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This paper reviews a system capable of performing multiple cognitive functions using

a combination of biologically plausible spiking neurons, and an architecture that

mimics the organization, function, and representational resources used in

the mammalian brain.
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ABSTRACT | In this paper, we review the theoretical and

software tools used to construct Spaun, the first (and so far

only) brain model capable of performing cognitive tasks. This

tool set allowed us to configure 2.5 million simple nonlinear

components (neurons) with 60 billion connections between

them (synapses) such that the resulting model can perform

eight different perceptual, motor, and cognitive tasks. To

reverse-engineer the brain in this way, a method is needed

that shows how large numbers of simple components, each of

which receives thousands of inputs from other components,

can be organized to perform the desired computations. We

achieve this through the neural engineering framework (NEF), a

mathematical theory that provides methods for systematically

generating biologically plausible spiking networks to imple-

ment nonlinear and linear dynamical systems. On top of this,

we propose the semantic pointer architecture (SPA), a hypoth-

esis regarding some aspects of the organization, function, and

representational resources used in the mammalian brain. We

conclude by discussing Spaun, which is an example model that

uses the SPA and is implemented using the NEF. Throughout,

we discuss the software tool Neural ENGineering Objects

(Nengo), which allows for the synthesis and simulation of

neural models efficiently on the scale of Spaun, and provides

support for constructing models using the NEF and the SPA.

The resulting NEF/SPA/Nengo combination is a general tool set

for both evaluating hypotheses about how the brain works, and

for building systems that compute particular functions using

neuron-like components.

KEYWORDS | Neural computation; neural engineering frame-

work (NEF); neural modeling; neuromorphic engineering;

semantic pointer architecture (SPA); Spaun; spiking neural

networks

I . INTRODUCTION

In this paper, we describe the methodology and tools we

have developed for building large-scale systems from

simulated spiking neurons. In particular, we describe two

theoretical tools [the neural engineering framework (NEF)

and the semantic pointer architecture (SPA)] and one

software suite [Neural ENGineering Objects (Nengo)] that

we used to construct what is currently the world’s first

functional brain model (i.e., one that is capable of
performing a variety of cognitive tasks). This model, which

we refer to as the semantic pointer architecture unified

network (or Spaun), consists of 2.5 million simulated

spiking neurons whose properties and interconnections are

consistent with those found in the human brain. The model

receives input in the form of digital images on a virtual

retina and produces output that controls a simulated arm.

With this framework, Spaun is able to perform eight
different tasks, including digit recognition, serial working

memory, pattern completion, mental arithmetic, and

question answering. Furthermore, it is able to switch

between these tasks based on its own visual input, meaning

that there are no external modifications made to the

network between tasks. This sort of cognitive flexibility is a

hallmark of cognitive systems, but it is difficult to achieve

with traditional neural modeling approaches.
The major goal of this research is to understand how

the brain works by reverse-engineering it. We do this by

trying to build biologically plausible models of cognitive
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processes. For us, these are models where the individual
components (simulated neurons) can be made as similar to

real neurons as desired, and where the large-scale anatomy

and connectivity of the brain is respected. While the work

described here uses the leaky-integrate-and-fire (LIF)

model of a neuron (the simplest and most common

neuron model that produces spikes), all of the techniques

apply to more detailed neural models. Different neurons in

different brain areas have different properties, and we use
this neurological data to constrain our models. While we

do not argue that this is the only way to build such models,

we believe that the NEF is a general tool for implementing

a very large set of algorithms in components like neurons,

and that the SPA is one particular algorithm that can be

implemented with the NEF and that, we believe, is quite

promising for matching human performance.

As a side effect of this reverse engineering goal, the
NEF provides a methodology for biomimetic computation.

That is, it shows how to connect large numbers of very

simple components (neurons) with potentially stochastic

behaviors acting in parallel to compute functions of the

form y ¼ fðxÞ and dx=dt ¼ fðx;uÞ where x, y, and u are

vectors. The individual components need not be exactly

like neurons. The only requirements are that the

components sum their inputs and that there is a low-pass
filter on each connection. This leads to the ability to

perform useful computation with a very different type of

component than is seen in conventional computing.

We begin in Section II with the NEF, the ‘‘neural

compiler’’ that takes a vector-based description of a system

(and its dynamics) and converts it into a network of

interacting components (in this case, spiking neurons). In

Section III, we describe the SPA, a method for taking
cognitive algorithms and converting them into vector-

based descriptions consistent with mammalian neurobio-

logical constraints. Sections II and III both end with

descriptions of our open-source software Nengo that

implements these ideas. Finally, in Section IV, we show

how these tools work and can be used in concert to

produce Spaun. Material throughout this paper is adapted

from [16], [19], and [51].

II . THE NEURAL ENGINEERING
FRAMEWORK

The NEF is a general-purpose system for taking algorithms

and implementing them using components such as spiking

neurons [17]. This can be thought of as a ‘‘neural compiler’’

where algorithms written in a high-level language are
converted into neurons with connections between them.

This compilation process works for arbitrary neuron types,

and can be constrained in biologically realistic ways.

Importantly, the high-level algorithms must be expressed

in terms of vectors and functions on those vectors

(including ordinary differential equations). The resulting

neural networks approximate the desired functions, and

the error of this approximation can be made arbitrarily
small by increasing the number of neurons. This makes the

NEF ideal for expressing algorithms typically seen in

domains such as control theory, and determining their

relevance to brain function.

While the NEF can be used to build arbitrary abstract

systems such as controlled attractor networks [15], we

have primarily used it to show how particular capabilities

found in real animals might be implemented biologically.
This has included path integration in rodents [11], working

memory [57] and arm movements [13] in monkeys, and

decision making in rats [36], [40] and humans [39]. We

have also taken into account biological constraints such as

Dale’s principle [45] and incorporated biologically realistic

learning rules to construct these networks [6], [42].

Several overviews of the NEF are available [14], [15], [19],

[62]. The rest of this section serves as a summary of the
three main principles within the NEF, plus our software

tool Nengo.

A. Principle 1: Representation
The core of the NEF is the idea that groups of neurons

represent vectors, and connections between groups of
neurons compute functions on those vectors. The first NEF

principle shows how the activity of a group of neurons can

be said to represent a vector, and how changes in the

activity of those neurons corresponds to changes in the

represented vector.

We start with the notion of a ‘‘preferred direction

vector.’’ In the brain, many neurons have a particular

stimulus (or response) for which they will fire most
strongly. As the stimulus (or response) changes to become

less similar to the preferred vector, the neuron will fire less

quickly. This was originally identified in the motor system

[26] and has since been seen in the head direction system

[69], the visual system [54], and the auditory system [20].

For a more detailed exploration of this idea, see [63].

For the NEF, we generalize this concept to all neural

populations. In particular, we quantify it by stating that the
total current going into a neuron will be proportional to

the dot product of the vector to be represented x and the

preferred direction vector for the neuron ei (plus a

constant bias term). The response of a neuron i for any

given input vector x is thus

�iðxÞ ¼ Gi �ieixþ Jbias
i

� �
(1)

where �i is the spiking output of the neuron, Gi is the

neuron model, �i is a randomly chosen gain term, ei is the

preferred direction vector, and Jbias
i is a randomly chosen

fixed background current. We use e for encoder to indicate

that (1) captures a transformation between spaces: x is

encoded in the activity space of the neurons. Fig. 1 shows

this encoding for the case where x is 2-D and the neural
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population consists of four neurons. Importantly, the NEF

applies to a large variety of neuron models (including both
spiking and nonspiking models) since it makes no

commitment to a specific function G (whose input is the

total current flowing into the neuron). The LIF model is a

common choice, for reasons of computational efficiency

(and is used in Fig. 1), but a wide variety of neural models

work with the NEF.

Given an encoding operation, it is natural to define a

decoding operation, in order to characterize the informa-
tion processing characteristics of the system (in this case,

an ensemble of neurons). To decode a continuous estimate

of the input from neural activity, the NEF focuses on the

postsynaptic filtered activity generated by the reception of

a spike at a synapse. This activity is taken to be a linear

filter applied to the spiking activity

aiðxÞ ¼
X

j

hiðtÞ � �i t� tjðxÞ
� �

where hiðtÞ is the synaptic response function (usually a

decaying exponential) with a time constant �PSC deter-
mined by a neurotransmitter type at the synapse, ‘‘�’’ is the

convolution operator, and �iðt� tjðxÞÞ is the spike train

produced by neuron i in response to input x, with spike

times indexed by j. Having defined this continuous

variable, which is equal to the spike rate as �PSC !1,

we can specify a decoding operation for estimating the

input x.

For reasons that will be apparent in a moment, we use a
linear decoder

x̂ ¼
XN

i

aiðxÞdi (2)

where N is the number of neurons in the group, di are the

linear decoders, and x̂ is the estimate of the original x
value that produced the neural activity (1).

Any optimization method can be used to find these

decoders. The simplest is to use standard least squares

optimization

arg min
di

Z
x�

XN

i

aiðxÞdi

" #2

dx (3)

where di are the decoding vectors over which this error is

minimized and the integral is over all x values. It has been

shown that linear decoders are sufficient to decode �95%
of the information available in a single spike train

generated by a stimulus [53]. Furthermore, as the number

of neurons N increases, the mean squared error decreases

as 1=N. The NEF decoding process is depicted in Fig. 2,

where the optimal linear decoders have been found and

Fig. 2. NEF decoding of a 2-D signal using 20 neurons. Inputs are the

same as in Fig. 1. (a) The original input and the decoded estimate over

1.2 s (black is x1; gray is x2). (b) The same data shown in the vector

space. Older states are lighter gray. For both (a) and (b), smooth

lines represent the ideal x values, while noisy lines represent the

estimate x̂. (c) The spikes generated by the 20 neurons during the

simulation, used to generate the decodings shown in (a) and (b).

(Figure reproduced from [19] with permission.)

Fig. 1. NEF encoding of a 2-D signal using four neurons. (a) The input

signal x1 ¼ sinð6tÞ (black), x2 ¼ cosð6tÞ (gray) over 1.2 s. (b) The

spikes generated by the neurons when driven by the input in (a).

(c) The same input shown in the vector space. The path of the input is

a unit circle. Older inputs are in progressively lighter gray. The

preferred direction vectors ei of all four neurons are also shown.

(d) The firing rates of the four neurons for different inputs around the

unit circle (firing rates). Gains �i and biases Jbiasi are randomly chosen.

(Figure reproduced from [19] with permission.)
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used for 20 neurons. Temporal decoding is also linear, as
described, and is performed using the postsynaptic,

current-based filters (see Section II-C for further

discussion).

While linear decoders are useful for visualizing the

information encoded within the activity of a group of

neurons, they also provide a direct way to solve for

connection weights between groups of neurons. This is a

key advantage of the NEF: rather than using a learning rule
to optimize over the entire space of all connection weights,

we instead solve the simpler problem of optimizing over

the space of linear decoders, and then use that result to

solve for the connection weights. Importantly, given the

characterization of neural activity with preferred direction

vectors, there is no difference between using this smaller

space and using the equivalent full connection matrix.

Interestingly, this general technique has started to be
applied in broader domains; see [68] for an overview.

For example, if a connection between neural groups is

meant to compute the identity function y ¼ x (where y is

the vector space represented by the second population B

and x is the vector space represented by the first

population A), the connections between individual

neurons are given by

!ij ¼ �jdiej (4)

where i indexes the neurons in group A and j indexes the

neurons in B. Behavior of this network is shown in

Fig. 3(a).
While the least squares method for optimization we use

here is not biologically plausible on its own, we have also

shown that biologically realistic learning rules will

converge on a similar solution [42]. These realistic rules

are, however, several orders of magnitude more compu-

tationally expensive.

B. Principle 2: Transformation
Connections between groups of neurons can also

compute functions other than the identity function. That

is, instead of y ¼ x, we can do y ¼ fðxÞ. We do this by

finding decoders d
f
i for the particular function fðxÞ by

substituting fðxÞ for x in (3)

arg min
d

f
i

Z
fðxÞ �

X
i

aiðxÞdf
i

" #2

dx: (5)

The connection weights can then be computed using

(4). For the special case of linear functions y ¼ Lx, rather

than solving for a new decoder, we can simply put L
directly into the weight equation itself, resulting in

!ij ¼ �jdiLej. Combining these two approaches, the

neural connection weights needed to approximate the

function y ¼ LfðxÞ are

!ij ¼ �jd
f
i Lej: (6)

Fig. 3(b) shows the computation of the elementwise square

ðfðxÞ ¼ ½x2
1 ; x2

2�Þ.

C. Principle 3: Dynamics
While the first two principles are sufficient to build

neural approximations of any desired function of the

vector x, the NEF also provides a method for computing

functions of the form dx=dt ¼ fðx;uÞ, where u is the

input from some other population. We do this by

exploiting the fact that neurons do not simply accept

input as spikes. Rather, when a spike is transmitted from

one neuron to another, the actual current that flows into
the second neuron is a low-pass-filtered version of that

spike. In particular, the postsynaptic current is well

approximated by hðtÞ ¼ uðtÞe�t=� , where uðtÞ is the step

function and � is the time constant of the neurotransmitter

used. This time constant varies throughout the brain,

ranging from 2–5 ms [35] up to �100 ms [55]. The effect

of this filter is that instead of a connection computing the

Fig. 3. Connecting neurons using the NEF. (a) Computing the identity

function between A and B. (b) Computing the elementwise square

between A and B. Simulations are 1.2 s long, and all populations have

20 neurons with randomly chosen encoders ei, gains �i, and

biases Jbiasi . (Figure reproduced from [19] with permission.)
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function yðtÞ ¼ fðxðtÞÞ it will compute yðtÞ ¼ fðxðtÞÞ �
hðtÞ [or, in the Laplace domain, YðsÞ ¼ FðsÞHðsÞ].

It turns out that this implicit low-pass filter can be used

to generate neural models that compute arbitrary dynam-
ics. Given a neural population representing x, an input

uðtÞ, and a feedback connection from x back to itself

computing gðxðtÞÞ, we note that in the Laplace domain, we

get XðsÞ ¼ ðGðsÞ þUðsÞÞHðsÞ. Since the Laplace trans-

form of hðtÞ ¼ uðtÞe�t=� is HðsÞ ¼ 1=ð1þ s�Þ, we can

rearrange this to get sXðsÞ ¼ ðGðsÞ �XðsÞÞ=� þUðsÞ=� .

Converting back to the time domain, ðdx=dtÞ ¼
ðgðxðtÞÞ � xðtÞ=�Þ þ ðuðtÞ=�Þ. Thus, if we desire the
dynamics dx=dt ¼ fðxðtÞÞ þ uðtÞ, we introduce a feed-

back connection that uses the previous two NEF principles

to find connection weights that compute gðxðtÞÞ ¼
� fðxÞ þ x, and we scale the input uðtÞ by � . For arbitrary

dynamics of the form dx=dt ¼ fðx;uÞ, we do a change of

variables x0 ¼ hx;ui.
This exploitation of the inherent first-order low-pass

filter found in synaptic connections allows for the
implementation of a very wide variety of systems,

including oscillators, integrators, and arbitrary attractor

networks [15]. Fig. 4(a) shows a single neural population

with a recurrent feedback connection computing the

standard linear oscillator dx=dt ¼ ½�x2;�x1�. Here, the

postsynapic time constant � is 100 ms, but the period of

oscillation is 2� (�6.28 s). Importantly, we achieve

different periods of oscillation without changing the neural
property � ; rather, we change the function being

computed by the feedback connection, resulting in a

different set of connection weights. For example, we could

compute dx=dt ¼ ½�x2=2;�x1=2�, giving a period of �,

instead. This same method works for nonlinear functions

as well; in Fig. 4(b), we show the classic Lorenz attractor

dx=dt ¼ ½10ðx2 � x1Þ; x1ð28� x3Þ � x2; x1x2 � ð8=3Þx3�.

