
AISB QUARTERLY
THE NEWSLETTER OF THE SOCIETY FOR THE STUDY OF

ARTIFICIAL INTELLIGENCE AND SIMULATION OF BEHAVIOUR

Q
No. 135 October, 2012



The Neural Engineering Framework
The Neural Engineering Framework
(NEF) is a general methodology that
allows the building of large-scale, bi-
ologically plausible, neural models
of cognition [1]. The NEF acts as
a neural compiler: once the prop-
erties of the neurons, the values
to be represented, and the func-
tions to be computed are specified,
it solves for the connection weights
between components that will per-
form the desired functions. Impor-
tantly, this works not only for feed-
forward computations, but also for
recurrent connections, allowing for
complex dynamical systems includ-
ing integrators, oscillators, Kalman
filters, etc. [2]. The NEF also incor-
porates realistic local error-driven
learning rules, allowing for the on-
line adaptation and optimisation of
responses [3]. The NEF has been
used to model visual attention [4],
inductive reasoning [5], reinforce-
ment learning [6] and many other
tasks. Recently, we used it to build
Spaun, the world’s largest functional
brain model, using 2.5 million neu-
rons to perform eight different cog-
nitive tasks by interpreting visual
input and producing hand-written
output via a simulated 6-muscle arm
[7,8]. Our open-source software
Nengo was used for all of these, and
is available at http://nengo.ca, along
with tutorials, demos, and down-
loadable models.

Motivation
Despite the additional constraints
and computational overheads in-
volved in building biologically plau-
sible models, there are two major
reasons for doing so. First, using bi-
ologically realistic neurons not only
allows the modelling of behaviour, it
also allows the comparison of net-
work properties (e.g., firing patterns,
timing effects, and neural connectiv-
ity) with real brains and the potential
for more accurate investigation of
neural degeneration, lesioning, deep
brain stimulation, and even various
drug treatments.

As an example, when we con-
structed a NEF implementation of
a production system constrained by
the properties of the various neu-
ron types found in the brain regions
involved, it not only produced the
classic 50 millisecond cognitive cy-
cle time without parameter fitting
[9], it also produced a novel pre-
diction that some types of produc-
tions take ∼40 milliseconds, while
others take ∼70 milliseconds, which
matches well to some unexplained
behavioural data [10].

The second reason for building bi-
ologically plausible models is that it
can suggest new types of algorithms.
The NEF does not produce an ex-
act implementation of whatever al-
gorithm you specify but an approx-
imation, the accuracy of which de-

No 135, October 2012 2



pends not only on the neural proper-
ties but also on the functions being
computed. As a consequence, the
computations used in a NEF model
are constrained by the basic opera-
tions of neurons. This has allowed
us to make strong claims about the
classes of algorithms that cannot be
implemented in the human brain
(given the constraints on timing, ro-
bustness, and numbers of neurons
involved) [11].

For example, in attempting to
find a plausible implementation of
symbol-like cognitive reasoning we
were led towards a relatively unex-
plored family of algorithms which,
upon further investigation, we dis-
covered to be particularly useful for
induction and pattern completion
tasks that are difficult to explain with
classical symbol structures [5,11].

In this article I will outline how
vectors are encoded into the dis-
tributed activity of population of
neurons, and how to interpret that
activity back into a vector.

Representation
The NEF uses distributed represen-
tations and draws a sharp distinc-
tion between the activity of a group
of neurons and the value (usually
thought of as a vector x) being rep-
resented. For example, 100 neu-
rons may represent a 2D vector, with
different vector values correspond-
ing to different patterns of activity
across those neurons.

To map between x and neuron ac-
tivity a, every neuron i has an en-
coding vector ei which can be con-
sidered the preferred direction vec-
tor for that neuron (i.e., the vector
for which that neuron will fire most
strongly). This fits with the gen-
eral neuroscience methodology of
establishing tuning curves for neu-
rons, where the activity of a neuron
peaks for some stimulus or condi-
tion. The NEF embodies the strong
claim that the input current to a neu-
ron is a linear function of the value
being represented. If G is the neu-
ral non-linearity, αi is a gain param-
eter, and βi is the constant back-
ground bias current for the neuron,
the neural activity given x is ai =
G

(
αi ei ·x+βi

)
Importantly, G can be any neural

model, including simple rate-based
sigmoidal neurons, spiking Leaky-
Integrate-and-Fire neurons, or more
complex biologically detailed mod-
els. The only requirement is that
there be some mapping between
input current and neuron activity,
which can include complex spiking
behaviour.

