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Abstract

Feedback alignment has been proposed as a biologically plau-
sible alternative to error backpropagation in multi-layer per-
ceptrons. However, feedback alignment currently has not been
demonstrated to scale beyond relatively shallow network topolo-
gies, or to solve cognitively interesting tasks such as high-
resolution image classification. In this paper, we provide an
overview of feedback alignment and review suggested map-
pings of feedback alignment onto biological neural networks.
We then discuss a novel geometric interpretation of the feedback
alignment algorithm that can be used to analyze its limitations.
Finally, we discuss a series of experiments in which we compare
the performance of backpropagation and feedback alignment.
We hope that these insights can be used to systematically im-
prove feedback alignment under biological constraints, which
may allow us to build better models of learning in cognitive
systems.
Keywords: feedback alignment; biologically plausible back-
propagation; weight normalization; Neural Engineering Frame-
work

Introduction
Error backpropagation has been employed with great success
in the field of machine learning as a supervised method for
training neural networks. Networks trained with backpropa-
gation achieve near or even above human-level performance
for a variety of classification tasks (LeCun, Bengio, & Hinton,
2015).

Unfortunately, it is difficult to see how the backpropagation
algorithm could be implemented in biological neurons. The
main reason that is often cited for concern is that it makes use
of perfect bidirectional weight transport (e.g., Stork, 1989). In
other words, the error signal that is used for one layer of the
network needs to be multiplied by the connection weights of
all the later layers in the network; or, mathematically,~δν =

W T~δν+1, where W is the synaptic weight matrix for layer ν.
Lillicrap, Cownden, Tweed, and Akerman (2016) discov-

ered that the problematic W T matrix can be replaced with a
random matrix B without affecting the quality of the learned
function too much. In practice, learning with random weights
is not quite as good as backpropagation, yet under certain con-
ditions the added randomness can act as a regularizer, resulting
in even better performance (Mesnard & Richards, 2018). This
modified algorithm has been called “Feedback Alignment”,
based on the observation that the learning process tends to
drive the learned W matrix to be similar to the transpose of
the randomly generated learning matrix B.

Because this new algorithm does not have the strict mathe-
matical basis that is present for backpropagation, it difficult
to understand why exactly feedback alignment works. In this
paper, we present a novel interpretation of feedback alignment
that leads to both a better understanding of how it works and
also to new variants of feedback alignment that are more suited
to biological implementation.

Feedback Alignment and Pyramidal Neurons

Currently, there is an existing mapping of feedback alignment
onto neocortical pyramidal neurons proposed by Guerguiev,
Lillicrap, and Richards (2017). In particular, they map the nor-
mal feed-forward neural network connections onto the basal
dendrites of a pyramidal neuron, and the randomly generated
feedback connections to the apical dendrite. With this struc-
ture, the output firing pattern of the pyramidal neuron is almost
entirely driven by the feed-forward connections, as would be
desired. After all, we do not want the error feedback to di-
rectly modify the neuron’s behaviour – rather, we would like
it to adjust the synaptic weights, which in turn will modify the
neuron’s behaviour. However, this error feedback does affect
the bursting behaviour of the neuron. That is, a large input
to the apical dendrite (i.e., a large error feedback) renders the
neuron more prone to generating bursts of spikes. So a basal
input that would cause the neuron to spike once if there is no
apical input might lead to a burst of multiple spikes if there is
apical input.

Guerguiev et al. (2017) point out that this is exactly the
behaviour that would be needed for feedback alignment to
be implemented biologically. Given this basis, we believe
it is important to further investigate the feedback alignment
algorithm in order to understand what it is doing, how it differs
from standard backpropagation, and how all of the steps in the
algorithm can be mapped onto biological processes.

It should also be noted that feedback alignment does not
perform well for the extremely deep networks that are seen
in modern machine learning algorithms. These networks are
often dozens of layers deep, and in these cases feedback align-
ment learns much more slowly, if at all, compared to backprop-
agation. However, we note that biological systems tend not
to have such extremely deep networks, and so that restriction
may not be important for realistic neural systems.
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Figure 1: Our single hidden-layer network setup.

A New Geometric Interpretation of Feedback
Alignment

We start by considering a single-hidden-layer network. For
simplicity, we only include a neuron non-linearity in the hid-
den layer. This does not reduce the computational power of
the network (Hornik, 1991), and the same conclusions will
also hold for more traditional networks with non-linearities at
each layer. The resulting system is shown in Figure 1.

We can now interpret the activity of the hidden-layer neu-
rons in a similar manner as in cognitive neuroscience. In
particular, each neuron is assigned a tuning curve: it will
respond to inputs~x by firing at pre-defined rates ai

ai(~x) = f (〈~win
i ,~x〉+βi) ,

where 〈·, ·〉 denotes the dot-product, ~win is a vector of synaptic
weights, and βi is the bias.

As proposed in the Neural Engineering Framework (NEF),
the synaptic weight vector ~win can be decomposed into two
parts (Eliasmith & Anderson, 2003): a scalar gain αi and a unit-
length preferred direction or encoding vector. That is, there is
a vector ~pi for each neuron such that inputs~x that are similar
to that vector (in terms of the dot-product) will produce higher
firing rates. This sort of preferred direction vector has been
found throughout the brain, most famously by Georgopoulos,
Schwartz, and Kettner (1986), who demonstrated that neurons
in motor areas respond preferentially to specific directions
during movement execution. We show this for two neurons in
Figure 2.

Importantly, the four terms f , ~pi, αi, and βi relate to dif-
ferent geometric aspects of the tuning curves. The neuron
non-linearity f controls the one-dimensional shape of tuning
curve (sigmoid, rectified linear, etc.), and ~pi controls which
direction the tuning curve is pointing in. The gain term αi
scales the tuning curve, making the transition sharper or more
gradual. Finally, the bias term βi shifts the tuning curve along
the direction ~pi. As we shall see, separating the weight ~win

into α and ~pi will lead to a novel interpretation of the weight
changes caused by feedback alignment.
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Figure 2: The tuning curves (firing rates) of two neurons for a
random sampling of input~x values inside the unit circle. The
input weights for the neurons are ~w1 = [1,−1] and ~w2 = [3,4].
This gives preferred direction vectors of ~p1 = [1/

√
2,−1/

√
2]

and ~p2 = [3/5,4/5]. The gains are α1 =
√

2 and α2 = 5, which
corresponds to the second neuron having a much steeper tuning
curve than the first neuron (i.e., it transitions from no firing
(white) to full firing (dark blue) over a much shorter distance).
The first neuron has a positive bias (β1 > 0) and the second
neuron has a negative bias (β2 < 0), which has the effect of
shifting the tuning curve along the direction ~p.

Weight changes in the output layer ~wout

In both feedback alignment and standard backpropagation, the
learning rule for the output layer can be expressed using the
standard delta learning rule (Widrow & Hoff, 1960), which
can be written in terms of an outer product

~δout = (~y−~t)T , ∆W out =−κ~aout(~δout)T
, (1)

where κ is the learning rate and ~a are the activities of the
output neurons given an input~x. The rule adjusts the weight
matrix W out to whatever values minimize the difference be-
tween actual output of the system~y and the desired~t.

Assuming that all samples are known beforehand, and that
the rest of the model is held fixed, we can directly solve for
optimal W out using least-squares minimization (Eliasmith &
Anderson, 2003). This optimization approach has been shown
to be robust across a wide range of neuron nonlinearities,
including spiking neurons such as the standard leaky integrate-
and-fire (LIF) neurons. We use this optimization in this paper,
which corresponds to an assumption that the learning rate for
the output weights is significantly higher than the learning rate
for the input weights.

Weight changes in the input layer ~win

In the standard backpropagation algorithm, the learning rule
for the input layer takes into account the connection weights
in the output layer, the derivative of the neuron non-linearity,
and the input values. Generally speaking, the weight changes
∆W ν in any layer ν except for the output layer are

~δν = f ′(~xν)(W ν+1)T~δν+1 , ∆W ν =−κ~aν−1(~δν
)T (2)

where f ′(~xν) is the derivative of the neuron non-linearity for
its current input value~xν. The presence of W out in this equa-
tion makes a biological implementation of backpropagation



problematic, as there seems to be no good way for the synapses
between the input layer and the hidden layers to have access
to the connection weight strengths.

In direct feedback alignment (Lillicrap et al., 2016), the
weight transport problem is eliminated by replacing W ν+1 in
eq. (2) with a random matrix Bν

~δν = f ′(~xν)Bν~δout (3)

It is quite surprising that using randomly generated weights
still results in a useful learning algorithm, and indeed it has
been shown that feedback alignment often has almost the same
performance as backpropagation. The purpose of this paper
is to present a geometric interpretation of eq. (3) that helps to
explain and understand this algorithm.

Visualizing feedback alignment
The feedback alignment learning rule presented in the previous
section (eq. 3) consists of five terms: the learning rate κ,
the activities of the previous layer~aν−1, the derivative of the
neuron activation f ′, the random feedback weights B, and the
error from the output layer~δout =~y−~t. For simplicity, we can
fix each column in B to be normalized, so we do not need to
keep track of an extra gain factor.