This approach allows for the construction of neural models
that correspond to a very large family of functions,

including those typically employed by the modern control

theory and the dynamic systems theory.

It should be noted that networks constructed with this

approach are fundamentally different from echo state

networks [29] and liquid state machines [41]. In both of

those approaches, the recurrent connections are randomly

chosen, and then a linear combination of the outputs are
found that compute the desired function. With the NEF,

we also find a linear combination of the outputs ðdiÞ, but

we solve for the ideal recurrent connection weights to

achieve the desired dynamics. This makes the NEF much

more efficient and capable of computing a much wider

range of dynamics.

D. Neural ENGineering Objects (Nengo)
These three principles are sufficient to implement all of

our neural models. However, to simplify the process of
constructing these models, we have developed an open-

source software package known as Neural ENGineering

Objects (Nengo) that creates and runs these models. Models

can be built in Nengo using a drag-and-drop graphical user

interface or specified using the Python scripting language.

Full details and documentation can be found online at

http://nengo.ca, and in other publications [65].

For example, to create the model shown in Fig. 3(a),
we use the following script.

net ¼ nef:Networkð0Identity Function0Þ
net:makeð0A0; neurons ¼ 20; dimensions ¼ 1Þ
net:makeð0B0; neurons ¼ 20; dimensions ¼ 1Þ
net:connectð0A0;0 B0Þ

For Fig. 3(b), we need to compute the elementwise square.

This is specified in a Python function as follows.

net ¼ nef:Networkð0Elementwise Square0Þ
net:makeð0A0; neurons ¼ 20; dimensions ¼ 1Þ
net:makeð0B0; neurons ¼ 20; dimensions ¼ 1Þ
def squareðxÞ :

return x½0� � x½0�; x½1� � x½1�
net:connectð0A0;0 B0; func ¼ squareÞ

Nengo will automatically solve for the connection weights

that will best approximate the provided function.

Nengo also provides an interactive interface for
displaying the results of a simulation while it is running,

allowing for real-time interaction with a running model.

This interface allows the generated plots to be exported,

and was used to produce Figs. 1–5. Furthermore, Nengo

scales up to our largest models: the 2.5 million neuron

Spaun model is run in Nengo, and can be downloaded at

http://models.nengo.ca/spaun.

Fig. 4. Two dynamical systems implemented with the NEF. (a) A simple

linear harmonic oscillator using 200 neurons. (b) A nonlinear

dynamical system, specifically a chaotic Lorenz attractor, using

2000 neurons. Both are recurrently coupled populations of neurons,

and the NEF is used to compute the coupling connections to

implement the two different dynamical systems.
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III . THE SEMANTIC POINTER
ARCHITECTURE

While the NEF specifies how to convert vector-based
algorithms into spiking neural networks, a separate theory

is needed to describe cognitive function in terms of vector-

based algorithms. Our approach to this problem is called

the semantic pointer architecture (SPA). While a full

description can be found elsewhere [16], the core of our

approach is to suggest a vector-based cognitive architec-

ture: i.e., a set of basic functional components, each of

which can be defined in terms of vector operations, and an
organization of those components that can work together

to implement cognitive algorithms. In addition to these

components, we provide a hypothesis as to how structured

representations (like sentences) can be represented using

vectors and what basic operations need to be performed on

those vectors to achieve memory, planning, pattern

matching, and other behaviors. We refer to our proposed

form of neurally plausible representation as ‘‘semantic
pointers.’’

A. Structure
A central concern for modeling cognitive processing

using neurons (or vectors) is how to effectively represent

structured information. Structure is vital to explanations of

cognitive behavior [2]. As an example, consider the

sentence ‘‘cats chase mice.’’ If this is to be represented
as a vector, then we need to represent it in such a way that

‘‘cats chase mice’’ is different from ‘‘mice chase cats.’’ In an

artificial language, like those typically used in computers,

such a phrase may be represented with a structured

representation like chaseðcats; miceÞ. The majority of

theories that attempt to explain human cognition rely on

the ability to store and manipulate these representations.

However, the problem of how neurons could possibly
perform such manipulations has been a long-standing

problem in cognitive science [21].

The approach we present here is speculative, but it is

the only approach we know of that is both flexible enough

for us to develop large-scale cognitive models and

implementable within known biological constraints [16],

[58]. This approach is based on two different compression

operators [47], [63]. The first of these is simple vector
addition. This takes in two vectors and produces a single

new vector as output. If all the terms to be combined

together are themselves vectors, then we could write the

full sentence as follows, where terms in bold are particular

vectors for each concept:

catsþ chaseþ mice:

However, this cannot serve to represent structure,

since with this approach ‘‘cats chase mice’’ would be

exactly equal to ‘‘mice chase cats.’’ As a result, we need a
second ‘‘binding’’ operator: an operator that takes two

vectors as input and produces a third that is very dissimilar

to the original inputs (as opposed to vector addition, which

produces an output that is highly similar to the inputs).

Denoting this operation as N, and introducing new vectors

for the roles that terms in the sentence take on, we can

represent the sentence S as

S ¼ agentNcatsþ verbNchaseþ objectNmice:

Importantly, we also need to reverse (i.e., decompress)

these operations. Given a sentence, we need to be able to

identify what the verb is, for example. For this, we need an

inverse operation such that

SNverb0 � chase

where verb0 is an inverse of verb (i.e., something that,

when bound with S, will produce chase).

There are a number of different vector operations

that can fulfill the role of the binding and inverse

operators, and this family of approaches is known as

vector symbolic architectures (VSAs) [25]. One that is
natural to implement in neurons via the NEF is circular

convolution, which was originally explored by Plate in

his holographic reduced representations [46]. To effi-

ciently implement this operation in neurons, we note

that: 1) circular convolution is elementwise multiplica-

tion in the Fourier transform space; and 2) the Fourier

transform of a vector is a linear operation (multiplica-

tion by F, the discrete Fourier transform matrix). Thus,
the binding of any two vectors A and B can be

computed by

C ¼ ANB ¼ F�1ðFA� FBÞ

where � is used to indicate elementwise multiplication of

the two vectors (i.e., x� y ¼ ðx1y1; . . . ; xnynÞÞ. Given the

NEF, this is easily computed using a standard, two-layer

feedforward network (see Fig. 5), with the imaginary

components of the F matrix treated just as separate

elements in the vector.

To unbind vectors (i.e., to extract information out of a
sentence), we follow Plate [46] in noting that circular

convolution has an approximate inverse: circular correla-

tion. Furthermore, circular correlation is the same as

circular convolution, except that the second vector has its

elements permuted. In other words, A � ðANBÞNB0

where B0i ¼ BðN�iÞmodN and i indexes the N elements of B.

