
Connecting Biological Detail with Neural Computation:
Application to the Cerebellar Granule-Golgi Microcircuit
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Abstract

Neurophysiology and neuroanatomy limit the set of possible
computations that can be performed in a brain circuit. Although
detailed data on individual brain microcircuits is available in
the literature, cognitive modellers seldom take these constraints
into account. One reason for this is the intrinsic complexity
of accounting for mechanisms when describing function. In
this paper, we present multiple extensions to the Neural Engi-
neering Framework that simplify the integration of low-level
constraints such as Dale’s principle and spatially constrained
connectivity into high-level, functional models. We apply these
techniques to a recent model of temporal representation in the
Granule-Golgi microcircuit in the cerebellum, extending it to-
wards higher degrees of biological plausibility. We perform a
series of experiments to analyze the impact of these changes
on a functional level. The results demonstrate that our chosen
functional description can indeed be mapped onto the target mi-
crocircuit under biological constraints. Further, we gain insights
into why these parameters are as observed by examining the
effects of parameter changes. While the circuit discussed here
only describes a small section of the brain, we hope that this
work inspires similar attempts of bridging low-level biological
detail and high-level function. To encourage the adoption of
our methods, we published the software developed for building
our model as an open-source library.
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Introduction
Human cognition is ultimately grounded in neurophysiolog-
ical processes. As suggested by Marr’s “levels of analysis”
(Marr & Poggio, 1976), cognitive scientists tend to implement
models of cognition at algorithmic and computational levels,
without explicitly taking limitations of the underlying neural
substrate into account (Eliasmith & Kolbeck, 2015).

Depending on the hypothesis that is being explored, ignor-
ing biological detail can be reasonable. Yet, a closer look at
biology may help in two complementary ways. First, we can
validate hypotheses about cognition by determining whether a
particular algorithm can be implemented using the constraints
of the biological neural network in question. Second, we can
generate new hypotheses by asking what class of algorithms a
particular neural network could support.

We believe that cognitive modelling must ultimately em-
brace a combination of these two approaches to narrow down
the vast space of possible cognitive science theories and to
direct research attention within that space. However, a central
roadblock to the adaptation of such methods is the availability

of modelling tools that make it possible to specify detailed
biological constraints (e.g., neural response curves, spike rates,
synaptic time constants, connectivity patters) while still being
abstract enough to facilitate the specification of high-level
cognitive function.

One approach designed to help bridge this gap is the Neural
Engineering Framework (NEF; Eliasmith & Anderson, 2003),
in conjunction with the related Semantic Pointer Architecture
(SPA; Eliasmith, 2013). Up until recently however, it has been
unclear how to incorporate certain biological constraints that
are often described in the neuroscience literature into NEF
networks. For example, and despite initial progress in this
direction (Parisien, Anderson, & Eliasmith, 2008), accounting
for Dale’s principle with purely excitatory and inhibitory neu-
ron populations, as well as incorporating spatial connectivity
constraints, has been relatively challenging with the existing
NEF-based software tool, Nengo (Bekolay et al., 2014). Fur-
thermore, certain aspects of the NEF, such as the neural bias
currents Jbias have a somewhat unclear relationship to biology.

In this paper, we describe recent advances in modeling tech-
niques that partially alleviate the shortcomings of the NEF
listed above. We then apply these methods to extend a previ-
ous biologically detailed model of the Granule-Golgi circuit in
the cerebellum (Stöckel, Stewart, & Eliasmith, 2020). In this
way, we validate that—at least for the set of constraints consid-
ered in our experiments—the Granule-Golgi circuit is indeed
well-suited to implementing a specific algorithm for encoding
temporal information using basis functions. Furthermore, we
generate possible hypotheses as to why various biological pa-
rameters (such as the sparse connectivity patterns and the time
constants of the neurotransmitters) are as observed. We have
released the open-source tool we developed to encode these
constraints as an add-on to Nengo called NengoBio.1

The remainder of this paper is structured as follows. We
first review the high-level function we hypothesise could be
implemented in the Granule-Golgi circuit, as well as the partic-
ular neurophysiological constraints of this network. We then
discuss five neural network implementations with an increas-
ing amount of biological detail, along with the corresponding
extensions to the NEF. Finally, we perform a series of experi-
ments that explore the impact of individual parameters on the
performance of the increasingly realistic system.

