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Feedback alignment (FA;   ) is a
biologically plausible supervised learning
method derived from backpropagation.
While competetive for shallow networks,
FA fails to solve certain tasks and has
issues with training deep networks.

We present a geometric interpretation of
FA that may help researchers to better
understand its limitations.
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▲ Figure 1 Geometric interpretation of direct feedback alignment in a 2D space for a single neuron.
Coloured circles correspond to random samples in the input space. Green lines correspond to
the preferred direction (encoder) p. Input weights Win are trained using DFA, output weights Wout

are optimised using least squares.
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▲ Figure 2 Network topology used in our experiments. The
input weights are separated into gain α, bias β, and normalised
preferred direction vector p.

▲ Figure 3 Preferred direction vectors over time for 20 neurons
when training the network to compute multiplication. Over time,
the vectors align with the diagonals, which is locally optimal. [3]

▲ Figure 4 Learning multiplication with feedback alignment
(DFA) and backpropagation (BP). 20 hidden neurons; Wout

optimised using least squares.


