
A Technical Overview of the Neural Engineering Framework
Terrence C. Stewart

Centre for Theoretical Neuroscience technical report. Oct 29, 2012

This is an extended version of an article written for AISB Quarterly: The Newsletter of the Society for
the Study of Artificial Intelligence and Simulation of Behaviour, Issue 135 (Autumn, 2012).

The Neural Engineering Framework (NEF) is a general methodology that allows you to build large-
scale, biologically plausible, neural models of cognition [1]. In particular, it acts as a neural compiler:
you specify the properties of the neurons, the values to be represented, and the functions to be
computed, and it solves for the connection weights between components that will perform the desired
functions. Importantly, this works not only for feed-forward computations, but recurrent connections
as well, allowing for complex dynamical systems including integrators, oscillators, Kalman filters, and
so on [2]. It also incorporates realistic local error-driven learning rules, allowing for online adaptation
and optimization of responses [3]. The NEF has been used to model visual attention [4], inductive
reasoning [5], reinforcement learning [6], and many other tasks. Recently, we used it to build Spaun,
the world's largest functional brain model, using 2.5 million neurons to perform eight different
cognitive tasks by interpreting visual input and producing hand-written output via a simulated 6-muscle
arm [7,8]. Our open-source software Nengo was used for all of these, and is available at
http://nengo.ca, along with tutorials, demos, and downloadable models.

Motivation

At first, it may seem odd to some that we would want to create biologically plausible models of
cognition. Why bother? Why add the extra computational overhead of having realistically modelled
neurons? Why would we want to put this extra constraint on our models, when it's hard enough to
create models that produce realistic cognitive behaviour as it is?

For us, there are two major reasons. First, using realistic neurons allows us to better evaluate our
theories. If we want to understand how brains work, then our models should not only produce the
correct behaviour, but should also do so in the same way as real brains. That is, we should see
comparable firing patterns and neural connectivity. We should see the same effects of neural
degeneration, lesioning, deep brain stimulation, and even various drug treatments. We should see the
same timing effects caused by the biophysical properties of neurons. Indeed, when we implemented a
production system using the NEF, and constrained the model to have the properties of the various
neuron types found in the brain regions involved, it produced the classic 50 millisecond cognitive cycle
time without parameter fitting [9]. Furthermore, it produced a novel prediction that some types of
productions take ~40 milliseconds, and others take ~70 milliseconds, which matches well to some
unexplained behavioural data [10]. In other words, realistic neurons allow us to create new types of
predictions, and allow us to set model parameters based on biology.

While this first reason allows you to do a better job of evaluating a model, the second reason is that this
suggests new types of algorithms. When using the NEF, you do not get an exact implementation of
whatever algorithm you specify. Instead, the neurons approximate that algorithm, and the accuracy of
that approximation depends not only on the neural properties but also on the functions being computed.
That is, instead of using any computations at all in your model, the NEF forces you to use the basic

operations that are available to neurons. This has allowed us to make strong claims about the classes of
algorithms that could not be implemented in the human brain (given the constraints on timing,
robustness, and numbers of neurons involved) [11]. In particular, finding a plausible method for
implementing symbol-like cognitive reasoning, including symbol tree manipulation, has led us towards
a relatively unexplored family of algorithms. As we discuss below, these alternate approaches turn out
to be particularly useful for induction and pattern completion tasks which are difficult to explain with
classical symbol structures.

Of course, once these new types of algorithms are identified, they can be explored without the use of
realistic neurons. Indeed, our software package Nengo allows for the use of neurons to be turned on
and off arbitrarily, either for the whole model or just for particular parts, even while a simulation is
running. However, we have found some cases where the approximations incurred in the neural
implementation actually improve the model (in terms of its match to human data) [12]. In other words,
even when a standard mathematical implementation of a theory does not match empirical results, the
NEF model of that theory may do a much better job.