1See https://github.com/astoeckel/nengo-bio.



Background
In order to explore the consequences of adding biological
details to a neural system, we need to choose the desired com-
putation that the neural system should ideally perform. In
machine learning, the simplest artificial neural networks are
purely feed-forward, i.e., they possess no backwards-directed
or recurrent connections. It is well-known that such neu-
ral networks are universal function approximators (Hornik,
Stinchcombe, & White, 1989). That is, given enough neurons,
any function f (x) = y can be implemented as a neural network
by simply having a single hidden layer of neurons that receives
x as an input (via a set of input weights) and produces y as an
output (via a set of readout weights).

Neurobiological systems differ from the artificial neural
networks mentioned above in two key aspects. First, they
are intrinsically dynamical systems, i.e., input and output are
functions over time. Second, they often include recurrent
connections. As has been shown by Eliasmith and Anderson
(2003), adding recurrent connections along with their associ-
ated synaptic dynamics allows for the creation of neural net-
works that approximate any differential equation of the form
dm
dt = f (m,u, t). Again, with a sufficient number of neurons

and the corresponding connectivity, such differential equations
can be approximated to any desired degree of accuracy. Our
goal in this paper is to explore how well such computations can
be performed in the presence of other biological constraints.

The Delay Network
As a benchmark for evaluating this performance, we have
chosen the following linear differential equation.

θṁ = Am+Bu , A ∈ Rq×q, B ∈ Rq, m ∈ Rq

(A)i j =

{
(2i+1)(−1) i < j ,
(2i+1)(−1)i− j+1 i≥ j ,

(B)i = (2i+1)(−1)i .

(1)

This equation is derived by taking the Padé approximate of the
continuous-time delay F(s) = e−θs. As such, this differential
equation stores the past history of its inputs the state variable m
(Voelker & Eliasmith, 2018). That is, given m at any particular
point in time t, it is possible to recover an approximate value
of u at a previous point in time t−θ′ for 0≤ θ′ ≤ θ:

û(t−θ
′) =

q−1

∑
`=0

m`d`(θ′) , where d` = P̃̀
(

θ′

θ

)
, (2)

where P̃̀ is the shifted Legendre polynomial of degree `.
Another way to think of this system is that it encodes the

past history of its inputs using a set of temporal basis func-
tions. The particular temporal basis functions that are used
are the Legendre polynomials, because they have been shown
to be optimal for encoding such temporal memory (Voelker
& Eliasmith, 2018). Of course, some information is lost in
this process, and this is controlled by the dimensionality of
the state variable m, which is a q-dimensional vector. As q

increases, more details (i.e., higher frequencies) about the past
are kept in m. The neural implementation of this computation
is called a “Delay Network” (DN), and is also the core part of
a novel machine learning algorithm known as the Legendre
Memory Unit, which has been shown to outperform LSTMs on
several benchmark tasks (Voelker, Kajić, & Eliasmith, 2019).

However, if we use biologically constrained neural networks
to approximate this operation, then the actual computation
performed by the system, and hence the quality of the time
window encoded in m, may be different. We can thus use the
ideal computation expressed in eq. (1) as a benchmark.

In the following, we build various approximations of the DN
using different biological constraints, systematically provide
them with inputs, and evaluate their performance in terms of
how well the input history can be recovered. In all cases, we
compute the optimal recurrent and readout connection weights
independently for each target population to approximate eq. (1)
given the biological constraints. This avoids the need for a
stochastic training process, such as backpropagation.

Neural Computation in the Cerebellum

The biological system of particular interest in this paper is
the cerebellum. Not only is it well-studied and highly regular
in its structure, but there are also reasons to believe that it
does compute something akin to the operation performed by
the Delay Network. Behaviourally, the cerebellum is known
to be vital for some delay conditioning tasks, such as eye-
blink conditioning (McCormick et al., 1981). In eye-blink
conditioning, a sensory cue (e.g., an audio tone) is given before
a puff of air into the eye. After some time, animals consistently
learn to blink the correct amount of time after the sensory cue,
such that the eye is closed when the puff actually happens.

There is no current consensus on how exactly the cerebel-
lum learns these delays. One theory is that the responses
observed in tasks such as eye-blink conditioning rely on intrin-
sic properties of the Purkinje cells (Lusk, Petter, MacDonald,
& Meck, 2016). Another theory—and this is what we assume
in this paper—is that the Granule-Golgi microcircuit is respon-
sible for computing a temporal basis function representation
(cf. Dean, Porrill, Ekerot, & Jörntell, 2010; Rössert, Dean,
& Porrill, 2015), from which arbitrary delays can be linearly
decoded. This is similar in principle to the Legendre basis
functions used in the Delay Network. Indeed, Stöckel et al.,
2020 show an initial implementation of eye-blink condition-
ing using this approach, but with less biological detail than
is explored in this paper. We believe the findings in this pa-
per provide another strong argument that the biology of the
Granule-Golgi circuit is very well suited for implementing
some kind of temporal basis function generation.

The Granule-Golgi microcircuit

The cerebellum contains about 50 billion granule cells, making
them the most common type of neuron in the entire human
brain. They are tiny cells that receive input from pre-cerebellar
nuclei (PCN) via “mossy fibres” and project via “parallel



fibres” onto the Purkinje cells. Granule cells also have inter-
neurons interspersed amongst them, known as Golgi cells,
forming an inhibitory feedback loop with the granule cells.
That is, granule cells excite Golgi cells, and Golgi cells inhibit
granule cells (Ito, 2010). Notably, each granule cell on average
receives input from only four mossy fibres, as well as one
or two Golgi cells (Chadderton, Margrie, & Häusser, 2004).
These numbers are known in the literature as the convergence
of a projection. Furthermore, the connectivity between Golgi
and granule cells is spatially constrained, i.e., Golgi cells only
connect to granule cells in their vicinity. The ratio of granule
to Golgi cells is about 430:1 (D‘Angelo et al., 2013).

Levels of Biological Detail
To demonstrate our approach of adding biological detail, we
present five models of the Granule-Golgi microcircuit of in-
creasing complexity. While the first model is merely an ab-
stract implementation of eq. (1), the final model respects spa-
tial sparsity, convergence, tuning curves, and neurotransmitter
constraints. All models are depicted in Fig. 2. In all cases,
the scalar input u is received from one hundred spiking Leaky
Integrate-and-Fire (LIF) neurons with randomly chosen tuning
curves representing the PCN (see Model B for details).

Model A: “Direct” Implementation For this model, we
directly solve the differential equation in eq. (1) by integration.
That is, we have a single layer of “neurons” that are pure
integrators (i.e., no non-linearity). The matrix A describes
the recurrent connection weights, and B the input connection
weights. This model does not distinguish between the granule
and Golgi cells, and does not include details such as individual
neurons or spikes. Instead, it focuses on the high-level theory
of what the system is computing.

Model B: Single Population We now replace the integra-
tors with a single layer of 200 spiking Leaky Integrate-and-Fire
(LIF) neurons. These neurons form a distributed representation
of m using a population code. Each neuron i is parametrized
by a randomly chosen preferred stimulus vector ei (for en-
coder), gain αi and bias current Jbias

i , resulting in a desired
response (i.e., tuning curve) for each neuron:

ai(m) = G[Ji(m)] = G[αi(ei ·m)+ Jbias
i ] , (3)

where G is neural response curve of the LIF neuron model. The
parameters α and Jbias are randomly chosen from a distribution
that ensures a maximum firing rate of 50 Hz to 100 Hz, consis-
tent with biological recordings of granule cells (Chadderton et
al., 2004). We then use least-squares to solve for optimal input
and recurrent connection weights that result in these desired
tuning curves while implementing the equivalent calculation
as in Model A. Importantly, when solving for the recurrent
connection weights, we also take into account the synaptic
filter, which we model here as a decaying exponential (i.e., a
low-pass). This is the standard process in the NEF (Eliasmith
& Anderson, 2003).
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Figure 1: Spatial connectivity constraints. (A) Normalised
connection probabilities pi j for σ = 0.25. (B) Spatial organi-
sation of the Golgi and granule cells. The background depicts
the cumulative density of the Golgi to granule connection
probability for a virtual Granule cell at each location (same
colors as in A).