Taking these components in reverse order, we start by noting
that B(~y−~t) can be interpreted as projecting the error onto a
random direction, where each neuron has a different random
direction in the error space that it is sensitive to. That is, just
as each neuron i has a preferred direction vector ~pi (based on
the normalized ith row of the matrix W in), each neuron also
has a preferred error direction~ei (based on the normalized ith
column of the B matrix).

As an example, consider the case where our output y is
one-dimensional, but our network input~x is two-dimensional.
In this case, each hidden layer neuron will have a two-
dimensional tuning curve based on its input (as in fig. 2),
but will also have a learning input that is based on the one-
dimensional error, mediated by that neuron’s column in the
B matrix. Correspondingly, some neurons will get a learn-
ing input that is larger if the projected error is positive (if
〈~ei,~δ

out〉> 0), and other neurons will get a learning input that
is larger if the projected error is negative (if 〈~ei,~δ

out〉 < 0).
Importantly, this learning input does not affect the effective
output of the neuron itself – rather, it will only used for the
synaptic update rule.

The next component of the learning rule is the derivative
of the neuron activation given the current input, f ′. While
differentiation is a difficult problem for a biological neuron, it
can be approximated by a step function determining whether
the neuron is currently firing or not (Eliasmith & Anderson,
2003, p. 295). That is, if the neuron is not firing for its
current input, then increasing the input a small amount is not
likely to cause the neuron to start firing, so f ′ = 0 when the
neuron is not firing. If it is firing, then increasing the input
is likely to cause the neuron to increase its firing rate, so we

say f ′ = 1 when the neuron is firing. This approximation is
exactly correct for the special case of a rectified linear neuron.

Returning to our geometric interpretation of feedback align-
ment, the fact that the learning rule says to multiply by f ′

means that the neuron will only be sensitive to its error input
if the neuron is already firing. That is, the neuron is sensitive
to errors in a particular direction (due to~ei), but only if it is
already firing for the input that caused that error. Again, this
is consistent with Guerguiev et al. (2017).

Finally, the last two components of the learning rule are
the activities of the previous layer ~aν−1 (or, in the case of a
single hidden layer, the network input~x) and the learning rate
κ. These are multiplied by the above components and added
to the input weights ~win

i . Adjusting these input weights adjusts
the preferred direction vector ~pi for that neuron.

This leads to our geometric interpretation of the feedback
alignment learning rule: feedback alignment adjusts the pre-
ferred direction vectors of neurons such that they are more
aligned with the inputs that lead to errors in the direction that
this neuron is sensitive to.

As a point of comparison, traditional Hebbian learning can
be interpreted in this way as a rule that adjusts the preferred
direction vectors of neurons such that they are more aligned
with the main principal component of the inputs. Correspond-
ingly, feedback alignment can be seen as an error-modulated
Hebbian rule, where the error modulation is done by having
each neuron pick a (random) direction in the error space that
it will be sensitive to, and only adjust its preferred direction
towards the current input if the neuron is firing and the error
is in its preferred error direction.

The effects of repeating this process are shown in Figure 3.
Here, the network is being trained to compute the product of
its inputs (y = x1x2). Furthermore, we show in Figure 4 that as
this process continues, the preferred direction vectors ~p change
from being randomly distributed to being aligned along the
diagonals. As can be seen in the centre column of Figure 3,
the network makes the largest errors on those diagonals. This
is our interpretation as to why Feedback Alignment works:
it moves the neuron’s preferred direction vectors towards the
parts of the input space where the largest errors are being
made.

Weight normalization
Decomposing neural tuning curves into gains αi, biases βi and
normalized preferred direction vectors ~pi as in the NEF has
two potential benefits. First, fixing the gain and bias allows
modellers to distribute the tuning curves across the represen-
tational space while taking neurobiological constraints such
as maximum firing rates into account. Second, keeping the
preferred direction vectors normalized reduces the degrees of
freedom in the optimization problem, potentially resulting in
faster convergence.

Thus, while normalizing the weights ‖~wν
i ‖2 =αi can be ben-

eficial, note that the backpropagation and feedback alignment
update rules discussed above do not account for normalization.
While the weight vectors ~win

i can be renormalized to length
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Figure 3: Geometric interpretation of feedback alignment over three iterations. The left column depicts the tuning curve of a
single neuron and its preferred direction ~p. The center column shows the error δout projected onto the preferred error direction~b.
The right column depicts the projected error multiplied with the derivative and the resulting preferred direction update ∆~p.
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Figure 4: The movement of the preferred direction vectors as the feedback alignment algorithm progresses. ∆ϕ corresponds to
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αi after each update step, forcing normalization inevitably
deflects the true direction of the gradient. Hence, at least
from a theoretical perspective, it is important to take weight
normalization into account when computing the gradient.