Since the permutation is a linear operation (denoted here
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as S), a very similar network to that shown in Fig. 5 can be

used to compute the following:

A � CNB0 ¼ F�1ðFC� FSBÞ:

This method for representing structured information

allows us to perform symbol-like manipulations: building

larger structures out of basic vectors and extracting

(approximations of) those vectors. However, the fact that

these representations are vectors rather than symbols

adds new functionality beyond that of standard symbol

systems. In particular, we have shown that these

representations can be used to perform pattern matching
across structured information. For example, given the

sequence ‘‘3,’’ ‘‘33,’’ ‘‘333,’’ a person can quickly conclude

that the next item is ‘‘3333.’’ This type of pattern

completion has proven difficult to do computationally

without simply giving a computer a set of predetermined

patterns to look for. However, semantic pointers allow

the system to induce the pattern. To solve this problem

with semantic pointers, each item is converted into a
structured representation as above (so ‘‘3’’ becomes

threeNitem1 and ‘‘33’’ becomes threeNitem1 þ
threeNitem2 and so on), then the transformation

between each vector pair is estimated, and finally the

estimates are averaged together. The averaging gives an

estimate of a generic ‘‘next’’ transformation that can be

applied to the last item to give the next predicted item in

the sequence. For example, if the three items in the
pattern are P1, P2, and P3, the following is computed:

T1 ¼P2NP01
T2 ¼P3NP02

T ¼ 1

2
ðT1 þT2Þ

P4 ¼P3NT:

We have shown that this basic method for producing P4, a
prediction of the next item in the list, can be used to

account for human performance on Raven’s Progressive

Matrices [48], [50], the leading measure of general

intelligence. In the case of the sequence ‘‘3,’’ ‘‘33,’’

‘‘333,’’ the result is approximately threeNitem1þ
threeNitem2þ threeNitem3þ threeNitem4, o r

‘‘3333.’’ The necessary steps are natural to implement in

neurons using the NEF, and the result is not only the first
neural explanation of this cognitive behavior, but also the

first explanation in any form which does not ‘‘build in’’ a

large set of different pattern types. The key advantage here

is that semantic pointers can not only contain structured

information, but can also be manipulated using vector

operations (e.g., averaging), to provide statistically and

syntactically meaningful results.

B. Cognitive Control: Action Selection and Execution
The above approach to structured representation can

be used for many purposes. For example, to remember the

list ‘‘seven, six, four,’’ we can represent the vector
M ¼ sevenNitem1þ sixNitem2þ fourNitem3. To

actually store such a representation in a ‘‘working

memory,’’ we can build a network whose dynamics are

essentially dx=dt ¼ u (i.e., an integrator). This will hold

its value over time given no input ðu ¼ 0Þ. However, in

order to make use of such a component within a larger

cognitive system, we need a method for controlling the

inputs and outputs to this component. However, we
cannot do this by having connections between components

appear and disappear at different times during the

simulation: real biological synaptic connections do not

change so quickly. Rather, we need a biologically plausible

method for selectively routing the output of one compo-

nent to the input of another component, depending on task

demands. We call these routings ‘‘actions,’’ but note that

they can be both physical actions and cognitive actions
(moving vectors from one area of the brain to another).

This control problem can be broken down into two

parts: action selection (determining which routing is

appropriate right now) and action execution (implement-

ing the routing). For action selection, we take the standard

approach of computing the ‘‘utility’’ of each action (how

good it would be to perform this action in the current

Fig. 5. Network computing the binding operation (circular convolu-

tion) on two 8-D vectors. There are four groups of neurons: A, B, Bind,

and C. Groups A, B, and C have 150 neurons and group Bind has

760 neurons. The decoded vectors from A, B, and C are shown, and can

be seen to be roughly constant. The spiking activity over 200 ms of

38 randomly chosen neurons in the output population is shown. The

Bind neurons encode FA and FB, where F is the discrete Fourier

transform matrix. The connections from Bind to C compute

F�1ðFA� FBÞ, which is the circular convolution of A and B

(from [16] with permission).
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context) and then choosing the action with the highest
utility. If different brain areas contain the current

cognitive states x, y, and z, then we can use the NEF to

compute the utility of an action i of the form

Ui ¼ fðxÞ þ gðyÞ þ hðzÞ. This can be done using (6) and

connection weights coming from the neural populations

encoding x, y, and z. Note that if we want the more

general Ui ¼ fðx;y; zÞ, we can achieve this by forming a

new neural group representing q ¼ hx;y; zi and making
connections from the original areas to the new area.

However, for the models discussed here, we find that most

of the time the functions needed to compute utility are

extremely simple linear function such as Ui ¼ L � x, where

L is a vector and x is the state stored in a particular

brain area.

Determining which utility value is the largest is,

however, more complicated. The most obvious approach is
to take the vector of all utilities for each action U and

compute the function maxðUÞ. Unfortunately, this func-

tion turns out to be difficult for neurons to approximate,

requiring more neurons than exist in the human brain for a

vector of only 100 actions. Another approach is to build a

winner-take-all system by implementing the dynamical

system dUi=dt ¼ Ui �
P

i 6¼j Uj. This approach, however,

requires a fair bit of time, as the system must wait for the
value U to settle to a stable equilibrium.

For our models, we have chosen an alternate approach

based on the basal ganglia, a highly interconnected cluster

of brain areas found underneath the neocortex and near

the thalamus. This brain area has been consistently

implicated in the ability to choose between alternative

courses of action. Damage to the basal ganglia occurs in

several diseases of motor control, including Parkinson’s
and Huntington’s diseases, and results in significant

cognitive defects [22]. Neuroscientists [52] and cognitive

scientists [1] consider the basal ganglia as being respon-

sible for action selection in both motor and cognitive

domains [37], [38].

The anatomical and physiological structure of the basal

ganglia suggests that it computes a particular dynamical

system which effectively approximates the maximum
function [28]. The input is exactly the vector U described

above, the list of utilities for each action. The output is a

vector of the same length, but which is zero for the largest

element in U and positive for the other elements. By

implementing this dynamical system using the NEF, we

achieve a biologically realistic spiking implementation of

action selection that gives a close approximation to a

maximum operation with a reasonable number of neurons
and which responds quickly to changing inputs. For

further details, see [59].

To execute the actions chosen by this mechanism, we

turn to the well-known cortex/basal ganglia/thalamus loop

through the brain (see Fig. 6). Roughly speaking, the SPA

assumes that cortex provides, stores, and manipulates

representations, the basal ganglia determine which action

to take based on those representations, and the thalamus

implements the desired routing action between areas of

the cortex. To perform this routing, we need to organize

neurons such that there is a connection from one cortical

area to another such that this connection will compute

y ¼ x if the action is selected, and y ¼ 0 if it is not

selected. This can be done in two ways. First, we could use
the NEF to approximate that nonlinear function. However,

for this particular special case there is a simpler approach.

We start by forming an intermediate group of neurons z
and forming connections from x and to y such that

y ¼ z ¼ x. As it stands, this will always route information

from x to y. However, an interesting feature of the basal

ganglia (and of our model of the basal ganglia) is that the

output neurons are active for all actions except for the one
that has been selected. This means we can simply connect

the output neurons for this action from the basal ganglia to

the neural population z with strong negative weights (i.e.,

without using the NEF). This means that whenever the

action is not selected, the neurons in z will stop firing,

resulting in a value of 0 being passed to y. These z neurons

form our model of the thalamus.

Using this architecture, we can implement a controlled
cognitive system. To understand how this structure

operates, we can begin by thinking of it as a neural

implementation of a classical production system, a standard

approach for explaining human cognition (although the

SPA is more computationally powerful [16, ch. 7]). A

production system consists of a large set of if–then rules.

At any moment in time, only one of those rules can be

Fig. 6. Proposed mapping between the SPA action selection system

and the neuroanatomy of the cortex-basal ganglia/thalamus loop.

