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Input in representational space (x, y)

Decoded conductances (gE, gI)

Output in representational space x + y
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Figure 4
Approximation of the

multivariate function x + y

gC = 0.1 µS gC = 1 µS gC = 10 µS

Figure 3
Influence of gC on the

synaptic nonlinearity
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Figure 2
Equivalent circuit diagram
of the two-compartment LIF
neuron used in the experiments
(adapted from [2, 3])
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Figure 1
Synaptic computation of x · y
Data over 50 trials
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Inhibitory neurons

Results and Conclusion

Conductance-based synapses can replace
intermediate populations when approximating
multivariate functions

3Table 1 Accuracies in spiking simulation for the network setups in 
Input domain(x, y) ∊ [0, 1]². Normalized RMSE between target and
decoded value. Values in percent, smaller is better.

Function

x + y

x · y

‖(x , y)‖

atan(x , y)

x · (x > y)

x / (1 + 10 y)

No intermediate,
current-based (a)

No intermediate,
cond.-based (c)

Intermediate,
current-based (b)

1.44

17.18

4.30

24.20

8.30

23.69

2.36

5.93

2.78

15.52

9.98

21.81

3.08

7.52

3.02

12.12

5.63

21.44
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Exploiting synaptic nonlinearity

1.

Given the target function           and the 
current mapping from the NEF     we know

2.

3.

2

Synaptic weights encoding           can be
found by solving the above equation for    ,

x-activities y-activities

non-negative excitatory/
inhibitory synaptic weights

Input current

For two-compartment, conductance-based LIF,
H is a rational function [2]

Finding non-negative w is a convex quadratic
programming problem; unique, optimal solution
guaranteed and can be computed quickly

Decouple synaptic nonlinearity H from somatic
nonlinearity G by applying its inverse

Multivariate functions in feed-forward neural networks

Population Linear connectionExc. connection Inh. connection

(a) Multiple inputs to one
population are linearly

superimposed

(b) Without nonlinear synapses,
an intermediate population

is required

(c) Here: exploit nonlinear
interaction between excitatory

and inhibitory channels

Approximating nonlinear, multivariate functions in neural networks
requires a middle-layer representing the input variables

Neural Engineering Framework (NEF) [1]
Representation: Populations represent 

Transformation: Connections between neuron
populations compute functions

Neuron activity Somatic input current Gain Bias currentEncoder

Population activityDecoding matrix
(synaptic weights)

Motivation

Approximate arbitrary, nonlinear,
multivariate functions directly in the
dendritic tree by exploiting nonlinearities
exposed by conductance-based synapses