Representation

The NEF uses distributed representations. In particular, it makes a sharp distinction between the
activity of a group of neurons and the value being represented. The value being represented is usually
thought of as a vector x. For example, you may use 100 neurons to represent a two-dimensional vector.
Different vector values correspond to different patterns of activity across those neurons.

To map between x and neuron activity a, every neuron i has an encoding vector ei. This can be thought
of as the preferred direction vector for that neuron: the vector for which that neuron will fire most
strongly. This fits with the general neuroscience methodology of establishing tuning curves for
neurons, where the activity of a neuron peaks for some stimulus or condition. In particular, the NEF
makes the strong claim that the input current to a neuron is a linear function of the value being
represented. If G is the neural non-linearity, αi is a gain parameter, and bi is the constant background
bias current for the neuron, then we can compute neural activity given x as follows:

(1)

Importantly, the function G can be any neural model, including simple rate-based sigmoidal neurons,
spiking Leaky-Integrate-and-Fire neurons, or more complex biologically detailed models. The only
requirement is that there be some mapping between input current and neuron activity, which can
include complex spiking behaviour.

In standard connectionist models, each neuron responds to a distinct component of the input. We can
think of this as a special case of Equation 1 where all of the ei values are aligned along the standard
basis vectors ([1,0] and [0,1] for the two-dimensional case). If a single non-spiking neuron is supposed
to actually be a pool of spiking neurons, then this would be like having identical ei, αi, and bi values.
However, real neurons have widely varying values (see Figure 1). As discussed in the next section,
allowing these values to vary vastly increases the computational power of these neurons.

Figure 1: Average firing rates for 20 different leaky-integrate-and-fire neurons, computed using
equation 2. αi and bi are randomly chosen to give a realistic range of responses. Neurons whose firing
increases with x have ei=1, while the other neurons have ei=-1.

While Equation 1 allows us to convert a vector x into neural activity ai, it is also important to go the
other way around. That is, given some neural activity, what value is represented? The simplest method
is to find a linear decoder di. This is a set of weights that maps the activity back into an estimate of x,
as follows:

(2)

Finding this set of decoding weights di is a least-squares minimization problem, as we want to find the
set of weights that minimizes the difference between x and its estimate. This is a standard algebra
problem, and can be solved as follows, where the sum is over a random sampling of the possible x
values:

(3)

Having this decoder allows you to determine how accurately a group of neurons is representing some
value, and provides a high-level interpretation of the spiking activity of the group. Importantly, it also
turns out that these decoders also allow you to directly solve for the neural connection weights that will
compute some desired transformation, as shown below.

Computation

So far, we have specified how to encode vectors into the distributed activity of a population of neurons,
and how to interpret that activity back into a vector. However, to do anything useful, neurons need to
be connected together. Consider the simple case where you have two neural populations (A and B) and
you want to pass the information from one population to the next. That is, if you set A to represent the
value 0.2, then the synaptic connections between A and B should cause the activity in B to also
represent the value 0.2. In other words, you want the connections between A and B to compute the
function f(x)=x.

Importantly, you can't do the simple approach of just connecting the first neuron in A to the first neuron
in B, and so on for the other neurons. Not only might there be different numbers of neurons in the two
groups, with different αi and bi values, but the neural non-linearity G makes this naïve approach highly
inaccurate.

To create this connection in an accurate and robust manner, let us first assume that we have an
intermediate group of perfectly ideal linear neurons, and we have one of these for each dimension

being represented. We then note that, thanks to Equation 2, d is exactly the set of connection weights
needed to compute x given the activity in A. Furthermore, using the encoder values for group B (ej) as
connection weights from this x representation is exactly what is needed to compute the dot product in
Equation 1, which would in turn cause group B to represent x. This is shown in Figure 2a.

Of course, the real brain does not have these idealized intermediate neurons. However, they are
completely unneeded. You can remove them and directly connect A to B using the connection weights
found by multiplying the two sets of weights (see Figure 2b). That is, the optimal weights to pass the
information from A to B are simply ωij=di∙ej.