Arrows indicate connections between the three areas. At a functional

level, brain states from the cortex are mapped through the Mb matrix

to the basal ganglia. Each row in such a matrix specifies a known

context for which the basal ganglia will choose an appropriate action.

The product of the current cortical state and Mb provides a measure of

how similar the current state is to each of the known contexts. The

output of the basal ganglia disinhibits the appropriate areas of

thalamus. Thalamus, in turn, is mapped through the matrix Mc back to

the cortex. Each column of this matrix specifies an appropriate cortical

state that is the consequence of the selected action. The relevant

anatomical structures are pictured on the right (from [16] with

permission).
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active (determined by which rule’s if condition best
matches the current situation). When a rule ‘‘fires,’’ the

then part of that rule is taken to indicate the cognitive

action that should be taken (e.g., moving information from

the visual system to working memory, modifying certain

information, moving information from working memory to

the speech areas, etc.). Psychologists have consistently

inferred from behavior that the human brain requires

approximately 50 ms to select and execute such a cognitive
action [2]. The timing within our simulations is similar

[59], but in that case, the timing is due to the

neurotransmitter time constants measured from the

relevant physiological characteristics of neurons, providing

a more biophysical explanation of timing phenomena.

In building this neural architecture, we generalize the

if portion of a rule to be a utility calculation, and the then

portion of the rule to be a routing control signal. As an
example, consider the following rule:

Ui ¼ visual � ðAþBþCþDþ � � �Þ
Ri : visual! memory

where Ui is the utility of the ith rule and Ri is the routing
that should occur when this rule’s utility is higher than all

the other utility values. The utility calculation for this rule

consists of taking the dot product between whatever is

currently represented in the visual system, and the sum of

already known representations of the letters A–Z. This

means the utility will be high if there is a letter in the

visual system, and low otherwise. If utility is high, this rule

is likely to be selected and then the resulting routing would
be affected: i.e., the visual item would be put into working

memory. In short, this particular rule says if the visual

system currently contains a letter (i.e., any of the semantic

pointers for A, B, C, D, and so on), then remember that

letter. Note that even if the vector stored in the visual field

is not exactly one of these letters, this rule will still have a

high utility and will be chosen by the basal ganglia

(assuming no other rule has a higher utility). To
implement this rule, we form connections between the

visual neural population and the neurons in the basal

ganglia representing the input utility of the ith rule. These

connections are set using the NEF to compute the linear

function Ui ¼ visual � ðAþBþCþDþ � � �Þ. To im-

plement the effect of the rule, we add neurons to the

thalamus that simply take in the value from the visual

neurons and output that same value to the memory

neurons (computing the identity function each time). A

purely inhibitory connection is then made from the ith
output of the basal ganglia to these new neurons in the

thalamus. Thus, when this action is not chosen (i.e., when

it is not the action with the highest utility), the output

from the basal ganglia will inhibit these neurons, stopping

the information from passing through. When the action is

chosen, this inhibition is released, allowing the effect of
the rule to occur.

Note that despite our characterization of the function-

ing of the system as implementing a rule, it is doing

something much more computationally powerful. The

particular cases mentioned here only make use of linear

functions to compute Ui, but the NEF allows for nonlinear

functions as well. Furthermore, the action selection system

gives a more flexible comparison system than the strict if-
and-only-if approach seen in standard production systems.

Indeed, this same system can be used for Bayesian

expectation maximization (see [16, ch. 7] for details). As

a result, the ‘‘rules’’ of the SPA are significantly more

computationally powerful than the logical structures found

in standard production systems.

Returning to the example at hand, we can add other

rules; for instance, rules to traverse the alphabet. One way
to implement traversing the alphabet is to add 25 rules of

the same form as the following:

Ui ¼ memory �G
Ri : H! memory:

This rule says if the item in memory is G, then replace it

with H. In essence, a set of rules like this determines a set

of state transitions that can either terminate or be cyclic.

The result of simulating this particular rule set can be seen
in Fig. 7.

To increase the flexibility of the system, it is possible to

introduce routing actions that manipulate vectors as they

are passed from one component to another. This is vital for

performing transformations of structured representations.

For example, simple question answering tasks that query

sentence-like representations can be implemented in this

manner. Consider the sentence

S ¼ statementþ blueNcircleþ redNsquare

which indicates that there is a blue circle and a red square
presented to the system. We would like to be able to ask an

arbitrary question of this kind of sentence, perhaps ‘‘What

is red?’’ This question can be formulated as

questionþ red:

We expect the system to respond with the vector for

square when provided with this question. In this simple

example, we do not consider the problem of sequentially

presenting each word and constructing the relevant

representation. For a description of the rules and
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processing units needed to perform that additional
function, see [9] and [61].

As a result, this simple case can be implemented with

two basal ganglia rules. The first handles remembering the

initial statement about the environment

Ui ¼ visual � statement
Ri : visual! memory:

This rule will move whatever is in the visual system to

working memory. The second handles the question

Ui ¼ visual � question
Ri : memoryNvisual0 ! output

which indicates that the question should be used to decode

the memory to produce an answer

These two rules will handle any question answering

task of this form. If we provide the network with the input

described above, the first rule will cause S to be stored in

memory. When the question appears, the second rule will
cause that value, bound with the inverse of the question, to

be output. This gives the following result, as depicted in

Fig. 8:

ðstatementþ blueNcircleþ redNsquareÞ
Nðquestionþ redÞ0

¼ ðstatementþ blueNcircleþ redNsquareÞ
Nðquestion0 þ red0Þ
¼ redNsquareNred0 þ redNsquare

Nquestion0 þ � � �
� squareþ redNsquareNquestion0 þ � � �

Since the binding operation produces vectors that are

highly dissimilar to the inputs, the extra terms will all be

dissimilar to square, and essentially act as a noise term.

Therefore, the resulting output vector will be similar to

square, in the sense that it will have a larger dot product

with square than with any other item in the vocabulary.

We have shown that this representation is sufficient to
accurately decode up to eight items from a standard adult

vocabulary size of 60 000–100 000 items [64]. To achieve

this, we need approximately 500-dimensional vectors.

Interestingly, we find that the neural models generated by

the NEF necessary to implement circular convolution on

500-dimensional vectors are consistent with the anatom-

ical connectivity found in human cortex [16].

Fig. 7. Routing information to give a sequence of actions. The decoded

content of working memory is shown on top. This is the similarity

(dot product) of the decoded vector with the (randomly chosen) ideal

vectors for the different letters of the alphabet [see (2)]. The lower half

of the graph shows spiking output from the basal ganglia indicating

the action to perform. The output from the basal ganglia is inhibitory,

so the chosen action is the one for which the neurons do not fire. The

‘‘look’’ action takes information from visual cortex and routes it to

working memory (in this case F; from [16] with permission).

Fig. 8. Question answering with neurons. The indicated visual input is

provided to the network during the periods shaded in gray. For these

two examples, the same statement is provided to the network, but

then a different question is given. The decoded vector from the output

population is shown by giving its similarity to the ideal vectors for the

possible answers. For the first question, the correct answer is square

and for the second question the correct answer is circle (from [60]

with permission).
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Finally, we note that the 55 million neurons [3] found
in the input nucleus of the basal ganglia (i.e., striatum)

give an upper bound of one to two million rules for human

cognition. This is because those neurons need to accurately

represent U and we generally find that 30–50 neurons per

Ui value is sufficient accuracy for the models we have

built. Determining what these rules may be is a significant,

outstanding research question, but we believe that the

action selection system described here will continue to
function as expected at that scale.

