
LETTER Communicated by Robert Legenstein

Solving the Problem of Negative Synaptic Weights
in Cortical Models

Christopher Parisien
chris@cs.toronto.edu
Department of Computer Science, University of Toronto, Toronto,
ON M5S 3G4, Canada

Charles H. Anderson
cha@wustl.edu
Department of Anatomy and Neurobiology, Washington University School
of Medicine, St. Louis, MO 63110, U.S.A.

Chris Eliasmith
celiasmith@uwaterloo.ca
Centre for Theoretical Neuroscience, