İİ	

Nonlinear synaptic interaction as a computational resource in the Neural Engineering Framework

Andreas Stöckel, Aaron R. Voelker, Chris Eliasmith | {astoecke, arvoelke, celiasmith}@uwaterloo.ca Centre for Theoretical Neuroscience, University of Waterloo | http://ctn.uwaterloo.ca/

Motivation 1 Approximate arbitrary, nonlinear,	Neural Engineering Framework (NEF) [1]2Representation: Populations represent \vec{x}			
multivariate functions directly in the dendritic tree by exploiting nonlinearities exposed by conductance-based synapses	$a(\vec{x}) = G[J(\vec{x})] = G[\alpha \langle \vec{e}, \vec{x} \rangle + J_0]$ Neuron activity Somatic input current Gain Encoder Bias current			
Exploiting synaptic nonlinearity (4)	Transform population	<mark>ation:</mark> Connec s compute fu	tions between nctions $f(\vec{x})$	neuron
1. Decouple synaptic nonlinearity <i>H</i> from somatic nonlinearity <i>G</i> by applying its inverse G^{-1}	$f(\vec{x}) \approx D^f \vec{a}(\vec{x})$			
$\mathcal{G}[J] = \mathcal{G}[H(g_{E}^{1}(x) + g_{E}^{2}(y), g_{I}^{1}(x) + g_{I}^{2}(y))]$	Deco (synap	oding matrix otic weights)	Population activit	.y
2. Given the target function $\phi(x, y)$ and the	Results and	Conclusion	on for the network set	5
Input current mapping from the NEF we know	Input domain(x, y) decoded value. Val	$\in [0, 1]^2$. Normalize ues in percent, sma	ed RMSE between tar ller is better.	get and
$\int J[\phi(x,y)] = H[\vec{w}_{E}^{1} \vec{a}^{1}(x) + \vec{w}_{E}^{2} \vec{a}^{2}(y),$	Function ϕ Normalized Representation ϕ Current Representation Representatio Representation	o intermediate, rent-based (a) cur	Intermediate, No i rent-based (b) con	ntermediate, dbased (c)
non-negative excitatory/ $\nearrow \dot{w_l} \dot{a}(x) + \dot{w_l} \dot{a}(y)$ inhibitory synaptic weights	x + y	1.44	2.36	3.08
3. Synaptic weights encoding $\phi(x, y)$ can be found by solving the above equation for \vec{w}_{E} , \vec{w}_{I}	$\begin{array}{c} x \cdot y \\ \ (x, y)\ \end{array}$	17.18 4.30	5.93 2.78	7.52
For two-compartment, conductance-based LIF,	x/(1+10y)	24.20	15.52	12.12
H is a rational function [2]	atan(x,y)	8.30	9.98	5.63
$J = H(g_{E}, g_{I}) = rac{a_0 + a_1 g_{E} + a_2 g_{I}}{b_0 + b_1 g_{E} + b_2 g_{I}}$	$x \cdot (x > y)$	23.69	21.81	21.44
▶ Finding non-negative w is a convex quadratic programming problem; unique, optimal solution guaranteed and can be computed quickly	Conducta intermedia multivaria	nce-based syr ate populatior te functions	apses can repl s when appro	lace kimating
Passive, distal dendritic compartment	nt circuit diagram ro-compartment LIF sed in the experiment from [2, 3]) Figur	s S S 1.0 1.0 5 0.5 0.5 0.0 0.0 0.0	$g_{C} = 0.1 \mu S$	$g_{\rm C} = 1$
	Figur Influence of g _c on	e 3 \blacktriangleright 0.0 $+$ 0.0 the $q_{\rm F}$ [uS]	0.5 1.0	0.0 0

synaptic nonlinearity

Multivariate functions in feed-forward neural networks

Approximating nonlinear, multivariate functions in neural networks requires a middle-layer representing the input variables

____արախոխոխոխոխոխ____ computational neuroscience research group

3

References

[1] Eliasmith and Anderson. *Neural* Engineering: Computation, Representation, and Dynamics in Neuro*biological Systems*. MIT press, 2003.

Cosyne 2018 in Denver, Colorado