A Geometric Interpretation of Feedback Alignment @ WATERLOO

Andreas Stockel, Terrence C. Stewart, Chris Eliasmith | {astoecke, tcstewar, celiasmith }@uwaterloo.ca (C:TN CHRGQ—ddhddedededd—

computationgl neuroscience
researc group

Centre for Theoretical Neuroscience, University of Waterloo | http://ctn.uwaterloo.ca/ Waterloo

Motivation (1) (a) Iteration 1 Methods & Observations

Tuning curve Projected error ((b y—1)) Change in preferred direction p

Feedback alignment (FA;(2)) is a 1.0 - o » Weight normalisation. For each neuron /, we split input weights into a
biologically plausible supervised learning . \ . \ \ bias (3;, gain a;, and a preferred direction ||5i|| = 1 (Figure 2)

me’;qod derived .from backpropagation. - ‘ ai = f(ai{p,X)+06).

While competetive for shallow networks,

FA fails to solve certain tasks and has —0.5] \ i‘ » Preferred direction update. Given input X and target t, the preferred
iIssues with training deep networks. 10 e , directions p move Into the direction of the average input weighted by the
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back-projected output error (b

,-)T(y — t). (Figures 1, 3)

» Augmented gradient. The preferred direction vector can be kept
normalised (“homeostasis”) by augmenting the update rule [2] (Figure 4)

(b) Iteration 2
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We present a geometric interpretation of 1.0
FA that may help researchers to better
understand its limitations.
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» Backpropagation assigns an error 0" to .,; /
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each layer v. This error is propagated to “10 -05 00 05 1.0 -1.0 -0.5 0. 1.0 -1.0 -05 00 05 1.0 Direct Feedback Alignment greedily optimises the network by sensitising
previous layers v — 1 by transposing the . (c) Iteration 3 neurons to regions In the input space with large output errors.
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Having access to W as teedback weights 1.0 £ ™ e, <
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s biologically implausible. 0.5- Input weights W™ Output weights WPt Training epoch Training epoch
. 0.0 A Figure 2 Network topology used in our experiments. The A Figure 4 Learning multiplication with feedback alignment
> Feedback allgnment (FA) [1] replaces input weights are separated into gain o, bias B, and normalised (DFA) and backpropagation (BP). 20 hidden neurons; WP
Wl/ Wlth randOm feed baCk Welgl‘ts BI/ 05 f preferred direction vector p. optimised using least squares.
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