Model C: Inter-neurons As a next step, we separate the
single layer of neurons into two separate populations corre-
sponding to the Golgi and granule cells, reflecting the actual
biology of the cerebellum (see above). This introduces two
separate synaptic filters which need to be taken into account
when solving for the connection weights that best approximate
eq. (1). Furthermore, to at least approximate the fact that there
are far fewer Golgi cells than granule cells, we use 20 Golgi
cells and 200 granule cells.

Model D: Inhibition and Excitation So far, we have not
accounted for Dale’s principle, i.e., Golgi cells being purely in-
hibitory, and granule cells being purely excitatory. We handle
this by switching to the non-negative least-squares problem
described in Stöckel & Eliasmith, 2019. For each post-neuron
i we minimize

min
w+

i ,w−i

N

∑
k=1

(
w+

i ·a
+
k −w−i ·a

−
k − Ji(mk)

)2 w.r.t. w+
i ,w

−
i ≥ 0 ,

where a+k , a−k are the excitatory and inhibitory pre-activities
for sample k, w+, w− are the connection weights for excitatory
and inhibitory pre-neurons, and Ji(mk) is the current required
to represent the desired value mk as defined in eq. (3).

Model E: Sparse connectivity and activity For this model,
we add in realistic constraints on how connected the neurons
are. The previous models used all-to-all connections, whereas



for this model, we only allow a subset of those connections
to be non-zero. This applies to both the input to the Golgi-
Granule system and for the recurrent connections within the
granule cells. In particular, we account for the granule cell
convergence numbers by randomly selecting five PCN and
five Golgi cells as pre-neurons—this number is slightly larger
than the number reported above, since, as we discuss below,
the number of pre-neurons places a strict upper limit on the
connectivity (see below for more details). Given this extremely
sparse connectivity, we increase the number of neurons in the
simulation to 10 000 granule and one hundred Golgi cells,
which is closer to the ratio observed in nature.

To account for spatially imposed connectivity constraints,
we assign a location x in [−1,1]2 to each neuron. The prob-
ability pi j of a post-neuron i to receive a connection from a
pre-neuron j is proportional to exp

(
−‖xi−x j‖2/σ2

)
(Fig. 1).

Finally, the input representation in the PCN cells was made
more sparse by adjusting the tuning curves of the input neurons.
Neural recordings indicate that there is very little input activity
when no stimulus is present (Chadderton et al., 2004), while,
per default, the randomly-chosen NEF tuning curves result in
many neurons being active when representing the value u = 0.

Experiments and Results
To evaluate the effects of these biological details, we sys-
tematically generate two different types of input u(t), feed
those into the network and record the resulting activity. In
particular, we present results with a periodic pulse input of
varying pulse width ton and band-limited white noise of vary-
ing bandwidth B. These are meant to depict typical sorts of
inputs that may arise in experimental situations (pulses) and
more real-world situations (band-limited white noise). We
then determine how accurately the past history of u over the
window θ can be recovered from the resulting network activity
via optimal linear readout weights. We use θ = 0.4s in all
simulations; each individual experiment simulates the network
for T = 10s. The error is measured as the RMSE of the recon-
struction divided by the RMS power of the input signal itself
(normalized RMSE, or NRMSE).

The overall results for all five models are shown in Fig. 3.
This shows the average reconstruction error for varying inputs
(horizontal axis) and for varying time delays (vertical axis)
over ten trials. An example run of Model E (the model with
the most biological detail) is shown in Fig. 4. The different
decoded output lines (bottom) are all based on the neural
activity (middle), but with different readout weights. These
approximate the input value u with various time delays over
the entire time window, from the immediate input right now
(θ′/θ = 0) to θ seconds ago (θ′/θ = 1).

As can be seen in Fig. 3, the network successfully functions
as a method for encoding the temporal pattern of input data
over the desired window of time θ. Adding more biological
detail decreases the accuracy with which the system approx-
imates eq. (1), but most of the information is still encoded.
The input pulses (Fig. 4A) show that the reconstruction is a

smoother version of the input; the system is not good at repre-
senting sudden changes, and this is the main source of noise
in the reconstruction. This is as expected from using smooth
Legendre polynomials as temporal basis functions.