One way to compute such an augmented gradient has been
previously outlined by Salimans and Kingma (2016). To sum-
marize, we can reparameterize the weights connecting from
layer ν to the ith neuron in layer ν+1 as

~wν
i = γ

ν
i ~p

ν
i , where γ

ν
i =

αν
i

‖~pν
i ‖2

. (4)

We can now derive the backpropagation equations. The aug-
mented backpropagated error δν

i is given as

δ
ν
i = γ

ν
i f ′
(
~xν

i )(W
ν+1)T

i
~δν+1 . (5)

The only difference to standard backpropagation is the added
normalization factor γν

i , thus a weight-normalized version of
feedback alignment can be obtained by replacing W ν+1 with
Bν, as before. The actual update rule for the connections
weights is given as

∆~wν
i =−κγ

ν
i

(
aν−1

i
~δν+1−

(~wν
i )

T~aν−1δ
ν+1
i

‖~wν
i ‖2

2

)
. (6)

The above equation implies that each neuron has informa-
tion about its local synaptic input weight magnitude ‖~wν

i ‖2
2.

From a biological standpoint, this is not unreasonable, since
empirical evidence suggests the presence of synaptic ho-
moeostasis within individual neurons (Keck et al., 2017).

Experiments and Results
In the previous section we discussed feedback alignment in
the context of networks with normalized weight vectors and
fixed gains and biases. In this section we seek to empirically
validate the predictions made above.

In our first experiment, we analyze the effect of weight nor-
malization and the proposed augmented gradient when training
a network to compute multiplication. Since we know that the
optimal preferred direction vectors coincide with the diagonals
in this particular task (Gosmann, 2015), we can measure how
successful the optimizer is in finding this solution.

The network architecture is as depicted in fig. 1, with 20
neurons in the hidden layer. We train W in over 100 epochs
with 1000 training samples, both with feedback alignment
and backpropagation. After each epoch, W out is computed
in closed form via least-squares minimization. To test the
hypothesis that weight normalization can lead to faster con-
vergence, we run the experiment with forced normalization,
no normalization at all, as well as the augmented gradient
given in eqs. (4) to (6). We measure the training error for
each epoch, the average distance ∆ϕ between the preferred
direction vectors, and the average length of ~pi.

The median results over 200 trials are shown in fig. 5. In
general, backpropagation achieves a slightly smaller RMSE

than feedback alignment. The system converges more quickly
to a smaller error if synaptic weights are either normalized or
the augmented gradient update is applied. In general, taking
the augmented gradient into account, the weights stay ap-
proximately normalized, although this is not strictly enforced.
As a result, training with artificially normalized weights and
the augmented gradient results in exactly the same error. In-
dependent of normalization, feedback alignment moves the
encoding vectors more quickly towards the diagonals than
back propagation.

In our second experiment we train a network with 200
hidden neurons on the MNIST dataset consisting of 60000
handwritten digits from zero to nine as 28×28 pixel images.
We train the network in batches of 5000 samples over 100
epochs. As before, feedback alignment and backpropagation
are only used to train the input weights. The output weights
are solved using least squares optimization.

Our results over 16 trials depicted in Figure 6 suggest that
the presence or absence of weight normalization does not play
an essential role in this higher-dimensional setup. As before,
backpropagation achieves a smaller training and test error than
feedback alignment.

Discussion
We presented a new geometric interpretation of feedback align-
ment in the context of neurobiologically plausible networks
with neural tuning curves determined by a gain, bias, and
preferred direction vector. In the context of computing mul-
tiplication, we have demonstrated that feedback alignment
drives the preferred direction vectors more quickly towards
the theoretically optimal configuration.

Furthermore, we discussed an augmented feedback align-
ment and backpropagation update rule that takes weight nor-
malization into account. Somewhat surprisingly, this update
rule itself ensures that the weight vectors are normalized. Cor-
respondingly, it would be interesting to see whether a sim-
plified version of eq. (6) under the assumption of ‖~wi‖2 = αi
could be a feasible model for synaptic homeostasis.

In the future, we intend to use our interpretation to gain a bet-
ter understanding of such failure-cases of feedback alignment.
One simple failure case has been identified by Hunsberger
(2018), who points out an XOR-like “three-banded” task, that
can be trained with back-propagation, but not with feedback
alignment; yet it remains unclear why exactly this is the case.
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