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Abstract

In the Neural Engineering Framework (NEF), individual neuron tuning curves

are often characterized in terms of a maximum firing rate and an x-intercept. How-

ever, for LIF neurons with conductance-based synapses it is not immediately clear

how maximum rate and x-intercept should be mapped to excitatory and inhibitory

conductance input functions gE(x), gI(x). In this technical report we describe a

method for deriving such functions and compare the resulting conductance-based

tuning curves to current-based tuning curves with equivalent parameters. For large

maximum rates and x-intercepts the conductance-based tuning curves possess a

significantly steeper spike-rate onset compared to their current-based counterparts.

1 Introduction

In the case of a linear integrate and fire (LIF) neuron with current-based synapses, the

Neural Engineering Framework (NEF) [1] defines the neural input current J given an input

vector~x as an affine function

J (〈~x,~e〉) = J (x) =αx + J bias ,

where~e is the encoding vector, α is the so called gain factor, and J bias is a bias (or offset)

current. The neuron response rate G over~x, the tuning curve, is then given as

G
[

J (〈~x,~e〉)]=G[J (x)] = 1

τref + tspike
=


(
τref −

log
(

1− vth
Eeq(J (x))

)
·Cm

gtot

)−1
if Eeq > vth

0 otherwise
, (1)

where gtot = gL ,

and Eeq(J (x)) = J (x)

gL
+EL =

αx + J bias

gL
+EL .
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Here, τref is the refractory period, vth is the neuron threshold potential, Eeq(J) is the

equilibrium potential given the current input, gtot is the total conductance, and Cm is

the membrane capacitance. For simplicity, let vth = 1, EL = 0, and Cm = 1. Given a target

maximum rate Gmax at 〈~x,~e〉 = x = 1 and an x-intercept ξ (the input x for which Eeq = vth),

α and J bias can be derived as a closed form expression. Let

β−1 = 1−exp
(
gL

(
τref −G−1

max

))
, then α=β− J bias , and J bias = β−1

1−ξ
.

This technical report aims at providing a similar algorithm for LIF neurons with conductance-

based synapses. We then compare equivalent current- and conductance-based tuning

curves and provide an explanation for the observed steepness of the spike-rate onset.

2 Affine input functions for conductance-based synapses

Assuming constant, noise-free conductance values, the neuron response G[gE, gI] for a

LIF neuron with conductance-based synapses can be described in terms of eq. (1), where

gtot = gE + gI + gL , and Eeq(gE, gI) =
gEEE + gIEI + gLEL

gE + gI + gL
. (2)

A one-dimensional tuning curve G ′[x] through the two-dimensional neuron response

space is a parameterisation of gE and gI, G ′[x] =G[gE(x), gI(x)], where, in general, gE(x)

and gI(x) are arbitrary non-negative functions on the interval x ∈ [−1,1].

Here, and similar to the current-based input translation function J (x), we select gE(x)

and gI(x) as an affine functions (cf. fig. 1). Let n > 0 be the number of pre-synaptic

ensembles projecting onto the neuron and define

g n
E (x) = ax +b′ = ax + b

n
, g n

I (x) = cx +d ′ = cx + d

n
, (3)

with constraints b > |a| ·n, d > |c| ·n to ensure non-negativity. Note that the parameter n

allows additive superposition of the value decoded from multiple pre-synaptic ensembles

G ′[x1 +x2] =G
[
g 1

E(x1 +x2), g 1
I (x1 +x2)

]=G
[
g 2

E(x1)+ g 2
E(x2), g 2

I (x1)+ g 2
I (x2)

]
.

A parameter such as n is not required in standard NEF neuron ensembles with current-

based synapses. Additive superposition of pre-synaptic values is implemented by declar-

ing the bias current J bias to be a part of the neuron model. In this case, the input translation

function J (x) =αx is just a linear function and intrinsically additive. In contrast, the trans-

lation functions for conductance-based synapses as proposed in eq. (3) must decode the
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excitatory and inhibitory biases b′, c ′ from the pre-synaptic populations.1 Conductance

biases are not part of the neuron model, since the non-negativity constraint would be

violated: without the bias terms b′, d ′, the decoded functions g n
E (x), g n

I (x) would not be

non-negative!