C. Learning
The NEF allows very large-scale neural models to be

built via an analytic closed-form optimization, rather than
through online or batch learning, as is standard for neural

network research. However, complex cognitive systems

exhibit adaptive behavior based on experience. To account

for adaptation, we can use the NEF to generate the initial

connection weights of a model, and then introduce a

learning rule on some of those connections. Importantly,

the same rule is not applied everywhere throughout the

model; as in the real brain, some connections are more
malleable than others.

We have developed a spike-timing-dependent plasticity

(STDP) learning rule that is a more realistic version of the

standard Hebbian ‘‘neurons that fire together, wire

together’’ principle [32]. It is a local rule, meaning that

all the information needed to implement it is available

locally at a particular synapse, and it matches observed

adaptive timing effects in individual neurons [6]. This
learning rule combines the well-known homeostatic

Bienenstock–Cooper–Munro (BCM) rule [7] with an

error-driven spiking rule [42], making it a homeostatic,

prescribed error sensitivity (hPES) rule.

The hPES rule is as follows:

D!ij ¼ ��jai Sej � Eþ ð1� SÞaj � �Þ
� �

where 0 	 S 	 1 is the relative weight of the supervised
and unsupervised terms, D!ij is the change in synaptic

weight, � is a learning rate, �j is the gain on the

postsynaptic neuron, ai is the postsynaptic filtered spiking

activity from the presynaptic neuron, ej is the encoding

vector of the postsynaptic neuron, E is an error signal (e.g.,

via a modulatory or nonmodulatory neural signal), aj is the

filtered postsynaptic neural activity, and � is a modification

threshold that imposes homeostasis on the postsynaptic
neuron.

The hPES rule simultaneously addresses limitations of

both standard Hebbian learning rules and STDP. In

particular, unlike most standard rules, hPES is able to

account for precise spike time data, and unlike most STDP

(and standard Hebbian) rules, it is able to relate synaptic

plasticity directly to the vector space represented by an

ensemble of neurons. That is, the rule can tune connection
weights that compute nonlinear functions of the high-

dimensional vector being represented by the spiking

patterns in the neurons. Unlike past proposals, hPES is

able to do this because it relies on an understanding of the

NEF decomposition of connection weights. This decom-

position makes it evident how to take advantage of high-

dimensional error signals, which past rules have either

been unable to incorporate or attempted to sidestep [27].
Thus, hPES can be usefully employed in a biologically

plausible network that can be characterized as represent-

ing and transforming a vector in spiking neurons; i.e.,

precisely the kind of networks employed in the SPA.

We have shown that the hPES rule can learn the

connections needed to perform a wide variety of functions

[6], [42]. That is, instead of using the NEF equations to

solve for connection weights, it would also be possible to
learn those connections using our hPES rule. For example,

Fig. 9 shows this rule learning a 2-D identity function. This

optimization is much slower than simply using the NEF to

solve for the resulting connection weights, but it

demonstrates the rule’s ability to learn the same functions

online. Importantly, learning a function in this manner

requires an error signal. The system will learn whatever

function is consistent with that error signal.
In the real brain, error signals have many forms.

Perhaps most famously modulatory learning has been

associated with the neurotransmitter dopamine in both the

cortex and basal ganglia. The dopamine signal is often

considered a reinforcement or reward signal, indicating

when actions are rewarded (or not). Dopamine acts to help

modify the connections from the cortex to basal ganglia,

and is thought to play a central role adjusting actions to
deal with a changing environment [34], [43].

Fig. 9. Learning a function. (a) Rather than solving for the ideal

connection weights to compute the 2-D identity function, we start with

random connections on the plastic connection and provide an error

signal from a separate neural population. The hPES rule adjusts the

connections between the input and output. A network learning a 2-D

communication channel. (b) The network learns to approximate the

desired function. Over time the decoded output (solid lines) converges

to the desired output (dotted lines). The error signal is computed by

the neural population ‘‘err’’ as the difference between the two. The

same network structure can be used to learn most nonlinear vector

functions (from [16] with permission).
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We incorporate this learning into the SPA by providing
a reward signal and using it to adjust the utility of the rules

in the basal ganglia. This gives the system the capability of

reinforcement learning (RL) [66]. We have included basic

RL capabilities in Spaun (see Section IV), and in more

recent work described a model that is able to perform RL

in semi-Markov decision process environments (i.e.,

environments where there are arbitrary delays between

action and reward), which is significantly more challeng-
ing problem than that addressed by Spaun [49].

D. The Overall Architecture
Sections III-A–III-C detail how to make models of

particular neural areas that perform particular cognitive

functions such as memory (integration) or the binding

operation (circular convolution). It also describes how

these components may incorporate learning, and how
the flow of information between the components can be

controlled. The result is a general cognitive architecture

where every component can be implemented in

neurons.

When we design such systems, we have found that the

models of particular neural areas (or modules) are all of a

particular form, shown in Fig. 10. This core structure can

be used for vision, audition, motor control, working
memory, pattern completion, and so on. The details of

exactly what function is being computed, of course, vary by

brain area.

Fig. 11 combines these basic components together with

a control system. The separate components can be thought

of as physically distinct areas of the brain, each of which

can perform one type of operation on its inputs. The

control system is responsible for ensuring that the right
information is routed to the right component at the right

time.

In particular, the ‘‘semantic pointers’’ used by the SPA

are compressed representations, where the compression

maintains similarity information. That is, the vector for

‘‘dogs chase cats’’ will be similar to the vector for ‘‘dogs

chase cars’’ (where similarity is measured as the dot

product between vectors), but will be much less similar to
‘‘cats chase dogs’’ and not at all similar to ‘‘cats ignore dogs.’’

These combined vectors are of the same length as the

original vectors, so there is certainly a loss of information

in this compression of multiple vectors into a single vector.

However, it is generally possible to recover the original

high-dimensional representation (or something very sim-

ilar) thanks to the inverse operation. Because of this

compression/decompression relationship, similar inputs
will produce similar outputs.

In short, semantic pointers are compact ways of

referencing large amounts of data; consequently, they

function similarly to ‘‘pointers’’ as understood in computer

science. Typically, in computer science, a ‘‘pointer’’ is the

address of some large amount of data stored in memory.

Pointers are easy to transmit, manipulate, and store, so

they can act as an efficient proxy for the data they point to.
Semantic pointers provide the same kind of efficiency

benefits in a neural setting. This is why we use them to

transfer information between cognitive modules.

Unlike pointers in computer science, however, seman-

tic pointers are semantic. That is, they are systematically

related to the information that they are used to reference.

This means that semantic pointers carry similarity

Fig. 11. General schema for SPA models. A full SPA model consists of

multiple components as in Fig. 10. Dark black lines are projections

carrying semantic pointer representations between parts of the

system, while thinner lines indicate control and error signals.

(Reproduced with permission from [16].)

Fig. 10. Generic component within the SPA. Inputs are generally

presented at the bottom interface, and the module preforms some

function(s) on the input to create a compressed representation. The

action selection system (described below) can take these results,

transform them, and route them to other components. Many

components can also be run in reverse, computing an (approximate)

inverse operation, which decompresses or dereferences the pointer.

This provides for hierarchical, structured representation and cognitive

processing. (Reproduced with permission from [16].)
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information that is derived from their source, in contrast
to an arbitrary index that does not contain semantic

information, as generally used in modern computers.

Of course, we do not have to use the same

compression operation everywhere, and indeed there

are many we have not explored in the SPA (e.g., [56]).

For vision (and other sensory modalities), we learn this

compression from the structure of the sensory input. This

is the same approach taken by vision researchers who use
deep belief networks [33], [67]. However, for cognitive

operations such as combining concepts together into

structured representations, we use the circular convolu-

tion described above.

E. SPA in Nengo
All of the SPA components discussed above can be built

in Nengo using the scripting system. However, to simplify

the creation of these cognitive models, we have developed

an additional library that assists in the creation of models

based on the SPA characterization of the cortex, basal

ganglia, and thalamus loop.

