Response Latency

One of the key advantages of using a realistic neural model
is that timing predictions emerge from the neural
parameters. We start by determining how long it takes the
model to select an action when there is a sudden change in
the input. Figure 9 shows the output for an action when its
utility is suddenly increased at t=0. This matches empirical
findings that in the rat basal ganglia, output neurons stop
spiking 14 to 17 milliseconds after a similar input pulse
(Ryan & Clark, 1991).
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Figure 9: Spiking produced (bottom) for a sudden change
in utility (top). Firing for action A stops 15.1ms after its
utility is increased.

We can also examine how long it takes the model to decide
between two actions as we adjust the difference between the
top two utility values. Figure 10 indicates how the latency
changes from very similar utility values (38ms mean
latency, standard deviation 8.8ms) to highly differing utility
values (14ms mean latency, standard deviation 1.5ms). As
far as we are aware, this is a novel prediction.

Figure 10: Mean and standard deviation of basal ganglia
response latency as for varying differences between utilities.
Error bars are 95% confidence intervals over 200 runs.

Cognitive Cycle Timing

In a full cognitive system, the output of the basal ganglia
would be used to affect the firing of other areas of the brain
(via the thalamus). This, in turn, will affect the input to the
basal ganglia, perhaps causing a different action to be
selected. This is the basis of our ongoing development of a
full production system using spiking neurons (Stewart,
Choo, and Eliasmith, 2010). To investigate how long this
whole cycle requires, we need to include the thalamus and a
simple cortical area in our model.
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For the cortex, we create a group of 5000 spiking neurons
representing the current state. These are connected to the
inputs to the basal ganglia so that the utility input for each
action will be the similarity (measured as the dot product)
between the current state and the ideal state for that action.
This is done using Equation 2, where f{x) is this similarity
measure. For the thalamus, we create neurons representing
the actions of switching to each possible state. They are
connected to the cortex similarly, such that the firing of one
group of neurons in the thalamus will cause the cortical
neurons to fire in a pattern representing that state.

To implement the chaining of actions one after the other,
we connect the output of the basal ganglia to the thalamic
neurons such that if the basal ganglia selects action A, this
will stop the inhibition of the thalamic neurons representing
state B, thus causing the cortex to go to state B, and the
basal ganglia to select action B. The actions are chained so
that A leads to B, B leads to C, C leads to D, and so on.
This can be thought of as a set of production rules of the
form “If A then B; If B then C; If C then D; etc.” The
newly added connections are excitatory, using AMPA-type
receptors ( =2ms). All other parameters remain the same.

With this model, we can measure the time taken to change
from one action to the next. This provides a measure of the
minimum amount of time needed to go from one step to the
next in a sequence of cognitive actions. In cognitive models
that use production systems, extensive behavioural data has
been gathered indicating that this value should be around 50
milliseconds (Anderson et al., 1995).

Figure 11 shows the mean and standard deviation of the
cycle times produce by our model. The shaded area shows
the timing produced when the correct realistic time
constants for the inhibitory GABA neurotransmitter are
used. Importantly, there are no parameters in our model that
we can vary to affect this performance. In should be noted
that our model predicts cycle times between 34 and 44
milliseconds, which is somewhat shorter than the standard
50 milliseconds value. However, this result is only for
simple actions: more complex actions are considered next.

Figure 11: Cognitive cycle times produced by our model
as the time constant | of the inhibitory neurotransmitter
GABA varies. The shaded area indicates parameter settings
consistent with neurophysiology (Gupta et al., 2000).
Cognitive models generally use a cycle time of 50ms.

To be cognitively useful, an action selection mechanism
needs to be able to trigger more complex actions than those
considered so far. In particular, production system rules
generally allow actions that can send a value stored in one



brain area to another. To model this we can create
connections between cortical areas such that driving a
cortical area to a particular value causes a second cortical
area to send its value to a third cortical area. This can be
implemented using Equation 2 (see Stewart, Choo, and
Eliasmith, 2010 for more details). The timing of these types
of actions are shown in Figure 12. While simple actions
require less than 50 milliseconds, complex actions require
more than 50 milliseconds.
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Figure 12: Cognitive cycle times produced for complex
actions by our model as the time constant of the inhibitory
neurotransmitter GABA varies.
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Conclusions

We presented a spiking neuron model of action selection
that matches the anatomy of the basal ganglia and does not
assume the presence of diffuse inhibitory interneurons in the
striatum. By constraining the neurons' behaviour to match
that of real neurons in the basal ganglia, we produce timing
predictions from our model without parameter fitting.
Figure 9 shows that these predictions match well for single-
cell recordings in rats, and Figure 11 shows a close match
for a wide range of cognitive psychology results. Our
model thus provides a neural explanation of the commonly
used 50 millisecond cognitive cycle time (e.g. Anderson et
al., 1995). It also produces novel predictions of increases to
this cycle time for situations where two possible actions
have similar utilities (Figure 10) and for actions involving
information transfer between brain areas (Figure 12).
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