Figure 2: Computing with the NEF. Circles are any complex neuron model G with gain αi and bias bi.
Squares are idealized perfectly linear components. Part a) shows how Equation 2 computes x from ai
using weights d and how Equation 1 combines x with e to compute the input current to the next layer
of neurons. Part b) eliminates these idealized components, giving a realistic neuron model functionally
identical to a).

This approach is not limited to simple functions like f(x)=x. By adjusting Equation 3 you can find
decoding weights df(x) to approximate any function f(x), as shown in Equation 4. Indeed, you can even
use the input/output pairs used for training data in standard neural network approaches (the input
patterns give the x values to sum over, and the output patterns give the corresponding f(x) values).
Importantly, this means that nonlinear functions can be computed with a single layer of connections –
no back-propagation of error is required. This includes not only the classic XOR problem, but also
more complex functions such as multiplication, trigonometric functions, or even circular convolution
(see Symbol Processing, below). That said, it cannot compute any function, and in general, the more
non-linear and discontinuous the function is, the lower the accuracy. This accuracy is also affected by
the neuron properties and the encoding method used: for example, if the ei values are all aligned with
the standard basis vectors, then nonlinear functions of multiple variables cannot be computed (this is
the case for standard connectionist models, which is why they require multiple layers). This allows you
to determine what neuron properties would be ideal for particular computations, which can then be
used as neurological predictions [1].

(4)

One way to think of this surprising feature (that distributed representations allow for complex functions
to be computed in a single set of connections) is that the NEF is using the same trick seen in support
vector machines: project your data into a high dimensional space. If you randomly choose ei (as we
generally do in our models, as it maps well to neural observations), then this is a random projection,
which has been widely applied to machine learning problems. Furthermore, random variation in αi and
bi is also required: the function f(x) being approximated ends up being built up out of linear sums of the
tuning curves (Figure 1), so a wider variety of tuning curves leads to better function approximation.

The method of representation used in the NEF also allows you to add values by simply feeding two
inputs into the same group of neurons. If you connect group A to group C with connection weights that
compute f(a) and if you connect B to C with connection weights that compute g(b), then the neural
group C will end up with the activity pattern that represents f(a)+g(b). This is a consequence of the
linear representation given in Equation 1, and is vital for constructing larger networks.

A further advantage of this approach is that it is fast to simulate. Instead of multiplying the activity of
group A by the full weight matrix, you multiply by the decoders and then multiply by the encoders to
produce the input current to group B. This produces considerable savings of memory usage and
simulation time, and was vital to our work connecting a neural model of a Kalman filter to real-time
recordings from monkey motor cortex [13]. It should be noted, however, that this method produces
connection weight matrices that freely mix positive and negative values, which are not seen in the real
brain. We have shown elsewhere how to fix this problem by introducing inhibitory interneurons [14].

Dynamics

The previous two sections are sufficient to produce biologically realistic models capable of computing
functions of the form y=f(x). However, the NEF also provides a direct method for computing dynamic
functions of the form dx/dt=A(x)+B(u), where x is the value being represented, u is some input, and A
and B are arbitrary functions. A particularly useful special case of this equation is dx/dt=u, an
integrator. This is a neural system that, if given no input (u=0), will maintain its current state (since
dx/dt=0). Given a positive input, the stored value will increase, and given a negative input it will
decrease. This sort of component appears in many models of working memory and in accumulator
models of decision making.

While a full proof is outside the scope of this article (see [1]), building this system requires you to
know the neurotransmitter time constant τ of a recurrent connection from the neurons in the group back
to themselves. This time constant is a standard property of biological neuron models, and reflects how
quickly the neurotransmitter released by a spike is reabsorbed. It varies widely across different types
of neurons, from 2ms up to 200ms. Given this value, we have shown that you can compute the desired
dx/dt=A(x)+B(u) function by using the above method to create a set of feedback connection weights
that compute τA(x)+x, and setting the input connection to compute τB(u).