Furthermore, we note that there is a peak in accuracy when
decoding data from θ′ = 70ms in the past (θ′/θ = 0.175),
and this peak is more pronounced as more biological detail is
added. This corresponds to the neurotransmitter time constant
τ = 70ms we use for all connections, and which is based
on a first-order low-pass fit to the Granule-Golgi dynamics
reported in Dieudonné (1998). Importantly, we can use the
model to determine what the accuracy would be like if we
changed this value. This is shown in Fig. 5A. Interestingly,
the performance of the system is best in the range between
50 ms to 60 ms, which is relatively close to what we observe
in nature. Both smaller and larger values lead to an increase
in error.

As discussed above, a striking feature of the cerebellar
microcircuitry is the low granule cell convergence. One possi-
ble hypothesis is that these numbers are a trade-off between
minimizing connectivity and the overall performance of the
resulting system. In our model, we can test this hypothesis by
systematically varying the number of pre-neurons the solver
has access to. Results are shown in Figs. 5B and C. The per-
formance of the system does improve with larger limits, yet
plateaus at still relatively small convergences. More impor-
tantly, as mentioned above, the specified desired convergence
solely controls the number of potential pre-neurons. Since the
neural weight solver may still set a weight to zero, these con-
vergence numbers are strict upper limits. Measuring the actual
convergence in the PCN to granule connections (Fig. 5D), we
see a peak at one to three PCN neurons connecting to each
granule cell. This peak is almost independent of the desired
convergence number and close to observed averages.

Discussion
We successfully mapped a high-level, mathematical function
onto a brain microcircuit while incorporating biological con-
straints. This process was simplified by the ability of our
modeling tool to automatically account for Dale’s principle,
spatial constraints, as well as convergence numbers.

Our results show that the Granule-Golgi circuit could in
principle implement a temporal basis function representation,
which is in agreement with existing hypotheses about cerebel-
lar function. Measurements from our model could be used
to generate hypotheses about the kind of electrophysiologi-
cal data we would expect to find, if this function was indeed
realised in the brain. Having access to low-level biological
parameters in silico furthermore facilitates the exploration of
physiological changes that are difficult to achieve experimen-
tally in vivo. As discussed above with respect the to synaptic
time constants and convergence numbers, this allows us to
investigate why certain parameters are as observed.

A key difference of our approach to existing models of the
Granule-Golgi circuit (such as Rössert et al., 2015), is that
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Figure 2: Network types used in our experiments. (A) “Direct” implementation with an optimal integrator. (B) Using the
synaptic filter of a single population of spiking neurons for temporal integration. (C) Inter-neuron population in the recurrent
path. (D) Same as C, but accounting for Dale’s principle. (E) Same as D, but with more detailed biological constraints (see text).
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Figure 3: Delayed signal reconstruction error for different types of input signals, delays, and network types. All error values are
expressed as RMSE divided by the average RMS of the input signal over ten trials. Columns correspond to the network types in
Fig. 2 above. Top row: Reconstruction error for rectangle pulse signals of varying width. Bottom row: Reconstruction error for a
band-limited white noise input signal with varying band-limit.

Figure 4: Examples showing the delayed input signals decoded form the granule layer in the detailed model (Fig. 2E). Top row:
Input signal (rectangle pulses in A, white noise in B). Middle row: Spike raster for 40 randomly selected granule cells. Bottom
row: Delays decoded from one thousand randomly selected granule cells. Dotted lines correspond to an optimal delay.
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our modeling techniques are more general with respect to the
high-level function that is being mapped onto the underlying
circuit. Instead of relying on random connectivity, we directly
specify the high-level function we would like the system to
perform. We encourage cognitive modellers to view this par-
ticular model as an example; the techniques we present here
are in principle compatible with all NEF models, including
models of cognitive phenomena using the Semantic Pointer
Architecture (SPA; Eliasmith, 2013).

We hope that this research facilitates grounding cognitive
theories in biological mechanisms beyond what was already
possible with the NEF and Nengo. Future work will focus on
incorporating additional biological detail into the model (such
as separate biological time constants for all synapses), as well
as applying our techniques to more complex models.
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