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ABSTRACT: Nonlinear interaction in the dendritic tree is known to be an important computational
resource in biological neurons. Yet, high-level neural compilers – such as the Neural Engineering
Framework (NEF), or the predictive coding method published by Denève et al. in 2013 – tend not to
include conductance-based nonlinear synaptic interactions in their models, and so do not exploit
these interactions systematically. In this study, we extend the NEF to include synaptic computation of
nonlinear multivariate functions, such as controlled shunting, multiplication, and the Euclidean norm.
We present a theoretical framework that provides sufficient conditions under which nonlinear synaptic
interaction yields a similar precision compared to traditional NEF methods, while reducing the number
of layers, neurons, and latency in the network. The proposed method lends itself to increasing the
computational power of neuromorphic hardware systems and improves the NEF’s biological plausibility
by mitigating one of its long-standing limitations, namely its reliance on linear, current-based synapses.
We perform a series of numerical experiments with a conductance-based two-compartment LIF neuron
model. Preliminary results show that nonlinear interactions in conductance-based synapses are
sufficient to compute a wide variety of nonlinear functions with performance competitive to using an
additional layer of neurons as a nonlinearity.

The NEF [1] is a neural compiler that converts
high-level mathematical descriptions to functional
spiking networks. Populations of neurons repre-
sent vectors~x, while connections between popula-
tions compute functions f (~x) by projecting (i.e., de-
coding) the high-dimensional activity ~a(~x) of a
pre-population onto a low-dimensional represen-
tational space f (~x) = D f ~a(~x). The decoder D f

that best implements the desired function f can
be computed ahead of time, since every neuron is
assigned an encoding function J(~x) = α〈~x,~e〉+ J0,
which maps the represented~x to somatic currents.

Crucially, since the NEF assumes current-based
synapses, this encoding function is linear: popu-
lations may only represent linear combinations of
vectors decoded from each pre-population. For ex-
ample, if two pre-populations represent x and y , a
common post-population may only represent addi-
tively superimposed functions f1(x)+ f2(y) (fig. 1a),
but not multivariate, nonlinear φ(x, y). Such func-
tions can only be computed if all input variables
are represented in a middle-layer (fig. 1b).

In contrast, conductance-based synapses intro-
duce nonlinear interactions between their inputs,
which should in theory allow for a population to
encode nonlinear functions across the vectors de-
coded from its various pre-synaptic populations.

In this work, we develop such a framework that
systematically exploits conductance-based inter-
actions, to yield populations that encode nonlin-
ear multivariate functions across inputs (fig. 1c).
This eliminates the need for a middle-layer, sig-
nificantly increases the computational power per
neuron, and improves the biological plausibility
of the NEF by explicitly introducing nonnegative
excitatory and inhibitory conductance synapses.

We denote the output spike rate of a neuron
with conductance-based excitatory and inhibitory
synapses, connected to two pre-populations repre-
senting quantities x, y as

G
[

J
]=G

[
H

(
g 1
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I (x)+ g 2
I (y)

)]
,

where G[J ] is the current-based neuron re-
sponse curve, and H(gE, gI) is a translation func-
tion modelling nonlinear interactions between
synapses. The conductance functions g i

E,I(x) are

decoded from the i th pre-population1, i.e. g i
E,I(x) =〈

~w i
E,I,~a

i (x)
〉

with nonnegative weight-vector ~w i
E,I.

The synaptic nonlinearity H can be separated
from the neuronal nonlinearity by applying the in-
verse neuron-response function G−1, which in the

1Pre-synaptic populations can be split into excitatory and
inhibitory neurons to accommodate Dale’s principle.
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Figure 1: (a) Additivity in the NEF, (b) intermediate population for the computation of nonlinear multi-
variate functions, (c) exploiting nonlinear synaptic interaction.

case of LIF-based neurons is given in closed form.
Applying G−1 to the left- and right-hand side of the
above equation and replacing J with the encoding
function for the desired φ(x, y) results in

α〈φ(x, y),~e〉+ J0 = H
(
(g 1

E(x)+g 2
E(y), g 1

I (x)+g 2
I (y)

)
.

Thus, as a sufficient and necessary condition for
the approximation of a multivariate nonlinear goal
function φ, it must be possible to find nonneg-
ative weight vectors ~w i

E,I for the individual g i
E,I,

such that the above equation holds. Note that
the computation of φ(x, y) solely relies on synap-
tic nonlinearities and does not exploit any of the
post-population’s neural nonlinearities. Consec-
utive functions can be decoded from the post-
population without loss of precision.

In our experiments we use an extension of the
LIF neuron model that adds a compartment rep-
resenting distal input to the dendritic tree [2, 3].
The dendritic compartment is resistively coupled
to the soma, preventing spikes generated in the
somatic compartment from destructively interfer-
ing with the nonlinearity in the dendritic portion
of the model neuron. As per Kirchhoff’s laws, the
somatic current can be modelled with little error
(RMSE < 1% compared to empirical data) as a ra-
tional function

J = H(gE, gI) = a0 +a1gE −a2gI

b0 +b1gE +b2gI
,

where the parameters ai , bi are obtained by fitting
empirical measurements of spike activity. Combin-
ing the previous two equations results in a nonneg-
ative optimization problem w.r.t. ~w i

E,I.
Table 1 shows preliminary experiment results, in

which we measure the errors of tuning-curve fits ex-
ploiting the nonlinear interaction of conductance-
based synapses in comparison to results obtained

Table 1: Normalized RMSE between decoded out-
put and φ(x, y). Mean over 50 runs, 100 neurons
per population, 400 training samples (x, y) ∈ [0,1]2,
L2-regularisationλ= 10−3. (I, II) are the same setup
with no intermediate population (fig. 1c) and gra-
dient descent-based weight optimization. (I) uses
conductance-based nonlinear synapses, (II-III) do
not. (III) standard NEF network with intermediate
population (fig. 1b), least-squares training, total of
200 neurons in middle- and output-layer.

COND. CURRENT-BASED

FUNCTION φ(x, y) (I) (II) (III)

Sum x + y 1.44% 1.20% 0.94%
Product x · y 6.85% 23.25% 4.18%

Shunting x/(1+10y) 8.71% 31.09% 14.81%

Norm
√

x2 + y2 1.80% 5.49% 1.27%
Arctan atan2(x, y) 4.12% 8.66% 6.35%

Half-Max x · (x > y) 24.09% 31.59% 25.38%

with various network configurations/training meth-
ods using standard current-based synapses. The
conductance-based neurons (I) compute a vari-
ety of functions better than the same number of
current-based neurons (II) and similarly to twice
as many current-based neurons (III).2
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2Source code available at https://github.com/
ctn-waterloo/cosyne2018-synaptic-computation.
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