For the special case of the integrator (dx/dt=u), this results in a feedback connection computing exactly
the same identity function f(x)=x as in the simple model that passed information from group A to group
B, only here the neurons are passing that information back to themselves. Much more complex models
are possible, however, including oscillators (dx/dt=[x2,-x1]), frequency-controlled oscillators
(dx/dt=[x3x2,-x3x1]), Kalman filters, and chaotic attractors. This can also be thought of as a kind of
reservoir computing, where instead of randomly choosing the recurrent connections, you derive the
connectivity that gives the desired dynamics.

Symbol Processing

While manipulating vectors is extremely powerful, many cognitive algorithms rely on manipulating
symbols with some sort of syntactic structure. How can neurally realistic models possibly represent
something like “Dogs chase cats” in such a way as to distinguish it from “Cats chase dogs”? How can
we manipulate these representations in useful ways?

It turns out that there are a family of models that already exist for converting symbolic logic into vector

manipulations. These are known as Vector Symbolic Architectures [15], and all follow the approach of
using high-dimensional vectors for each basic symbol, and then combining these vectors with various
mathematical operations to produce new vectors that encode full symbol structures. Unlike ideal
classic symbol systems, VSAs are lossy, in that as the symbol tree structure gets more complex, the
accuracy of extracting the original vectors from that vector gradually decreases.

Furthermore, the vectors maintain similarity, so that if “pink” and “red” have similar vectors, then
“pink square” and “red square” will also have similar vectors. This feature allows inductive reasoning
over complex patterns. For example, our neural model of the Raven's Progressive Matrix task (a
standard intelligence test where participants are given 8 visual patterns in a 3x3 grid and are asked to
determine what pattern should be placed in the missing square) works by forming the vector
representation of each pattern and computing the average transformation that that will take one pattern
to the next [5].

As a simple example of this approach, you can create high-dimensional (~500 dimensions for adult-
level vocabularies) unit vectors for each basic symbol (DOG, CAT, CHASE, SUBJECT, OBJECT,
VERB, etc.). These can be randomly chosen, or chosen so as to reflect standard similarity measures.
To create a symbol structure, you need two operations: addition (+) and circular convolution (⨂). The
sentence “Dogs chase cats” would then be S=DOG⨂SUBJECT+CHASE⨂VERB+CAT⨂OBJECT).
Given this sentence, you can extract a particular component by computing S⨂SUBJECT-1≈DOG,
where the inverse operation is a simple reordering of the elements in the vector. Addition is easy to
implement in neurons, as noted above. Interestingly, while circular convolution seems like a
complicated operation, you can break it down into a linear transformation, a large number of pairwise
multiplications, and another linear transformation. All of these operations are accurately approximated
by the NEF methods.

Spaun

The ability to perform symbol-like manipulations using vectors allows you to build very large-scale
cognitive models. Our largest model to date is Spaun, a 2.5 million spiking neuron model with a vision
system (formed by implementing a Restricted Boltzmann Machine Deep Belief Network with the
NEF), a single 6-muscle 3-joint arm for output, and a selective routing system (analogous to a
production system) implemented in spiking neurons comprising the cortex (for working memory
storage), the basal ganglia (for action selection), and the thalamus (for selectively routing information
between cortical areas) [7]. Various other cortical areas are also modeled, allowing for transformations
between visual, conceptual, and motor spaces, inductive pattern finding, and list memory. The model is
capable of performing eight different psychological tasks, including recognizing hand written digits,
memorizing digit lists and recalling particular items, pattern completion, reinforcement learning, and
mental addition. No changes to the model are made between tasks: instead, a visual input is provided
telling the model which task to perform next. We are aware of no other realistic neural model with this
combination of flexibility and biological realism.