While a vector x can be converted
into neural activity ai , it is also im-
portant to do the opposite. Finding x
given ai provides a measure of accu-
racy and a high-level interpretation
of spiking activity. NEF does this by
finding a set of decoding weights d
such that x ≈ ∑

ai di . These weights
can be found using any standard er-

3 AISB Quarterly



ror minimization technique. Cru-
cially for the NEF, these weights are
also used to directly solve for the
neural connection weights that per-
form computations.

Computation
For the NEF, any connection be-
tween groups of neurons computes
a function. The trick is to find a set
of connection weights ωi j such that
if the first group of neurons (A) rep-
resents x then this will cause the sec-
ond group (B) to represent y = f (x).

The first step is to imagine an in-
termediate group of perfectly ideal
linear neurons (Figure 1a), with one
neuron per vector dimension. If we
connect A to these ideal neurons us-
ing the connection weights d found
above, then these ideal neurons will
be driven to represent the vector x.
In general, we can also optimize d
to approximate any function f (x)
by adjusting the error minimization.
We then connect the ideal neurons
to B using the encoder values for
group B (e j ). This causes group B to
also represent f (x).

Once d and e have been found, the
intermediate layer is then removed,
directly connecting A to B by multi-
plying the two sets of weights (Fig-
ure 1b). This produces the opti-
mal weights to compute an arbitrary
function f (x) between A and B.

This approach can be used to
approximate any function and has
the valuable property that non-

linear functions can be computed
with a single layer of connections—
no back-propagation of error is re-
quired. Not every function can be
computed however; the more non-
linear and discontinuous the func-
tion, the lower the accuracy. Accu-
racy is also affected by the neuron
properties, such that having a wide
variety of neural parameters (as in
biological neurons) greatly increases
accuracy. This also allows you to de-
termine the neuron properties that
would be ideal for particular compu-
tations, which can then be used as
neurological predictions [1].

It is important to note that the
NEF cannot only produce biolog-
ically realistic models capable of
computing functions of the form y =
f (x) but it can also compute dy-
namic functions of the form d x

d t =
A (x) + B (u), where x is the value
being represented, u is some input,
and A and B are arbitrary functions.
A particularly useful special case of
this equation is d x

d t = u, (an integra-
tor) as this sort of component ap-
pears in many models of working
memory and in accumulator models
of decision making.

Symbol Processing
While manipulating vectors is ex-
tremely powerful, many cognitive al-
gorithms rely on manipulating sym-
bols with some sort of syntactic
structure. How can neurally realis-
tic models possibly represent some-

No 135, October 2012 4



Figure 1: Connecting populations of neurons (circles) via idealized perfectly
linear components (squares). (a) x is computed fromαi using weights d. x is
then combined with e to compute the input current to the next layer of neu-
rons B. (b) Idealized components are eliminated, giving a realistic neuron
model functionally identical to (a)

thing like “Dogs chase cats” in such
a way as to distinguish it from “Cats
chase dogs”? How can we manipu-
late these representations in useful
ways?

It turns out that there are a
family of models that already exist
for converting symbolic logic into
vector manipulations. These are
known as Vector Symbolic Architec-
tures [12], and all follow the ap-
proach of using high-dimensional
vectors for each basic symbol, and
then combining these vectors with
various mathematical operations to
produce new vectors that encode full
symbol structures. Unlike ideal clas-
sic symbol systems however, VSAs
are lossy, in that as the symbol tree
structure gets more complex, the ac-
curacy of extracting the original vec-
tors from that combined vector grad-
ually decreases.

Furthermore, the vectors main-

tain similarity, so that if “pink”
and “red” have similar vectors, then
“pink square” and “red square” will
also have similar vectors. This fea-
ture allows inductive reasoning over
complex patterns. For example, our
neural model of the Raven’s Progres-
sive Matrix task (a standard intel-
ligence test where participants are
given 8 visual patterns in a 3 × 3
grid and are asked to determine
what pattern should be placed in
the missing square) works by form-
ing the vector representation of each
pattern and computing the average
transformation that that will take
one pattern to the next [5].

As a simple example of this
approach, you can create high-
dimensional (∼500 dimensions
for adult-level vocabularies) unit
vectors for each basic symbol (DOG,
CAT, CHASE, SUBJECT, OBJECT,
VERB, etc.). These can be cho-

5 AISB Quarterly



sen randomly, or so as to reflect
standard similarity measures. Two
operations are required to create
a symbol structure: addition (+)
and circular convolution (⊗). The
sentence “Dogs chase cats” would
then be S = DOG ⊗ SUBJECT +
CHASE ⊗ VERB + CAT ⊗ OBJECT).
Given this sentence, a particular
component can be extracted by
computing S ⊗ SUBJECT-1 ≈ DOG,
where the inverse operation is a
simple reordering of the elements
in the vector. Interestingly, while
circular convolution seems like a
complicated operation, you can
break it down into a linear transfor-
mation, a large number of pairwise
multiplications, and another linear
transformation. All of these opera-
tions are accurately approximated
by the NEF methods.