Given the conductance translation functions in eq. (3), we now have to select parame-

ters a, b, c, d with respect to an x-intercept ξ and a maximum firing rate Gmax. As in the

introduction, we assume without loss of generality Cm = 1, vth = 1, EL = 0.

First, we solve for the x-intercept. In the case of conductance-based synapses, we

need to find pairs of gE, gI at which the neuron just starts spiking. Equating Eeq with

vth = 1 and solving for gE gives

Eeq = gEEE + gIEI

gL + gE + gI

!= vth = 1 ⇔ gE = gL − gI(EI −1)

(EE −1)
,

which is a linear in gI. Combining with the conductance values at the x-intercept ξ, gE(ξ)

and gI(ξ) (with n = 1), yields

aξ+b′ = gL − (cξ+d ′)(EI −1)

(EE −1)
. (4)

Similarly, we can solve eqs. (1) and (2) for G[gE, gI] =Gmax

G[gE , g I ] = 1

τref + tspike

!=Gmax ⇔ tspike =
1

Gmax
−τref ,

tspike
!=−

log
(
1− gL+gE+gI

gEEE+gIEI

)
gL + gE + gI

⇒ exp
(−tspike ·

(
gL + gE + gI

))= 1− gL + gE + gI

gEEE + gIEI
.

Unfortunately, this equation has no closed form solution when solving for gE. Instead, we

must numerically find the root of

f (gE) = (gEEE + gIEI) ·
(
exp(−tspike(gL + gE + gI))−1

)+ gL + gE + gI . (5)

This can be easily accomplished with Newton’s method. The corresponding derivative is

f ′(gE) = (
EE − tspike · (gEEE + gIEI)

) ·exp(−tspike · (gL + gE + gI))−EE +1. (6)

Newton’s method usually converges to the solution within a few iterations when initializ-

ing with large gE.

We have solved the firing rate equation for the x-intercept and a maximum rate Gmax.

1Of course, the same technique is applicable to current-based synapses as well, where J bias can be decoded
from the pre-populations.

3



0 50 100 150 200 250
Inhibitory conductance gI

0

20

40

60

80

100

120

140
E

xc
it

at
o

ry
co

n
d

u
ct

an
ce

g E

G(gE, gI) = 0

G(gE, gI) =Gmax

x =−1

x = ξ

x = 1

Figure 1: Two-dimensional view of the tuning curve (dashed line) within the gE, gI space. Solid
lines correspond to contour lines of the neuron response curve. The bottom line corresponds
to points at which the neuron response is just zero, that is Eeq = vth, the top line corresponds to
the line at which the desired maximum rate Gmax is reached. The dotted line corresponds to the
approximation of the Gmax contour line as a line parallel to the x-intercept contour and offset by a
g offs

E chosen such that the line passes through the true maximum rate contour at gI = 0.

On their own, these solutions are not really useful when solving for the affine function

parameters a, b, c, d as they require a numerical solution of eq. (5). Solving for both

x-intercept and maximum rate Gmax must thus be performed as part of a numerical

optimization scheme. To this end, we approximate the gE at which Gmax is reached as a

line parallel to the x-intercept equation (4) shifted by an offset g offs
E (fig. 1)

gE(1) = a +b′ = gL − gI(1) · (EI −1)

(EE −1)
+ g offs

E = gL − (c +d ′) · (EI −1)

(EE −1)
+ g offs

E . (7)

The offset g offs
E can be obtained by numerically solving G[gE(1), gI(1)] = Gmax for g1(1)

using Newton’s methods (eqs. (5) and (6)), where gI(1) is a guess for the inhibitory conduc-

tance remaining when the neuron spikes with the maximum rate Gmax. Initially, a valid

assumption is gI(1) = 0, i.e. there is no inhibitory conductance when the neuron spikes

with the maximum spike rate.