Individual processing modules are specified using the

standard NEF libraries. To connect them, however, we use

a specialized syntax for defining the rules that can be used
to route information between areas. For example, the

following code creates the question answering model from

Fig. 8:

class Rules :
def storeðvisual ¼0 STATEMENT0Þ :

setðmemory ¼ visualÞ
def recallðvisual ¼0 QUESTION0Þ :

setðoutput ¼ memory� � visualÞ
class QuestionAnsweringModelðspa:SPAÞ :

dimensions ¼ 512

visual ¼ spa:Bufferðfeedback ¼ 0Þ
output ¼ spa:Bufferðfeedback ¼ 0Þ
memory ¼ spa:Bufferðfeedback ¼ 1

bg ¼ spa:BasalGangliaðRulesÞ
thalamus ¼ spa:ThalamusðbgÞ

net ¼ nef:Networkð0Question Answering0Þ
model ¼ QuestionAnsweringModelðnetÞ

In this model, the initial rules specify the two routing

rules discussed above. The second part of the code

describes the cortical structure of the system. Here, there
are three ‘‘buffers,’’ which are neural ensembles that can

store a vector representation. In this case, the number of

dimensions for that vector is set to 512. The feedback

argument specifies whether these neural ensemble use the

dynamics principle to store their own state. When

feedback is set to 0, there is no recurrence. As noted in

Section II-C, this means that if input is given to the visual

system, it will decay very quickly, due to the short time
constant of the filter hðtÞ ¼ e�t=� introduced by the

postsynaptic current. However, with feedback equal to 1,

the dynamics principle is used to construct an integrator

dx=dt ¼ u. This, ideally, would result in a system with an

effectively infinite time constant. However, the neural

approximation of the integrator will never be perfect (with

a finite number of neurons). This means that the stored x
value will slowly drift, resulting in information decay over
time, as expected.

IV. SEMANTIC POINTER ARCHITECTURE
UNIFIED NETWORK

Sections II and III described our general approach to

building large-scale models using the SPA. In sum, our

approach is to: 1) identify particular computational
functions that need to be computed by a cognitive system;

2) build neural components that implement those

functions; and 3) determine how to route information

between the components using the basal ganglia to provide

integrated function. This approach has recently allowed

us to build what is currently the first brain model that

is capable of performing cognitive tasks. The resulting

2.5 million neuron model is called the semantic pointer
architecture unified network (Spaun) [19]. Spaun is able to

perceive visual input through a 28 
 28 pixel retina,

remember that information, act on it as appropriate, and

generate motor output that moves a physically modeled

arm to write numbers [see Fig. 13(a)].

Many of the elements of Spaun have been described in

earlier work, including components for vision [67],

recognition [64], serial working memory [8], pattern
matching [48], reward processing [4], and motor control

[13]. Together, these and other components allow Spaun

to cover 20 anatomical brain areas, while being consistent

in terms of the large-scale connectivity between and

within these regions and the neurotransmitter time

constants observed within these regions. To put this in

perspective, the human brain has approximately 1000 areas

[30] (and 80 billion neurons), so much work remains to
be done.

Nevertheless, one key feature of Spaun is that it can use

its neural components flexibly, thanks to the control

structure provided by the basal ganglia. As a result, Spaun

can perform eight different tasks, while the model itself

remains unchanged. While each task uses many of the

components of Spaun, they do so in a variety of ways. For

example, in the list memory task, Spaun is shown a list and
then repeats it back, while in the question answering task,

it is first shown a list, and then it waits for a question about

the list. Importantly, we do not make any changes to Spaun

to allow it to perform different tasks. Rather, we tell Spaun

to change tasks. Since the only input to Spaun is its 28 

28 visual field, we do this by presenting the letter ‘‘A’’

followed by a number that indicates the task to perform.
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Spaun responds appropriately to this perceptual input
given these two control rules

U1 ¼ visual �A
R1 : NONE! task

U2 ¼ visual � ðZEROþ ONEþ TWOþ � � �ð Þ
þ task � NONEÞ=2

R2 : visual! task

The first rule clears the part of memory that keeps track of

whatever task Spaun is currently doing when Spaun sees

the letter A (by setting it to the random vector NONE). The

second rule will only have a high utility if the task is NONE

and a number has been presented. When this occurs, that
number is sent to the task memory. To implement the

various tasks, more rules are added, each of which has, as

part of their utility calculation, a dependency on the task

memory. This makes the rules task specific, but the actual

neural components that the rules make use of are general

across tasks. The eight tasks Spaun can perform (digit

recognition, digit style copying, list memory, question

answering, addition by counting, reinforcement learning,
pattern completion, and the Raven progressive matrix

intelligence test) are all implemented with only 19 basal

ganglia rules. More information on these tasks can be

found in [19] and Spaun’s performance can be viewed in

online videos (http://nengo.ca/build-a-brain/spaunvideos).

The overall functional and anatomical architecture of

Spaun is shown in Fig. 12.

As an example of Spaun performing a task, Fig. 13
shows the list memory task. The input starts with an ‘‘A’’

followed by a ‘‘3,’’ telling Spaun which task to perform.

The next input is a series of numbers that it should

attempt to remember. When it sees a question mark, it

responds by writing out the remembered list. Fig. 13(c)

shows spiking activity of several parts of the model. Of

particular note is dorso–lateral prefrontal cortex

(DLPFC), where Spaun is storing the list. The list is
stored as a vector, using semantic pointers as described in

Section III-A. The DLPFC graph shows the similarity (as

measured by the dot product) between the vector stored

there (decoded from the spikes using the NEF) and the

ideal vector for numbers in different positions. This

activity decays over time and becomes less accurate the

more items there are in the list. In this particular case,

this inaccuracy is enough to cause Spaun to make a
mistake: it forgets the fourth item in the list (the eight).

Indeed, the model follows a similar forgetting curve to

that seen in people [8].

In fact, Spaun can be used to match a wide variety of

data across many scales. Its components have been shown

to reproduce spike patterns in the basal ganglia during an

RL task [4], single neuron tuning curves found in primary

visual cortex [19], population spectrogram shifts during a

working memory task [19], recognition accuracy on
naturalistic stimuli (i.e., handwritten digits) [19], and

reaction times during a counting task [19], and similar

results apply to the complete model as well [16]. In short,

because the model implements cognitive behaviors using

spiking neurons that are anatomically and physiologically

matched to their biological counterparts, its performance

can be constrained by data from single cell physiology

through to behavior. By making successful comparisons to
diverse constraints, we begin to build the case that Spaun

is capturing some important aspects of the biological

mechanisms at work in real brains.

Fig. 12. Functional and anatomical architecture of Spaun. (a) A

breakdown of the separate logical components within Spaun and their

connections. The working memory, visual input, and motor output

components are typical hierarchies as per Fig. 10, while the other

components compute functions of these representations. From left to

right, the components: 1) map visual inputs to conceptual

representations; 2) induce relationships between representations;

3) associate input with reward; 4) map conceptual representations to

motor actions; and 5) map motor actions to specific patterns of

movement. (b) The corresponding neuroanatomical architecture,

with matching colors and line styles indicating corresponding

functional components. Abbreviations: V1/V2/V4

(primary/secondary/extrastriate visual cortex), AIT/IT

(anterior/inferotemporal cortex), DLPFC/VLPFC/OFC

(dorso–lateral/ventro–lateral/orbito–frontal cortex), PPC (posterior

parietal cortex), M1 (primary motor cortex), SMA (supplementary

motor area), PM (premotor cortex), v/Str (ventral/striatum), STN

(subthalamic nucleus), GPe/i (globus pallidus externus/internus),

SNc/r (substantia nigra pars compacta/reticulata), VTA (ventral

tegmental area). (Reproduced with permission from [18].)
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V. DISCUSSION

While we believe that models like Spaun are moving us

toward a better understanding of brain function, there
remain many challenges ahead. It is important to keep in

mind that Spaun has 40 000 times fewer neurons than the

human brain. Consequently, it is still not clear how well

the methods of the SPA will scale, despite encouraging

initial results. Similarly, Spaun includes several simplify-

ing assumptions regarding the number and kind of

neurotransmitters, and physiological properties of indi-

vidual neurons. Again, past work using the same methods
has incorporated a wider variety of such properties than

are found in Spaun, but it remains to be seen how

additional biological detail will affect Spaun’s functioning.

