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Model architecture

Motivation/Problem Results

« How can we perform reinforcement learning

(RL) in a biologically plausible neural model? Successtully solves a watermaze-type

navigation task where agent is placed in a
random location in the world and must
navigate to the goal. Only input Is the
current state (location of the agent) and a
reward of 1 when In the goal state.

« How do we extend this model to operate In
environments with unknown/variable time
delays between action selection, state
transition, and reward?

Reinforcement learning
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Established new neural model able to perform
reinforcement learning in a biologically
plausible manner

Decoding (activities = value)
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Analytically derived connection weights
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* Operates Iin continuous time/space

 Computes TD error signal using only current
reward as input

Works in SMDP environment

» Dealing with unknown/variable time delays

Error driven local learning rule » Incorporating systematic delays into learned

~ solution

A(l)ij — KOCjejESi(X) o
Opens possibility of more advanced SMDP-

based models (e.g., hierarchical
reinforcement learning)