We now have a system of linear equations, namely eqs. (4) and (7), with four unknowns

and constraints b > |a| ·n, d > |c| ·n for non-negativity of g n
E (x), g n

I (x) on [−1,1]. Since we

solve for four variables and have two input values (maximum rate Gmax and x-intercept),

we need to eliminate two degrees of freedom for a unique solution. The non-negativity

constraint eliminates one degree of freedom, leaving one further constraint. A natural
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Figure 2: Sketch showing the the parameter d as a function of c (thick line) given in eq. (11). This
function is the maximum of four affine functions with slope −1 and 1. The minimum of this
function can be found by calculating the intersection points of the four functions (crosses) and
choosing the intersection point with the largest value for d .

objective is energy minimization, which, in this context, corresponds to minimizing the

overall conductance in the system, i.e. the number of open ion channels

minimize
∫ 1

−1
gE(x)+ gI(x)dx = 2(b +d) . (8)

Solving eqs. (4) and (7) for a, b yields

a =αc +a0, b =αd +b0,

where α=− EI −1

EE −1
, a0 =−

g offs
E

ξ−1
, b0 =

g offs
E ·ξ · (EE −1)+ gL · (ξ−1)

(EE −1) · (ξ−1)
.

(9)

Note that the slope α in the above equation is always positive for EI < 1 and EE > 1. This

condition is always true for sane neural parameter sets where the inhibitory channel

inhibits spike production and the excitatory excites the neuron to spike.

Given the energy minimization constraint eq. (8) we can now rewrite the entire prob-

lem as minimization of the parameter d

minimize b +d = d(α+1)+b0
α>0⇔ minimize d

w.r.t d ≥ |c| ·n ⇔ d ≥ cn ∧d ≥−cn,

b ≥ |a| ·n ⇔ d ≥ cn + a0n −b0

α
∧d ≥−cn − a0n +b0

α
.

(10)

In order to satisfy the minimization problem eq. (10) the parameter d must be the mini-
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mum possible value which satisfies all constraints, or, put differently, we need to minimize

d over c and a set of greater-or-equal constraints

dmin = min
c

max

{
cn,−cn,cn + a0n −b0

α
,−cn − a0n +b0

α

}
.

Geometrically, the minimum must be located on one of the intersection point of these four

affine functions (fig. 2). Since two pairs of the individual functions are parallel (possess the

same slope), there are four intersection points and the solution is given as the (c,d)-tuple

from the below set with the maximum value for d{(
0,0

)
,
(
− a0n +b0

2αn
,−a0n +b0

2α

)
,
(
− a0n −b0

2αn
,

a0n −b0

2α

)
,
(
− a0

α
,−b0

α

)}
. (11)

Values for a and b can be computed using the linear equations in eq. (9). We can now

calculate gI(1) = c +d , numerically solve for the gE(1) at which the maximum rate is

reached, and derive a new g offs
E such that the maximum rate target function passes through

the point
(
gE(1), gI(1)

)
. The entire process is described below in algorithm 1.

Algorithm 1 Algorithm computing the affine function parameters a,b,c,d .
err ←∞
g offs

I ← 0
while err > errmax do

g max
E ← gE for which G[gE, g offs

I ] =Gmax

g offs
E ← g max

E − gL−gI(EI−1)
EE−1

Compute α, a0,b0 (cf. eq. 9)
Select c,d with maximum d (cf. eq. 11)
Compute a,b (cf. eq. 9)

err ←
∣∣∣Gmax −G

[
a +b,c +d

]∣∣∣
g offs

I ← c +d
end while
return a,b,c,d

3 Current- and conductance-based tuning curve comparison

Figure 3 shows a comparison between the tuning curves of a LIF neuron with either

current- or conductance-based synapses for a set of maximum rates and x-intercepts. The

neuron has a membrane time constant τRC = 20ms and a refractory period of τref = 2ms.

Especially for larger x-intercepts and maximum rates Gmax, the spike onset is significantly

steeper for the conductance-based synapses, i.e. after being completely silent, the neuron

“jumps” to a relatively high firing rate.
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Figure 3: Comparison between tuning curves for a LIF neuron with conductance- and current-
based synapses for a set of maximum rates and x-intercepts. Tuning curves are derived using the
methods described in this report. Solid lines correspond to the tuning curves of the neurons with
conductance-based synapses, dotted lines correspond to the tuning curves of the neurons with
current-based synapses.

