target
sequence of length 15 from each trajectory. This results in 40 000 training
samples. The task is to predict the 15 target samples from the preceding 33.

We similarly generate 10 000 validation and 10 000 test samples. Training,
validation, and test samples are all taken from separately generated trajectories.

Methods We use the neural network architecture described in Algorithm 2.
This architecture is inspired by the architecture described by Voelker, Kajić,
and Eliasmith (2019). To summarise, there are four cascading temporal basis
transformation layers. The number of FIR filters q in each layer is equal to the
number of input samples N , so no stage loses information. The first layer uses
q = N = 16, the second and third q = N = 8, and the final layer q = N = 4,
resulting in a total input window length of 16 + 8 + 8 + 4− 3 = 33.

The second to fourth layers consist of ten independent units using exactly
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Figure 23: Prediction errors for the Mackey-Glass dataset using different
discrete function bases as fixed temporal convolutions. See Figure 22 for more
detail on the box-plots. Numerical values are given in Table 3.

the same set of convolutions. Layers are densely connected using ReLUs. Again,
we compare fixed convolutions—including random initialization—to a version of
the network where the convolutions are initialized in the same way, but then
further refined during training. The learned convolutions are normalized, such
that each learned basis function has norm one. The total number of trainable
parameters is 2760; another 400 are added if the convolutions are trained.

We train the network for 100 epochs using a standard Adam optimizer. The
final test error is computed for the parameters in the epoch with the smallest
validation error. We measure the normalised RMSE, i.e., the RMSE divided by
the RMS of the Mackey-Glass trajectories (≈0.94).

Results Results are depicted in Figure 23 and Table 3. All fixed convolutions
exhibit approximately the same performance. The random initialization has
the highest error, and the Haar and DLOP filters result in the lowest error.
Learning the convolution results in a slightly higher error overall, but closes the
performance gap between the individual basis transformations.
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Table 3: Test errors for the Mackey-Glass experiment. Data over n = 101 trials
and 100 epochs. Q1 and Q3 are the 25- and 75-percentile, respectively. The best
three results are highlighted in each column (darker colours are better).

� Fixed convolution � Learned convolutionInitial
basis Mean Median Q1 Q3 Mean Median Q1 Q3

LDN 0.0067 0.0061 0.0048 0.0072 0.0066 0.0063 0.0053 0.0073
DLOP 0.0063 0.0055 0.0045 0.0067 0.0065 0.0062 0.0055 0.0072
Fourier 0.0067 0.0060 0.0051 0.0073 0.0067 0.0062 0.0056 0.0073
Cosine 0.0066 0.0057 0.0047 0.0073 0.0066 0.0063 0.0056 0.0073
Haar 0.0061 0.0055 0.0047 0.0069 0.0065 0.0062 0.0054 0.0072

Random 0.0109 0.0081 0.0070 0.0094 0.0102 0.0072 0.0063 0.0087

8 Discussion
We provided a whirlwind overview of discrete function bases with a particular
focus on the LDN and DLOP bases. When used as FIR filters, these bases can
compress temporal data into a stream of generalized Fourier coefficients.

Since the LDN basis was constructed from an LTI system with an almost
finite impulse response, this convolution operation can be approximated “online”
by recurrently advancing the discretised LTI system. This requires only O(q)
state memory (O(q2) in total), but, in general, O(q2) operations per sample. This
can be faster than online, zero-delay convolution using a set of FIR filters, which
require at least O(q log(N)) operations per sample, but O(N log(N)) memory.

The LDN is similar in principle to the sliding transformations for the Haar,
cosine, and Fourier basis. These transformations require O(q) update operations
at the cost of O(N) memory. In contrast, memory and run-time requirements of
the LDN can be reduced to O(q) when using the Euler update, although there
are some potential caveats when using this approach (cf. Section 4.3).

While the DLOP basis performs better than the LDN basis, we are not aware
of a fast update scheme. This basis should only be used if this is not a concern.

It is surprising to see that fixed, (almost) orthogonal temporal convolutions
can yield better results than learned convolutions in neural networks. As seen
in the psMNIST experiment, increasing the number of basis functions q can
decrease the performance of the network when using learned convolutions. Doing
the same for fixed convolutions seems to monotonically increase the performance
of the system. This is somewhat intriguing, since fixed convolutions result in
fewer trainable parameters, and, as discussed above, enable the use of efficient
update schemes. In general, learned convolutions must resort to the O(q log(N))
Gardner (1995) algorithm. Future work is required to validate these results and
to understand under which circumstances fixed convolutions can make sense.
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