Nengo

While the math provided in this article is sufficient for implementing the Neural Engineering
Framework on your own, we have also developed Nengo, an open-source cross-platform Java
application which implements the NEF. It is meant as both a teaching tool (with hands-on classroom
demos) and a research tool (all of our large-scale models are built with it, including Spaun). Neural
groups can be created through a drag-and-drop interface (Figure 3, left) or Python scripting. The
functions to approximate are similarly specified, with Nengo automatically computing the optimized

connection weights. Also included is a visualization interface for viewing and interacting with running
models, including support for simulated environments and physical robots (Figure 3, right). The
software, extensive documentation, and various tutorials are available at <http://nengo.ca>.

Figure 3: The Nengo software package. Left: the graphical interface for constructing models. Right:
the interactive display showing a running model, allowing for real-time interaction.

The purpose of Nengo is to provide you easy access to the biologically realistic modelling techniques
described in this article. The idea is that you should be able to take a hypothesized algorithm and
quickly create a biologically realistic neural model that implements that algorithm. Given that model,
you can make novel predictions as to the neural organization required, and the patterns of spiking
activity that should be observed if your hypothesis is correct. Furthermore, you get direct behavioural
predictions in terms of both timing and the effects of the neural approximation. This opens up
completely new avenues of research, bridging the gap between brains and behaviour.

[1] Eliasmith, C., & Anderson, C. H. (2003). Neural engineering: Computation, representation and
dynamics in neurobiological systems. Cambridge, MA: MIT Press.
[2] Eliasmith, C. (2005). A unified approach to building and controlling spiking attractor networks.
Neural computation. 7, 1276-1314.
[3] MacNeil, D., & Eliasmith C. (2011). Fine-tuning and the stability of recurrent neural networks.
PLoS ONE. 6(9).
[4] Bobier, B., Stewart T. C., & Eliasmith C. (2011). The attentional routing circuit: receptive field
modulation through nonlinear dendritic interactions. Cognitive and Systems Neuroscience Poster.
[5] Rasmussen, D., & Eliasmith, C. (2011). A neural model of rule generation in inductive reasoning.
TopiCS 3, 140-153.
[6] Stewart, T.C., Bekolay, T., & Eliasmith, C. (2012). Learning to select actions with spiking neurons
in the basal ganglia. Frontiers in Decision Neuroscience, 6.
[7] Stewart, T., Choo, F-X, & Eliasmith, C. (2012). Spaun: A perception-cognition-action model using
spiking neurons. Proceedings of the 34th Annual Conference of the Cognitive Science Society.
[8] Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition. New
York: Oxford University Press.
[9] Stewart, T.C., Choo, F-X., & Eliasmith, C. (2010). Dynamic behaviour of a spiking model of action
selection in the basal ganglia. In Proceedings of the 10th International Conference on Cognitive
Modeling, 235–240.
[10] Gunzelmann, G., Moore, R., Salvucci, D., & Gluck, K. (2011). Sleep loss and driver performance:

Quantitative predictions with zero free parameters. Cognitive Systems Research, 12(2), 154-163.
[11] Stewart, T., & Eliasmith C. (2012). Compositionality and biologically plausible models. Oxford
Handbook of Compositionality.
[12] Choo, F-X & Eliasmith, C. (2010). A spiking neuron model of serial-order recall. In Proceedings
of the 32nd Annual Conference of the Cognitive Science Society.
[13] Dethier, J., Nuyujukian P., Eliasmith C., Stewart T.C., Elassaad S. A., Shenoy K., & Boahen, K.
(2011). A brain-machine interface operating with a real-time spiking neural network control algorithm.
Neural Information Processing Systems (NIPS) 24.
[14] Parisien, C., Anderson C. H., & Eliasmith C. (2008). Solving the problem of negative synaptic
weights in cortical models. Neural Computation. 20, 1473-1494.
[15] Gayler, R. (2003). Vector symbolic architectures answer Jackendoff’s challenges for cognitive
neuroscience. ICCS/ASCS International Conference on Cognitive Science, Sydney, Australia:
University of New South Wales. 133-138.

	A Technical Overview of the Neural Engineering Framework
	Motivation
	Representation
	Computation
	Dynamics
	Symbol Processing
	Spaun
	Nengo