To explain this behaviour, we first have to consider eqs. (1) and (2), especially the term

gtot, which is the total conductance in the system and directly determines the convergence

rate of the membrane potential towards the equilibrium potential Eeq. Thus, as long as the

equilibrium potential is smaller than the threshold potential (Eeq < vth), even if gtot →∞,

the output spike rate will be zero. However, if gtot →∞ and the equilibrium potential

reaches vth, the neuron will spike with the maximum possible rate, which is τ−1
ref . In other

words, a large gtot results in a steep spike-rate onset.

Now, why do a large maximum rate and x-intercept result in a large gtot, and thus

the steepness observed in fig. 3? This question is best answered with figs. 4 and 5, which

depict the conductance-based tuning curves derived with the above algorithm embedded

into the underlying neuron response curve surface. In particular, Figure 4a depicts tuning

curves with increasing maximum rate and an x-intercept ξ= 0, which can be geometrically

interpreted as the spike onset being located on the centre of the tuning curve. To minimize

the total conductance, the parameter selection algorithm selects gI(x) = 0 as long as

possible, however, if gI(x) were to stay zero for larger Gmax, the excitatory conductance

7



Excitatory conductance gE
0

10
20

30
40

50
60

70

Inhibitory conductance g I

0
20

40
60

80
100

R
es

p
o

n
se

ra
te

0
20
40
60
80
100
120
140
160
180

−1 0 1

x

0

75

150

R
es

p
o

n
se

ra
te

−1 0 1

x

−1 0 1

x

−1 0 1

x

−1 0 1

x

(a) Variable maximum rate
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Figure 4: Examples of tuning curves G[x] embedded into the 2D neuron response space. Tuning
curves in the bottom part of the figure correspond to the curve (gE(x), gI(x)) with same-coloured
crosses in the top part of the figure.
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(a) Decreasing x-intercept, increasing maximum rate
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Figure 5: Examples of tuning curves G[x] embedded into the 2D neuron response space. Tuning
curves in the bottom part of the figure correspond to the curve (gE(x), gI(x)) with same-coloured
crosses in the top part of the figure.
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would, illegally, extend into negative regions. Therefore, and as visible in Figure 4a the

algorithm selects a non-zero inhibitory conductance, and the tuning-curve diagonally

crosses the non-zero spike rate boundary. As depicted in Figure 4b, the same is true

for increasing x-intercepts at constant maximum spike rates. The non-zero inhibitory

conductance results in an overall increased total conductance at the point of the x-

intercept and thus in the observed steepness of the spike onset.

4 Conclusion

Given an x-intercept and a maximum rate Gmax, the method presented in section 2

computes parameters a, b, c, d for affine input translation functions gE(x), gI(x) in

conjunction with conductance-based synapses in the NEF. The algorithm guarantees a

unique solution by demanding non-negativity of gE and gI and minimizing the average

conductance in the system. The resulting translation functions gE(x), gI(x) define the

tuning curve of the neuron, which in turn is essential when solving for synaptic weights.

As mentioned above, the particular choice of input translation functions is arbitrary.

In fact, when defining the tuning curve of a neuron, any translation function gE(x), gI(x)

can be used, under the condition that these functions can be decoded from the pre-

population. For a network of conductance-based neurons, decoding is restricted to

non-negative weight matrices; it must be possible to represent gE(x) and gI(x) as a non-

negative linear combination of the tuning curves in the pre-population, which restricts

possible input translation functions and transformations between ensembles. In practice,

it will only be possible to non-negatively decode linear and (to a lesser degree) quadratic

functions.

To decode arbitrary functions from ensembles with conductance-based synapses, it is

necessary to let go of the concept of translation functions. The translation function J(x)

makes sense in the standard NEF because there is a one-to-one mapping between cur-

rents and non-zero output rates. For conductance-based synapses the input translation

functions map non-zero output rates to a single tuple (gE, gI) although the underlying

mapping is not one-to-one. Collapsing the two-dimensional conductance space onto a

line eliminates a degree of freedom required for arbitrary non-negative decodings.

Still, while the method above does not solve the problem of computing arbitrary

functions between ensembles of neurons with conductance-based synapses, it can be

used to derive tuning curves for neurons with conductance-based synapses which have

a simple (affine) shape in the conductance space. In contrast, matching conductance

translation functions to standard LIF tuning curves would result in a more complex

non-linear/affine pair of translation functions.
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