Spaun
The ability to perform symbol-like
manipulations using vectors allows
you to build very large-scale cogni-
tive models. Our largest model to
date is Spaun, a 2.5 million spik-
ing neuron model with a vision sys-
tem (formed by implementing a Re-
stricted Boltzmann Machine Deep
Belief Network with the NEF), a sin-
gle 6-muscle 3-joint arm for output,
and a selective routing system (anal-
ogous to a production system) im-
plemented in spiking neurons com-
prising the cortex (for working mem-
ory storage), the basal ganglia (for

action selection), and the thalamus
(for selectively routing information
between cortical areas) [7]. Various
other cortical areas are also mod-
eled, allowing for transformations
between visual, conceptual, and mo-
tor spaces, inductive pattern finding,
and list memory. The model is ca-
pable of performing eight different
psychological tasks, including recog-
nizing hand written digits, memoriz-
ing digit lists and recalling particu-
lar items, pattern completion, rein-
forcement learning, and mental ad-
dition. No changes to the model
are made between tasks: instead, a
visual input is provided telling the
model which task to perform next.
We are aware of no other realistic
neural model with this combination
of flexibility and biological realism.

Nengo
Nengo is an open-source cross-
platform Java application which im-
plements the NEF and can be used
as both a teaching tool (with hands-
on classroom demos) and a research
tool (all of our large-scale models are
built with it, including Spaun). Neu-
ral groups can be created through
a drag-and-drop interface or Python
scripting. The functions to approx-
imate are similarly specified, with
Nengo automatically computing the
optimised connection weights. Also
included is a visualisation interface
for viewing and interacting with run-
ning models, including support for

No 135, October 2012 6



simulated environments and physi-
cal robots. The software, extensive
documentation, and various tutori-
als are available at http://nengo.ca.

References
1. Eliasmith, C., & Anderson, C. H. (2003).
Neural engineering: Computation, representa-
tion and dynamics in neurobiological systems.
Cambridge, MA: MIT Press.

2. Eliasmith, C. (2005). A unified approach
to building and controlling spiking attractor
networks. Neural computation. 7, 1276–1314.

3. MacNeil, D., & Eliasmith C. (2011). Fine-
tuning and the stability of recurrent neural
networks. PLoS ONE. 6(9).

4. Bobier, B., Stewart T. C., & Eliasmith C.
(2011). The attentional routing circuit: recep-
tive field modulation through nonlinear den-
dritic interactions. Cognitive and Systems
Neuroscience Poster.

5. Rasmussen, D., & Eliasmith, C. (2011). A
neural model of rule generation in inductive
reasoning. Topics in Cognitive Science, 3, 140–
153.

6. Stewart, T.C., Bekolay, T., & Eliasmith, C.
(2012). Learning to select actions with spiking
neurons in the basal ganglia. Frontiers in De-
cision Neuroscience, 6.

7. Stewart, T., Choo, F-X, & Eliasmith, C.
(2012). Spaun: A perception-cognition-action
model using spiking neurons. Proceedings of
the 34th Annual Conference of the Cognitive
Science Society.

8. Eliasmith, C. (2013). How to build a
brain: A neural architecture for biological cog-
nition. New York: Oxford University Press.

9. Stewart, T.C., Choo, F-X., & Eliasmith, C.
(2010). Dynamic behaviour of a spiking model
of action selection in the basal ganglia. In Pro-
ceedings of the 10th International Conference
on Cognitive Modeling, 235–240.

10. Gunzelmann, G., Moore, R., Salvucci, D.,
& Gluck, K. (2011). Sleep loss and driver per-
formance: Quantitative predictions with zero
free parameters. Cognitive Systems Research,
12(2), 154–163.

11. Stewart, T., & Eliasmith C. (2012). Com-

positionality and biologically plausible mod-
els. Oxford Handbook of Compositionality.

12. Gayler, R. (2003). Vector symbolic ar-
chitectures answer Jackendoff’s challenges for
cognitive neuroscience. ICCS/ASCS Interna-
tional Conference on Cognitive Science, Syd-
ney, Australia: University of New South Wales.
133–138.

Terry Stewart PhD
Centre for Theoretical Neuroscience,
University of Waterloo, Canada

7 AISB Quarterly