In addition to these limitations, it is clear that there are

many kinds of brain function not well reflected in Spaun.

For instance, the ability of the model to lay down new

long-term memories is minimal (this only occurs in one of

the eight tasks). Similarly, there is little environmental
interaction of the model: its single eye remains fixed, and

it does not see its own output. Much work remains to be

done to determine what additional functions are necessary

to allow such a model to be embedded in a dynamic, open-

ended environment. Relatedly, learning new cognitive

behaviors in such an environment is a well-known

challenge with few general, effective solutions. It has not

yet been shown how these kinds of models can be used to
effectively tackle such challenges.

From a computational perspective, simulating large-

scale neural models on conventional computational

hardware is difficult. For Spaun, it took approximately

2.5 h of simulation time to generate 1 s of behavior on a

high-end workstation. While we believe that this simu-

lation can be made much more efficient (and in the latest

version of our software we have made significant im-
provements [5]), it is clear that alternate computing

approaches would be advantageous.

A wide variety of these brain-inspired computing

devices exist, all based around the idea of having a large

number of simple neuron-like components whose spiking

activity is based on the sum of their inputs. We have used

the NEF as a general method for programming such

neuromorphic computers. Examples of using the NEF in
this way can be found on efficient digital architectures

employing thousands or millions of ARM cores [24],

analog architectures that directly incorporate forms of

learning [12], and hybrid architectures [10]. There are

many benefits to this new computing paradigm, including

orders of magnitude better power efficiency per compu-

tation, robustness to noise and variability, and massive

parallelism [31].
Because the NEF was developed to address systems

with these same properties (but in a biological setting), it

has proven an effective means of programming such

hardware, by indicating what the connection weights

should be to achieve different computational results. For

example, the NEF has been used to control a robot that can

learn by treating training examples as the function to be

approximated, to do operational space control on a 3-joint
arm [44], and to implement a model of the rat

hippocampus’ path integration ability on a mobile robot

[23]. In all of these examples, the algorithms being

implemented are well suited to approximation using the

NEF, and so are much more efficient when implemented

on neuromorphic hardware than on traditional computing

devices.

While current hardware implementations remain
small scale compared to models like Spaun, we expect

that in the near future, there will be a significant increase

in the size of neuromorphic platforms available. Indeed,

we expect that a full hardware implementation of Spaun

will be completed within the next two years. This

codevelopment of algorithms, programming techniques,

and infrastructure in the neuromorphic space provides

Fig. 13. Spaun performing a serial recall task. Spaun must remember

and then write out the sequence ‘‘0, 1, 5, 8, 7, 3.’’ It has never

seen this particular sequence before. (a) A snapshot of Spaun while it is

seeing the third digit in the list. (b) A snapshot of Spaun while it is

writing its result. The internal processing of the model is shown in

thought bubbles with decoded values overlaid on the spiking activity.

Colors on the brain image show overall firing rates in different regions.

(c) The neural spiking activity of various components of the model

(see Fig. 12 for details). In this particular trial, Spaun makes a mistake,

forgetting the digit in the middle of the list (just as human subjects

often do). The spiking activity in DLPFC is decoded to reveal the cause

of this mistake (the vector stored in memory has become too dissimilar

to the ideal representation of an 8). (Reproduced with permission

from [16].)
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fertile ground for designing and testing brain-like models.
We believe that such models will allow us both to better

understand biological brain function, and to develop a

new class of solution to challenging information proces-

sing problems.

VI. CONCLUSION

The theoretical methods and software suite described in
this paper form a comprehensive tool chain for connecting

high-level behavior to low-level neural processes. The NEF

compiles algorithms expressed in terms of vectors and

functions on those vectors (or their temporal derivatives)

into a neural network that approximates those functions. A

wide variety of single cell models can be employed, and

accuracy can be improved by increasing the number of

neurons used. The NEF thus provides a generic framework
for implementing a very large class of functions in

networks of biologically plausible spiking neurons.

The SPA is our suggestion of a means of organizing

neural models that is consistent with contemporary

neuroscience. While it is clearly too early to claim that

this is provably how the brain works, we believe that SPA

provides a testable ongoing research program, and at the

very least provides what is currently the only standard for
expressing and manipulating structured, symbol-like

representations while being consistent with biological

constraints [16], [58]. It provides a method for flexibly

manipulating representations and passing them between

different brain areas as appropriate for a given cognitive

task. Both the NEF and the SPA can also optionally include

neural learning rules, providing the system a way to adapt

online from experience.
To make these theoretical ideas more practically

useful, we have also briefly presented Nengo, a software

tool that implements both the NEF and the SPA. This

allows a user to specify the high-level function to be

implemented (along with whatever neural constraints are

appropriate), and Nengo will use the NEF to solve for the

connection weights needed, run the resulting model, and

collect the results. Nengo has also been shown to scale up
well, as it was used to create Spaun, the world’s first

functional brain simulation, with 2.5 million neurons and

over 60 billion synapses.

Combined, these approaches provide a novel method

for creating large-scale neural networks that can exhibit

high-level cognitive behavior. Our ongoing research
involves testing psychological theories by implementing

them in neurons and comparing the model performance to

human (and animal) performance. Importantly, we can do

this comparison based not only on the overt behavior, but

also on low-level neural measurements, such as firing

patterns in different brain areas. This provides strong

constraints on theories of brain function. For example, we

find that overall reaction time is strongly connected with
the neurotransmitter time constants. Furthermore, we

believe accurate models of these neural functions could

lead to improved understanding of how particular neural

disorders (such as Parkinson’s disease or Alzheimer’s

disease) produce their behavioral effects. More research,

however, is needed to improve the neural details of these

models such that it is possible to damage them in the same

way that they are damaged in those diseases.
A more surprising consequence for this research is that

it provides a novel method for programming highly parallel

hardware. After all, the human brain can be thought of as

100 billion interconnected processors (neurons). Each of

these processors is slow, noisy, and can only compute one

operation (the neural nonlinearity G), but by connecting

all of them in different ways we can approximate a wide

variety of functions. This is a new approach for
neuromorphic engineering, and our ongoing collabora-

tions [10], [24] are examining the possibilities for

implementing complex cognitive algorithms efficiently.

Simulating the human brain is a monumental task and

clearly beyond what a single research group can accom-

plish. This is why we are interested in helping to create

general, open tools that can be applied to many different

brain areas and many different kinds of cognitive tasks. We
have developed tutorials and documentation to introduce

the open-source Nengo software (available at http://nengo.

ca). To aid instruction, we have included both a complete

scripting system and an integrated drag-and-drop graphical

user interface (GUI) for Nengo [65]. We hope that being

able to integrate ideas from psychology, neuroscience, and

artificial intelligence and construct large-scale neural

models that connect sensory systems, cognitive system,
and motor systems makes for an exciting new approach to

brain research. We believe these sorts of models will be

extremely beneficial for understanding human cognition,

treating brain disorders, and developing efficient parallel

computation. h
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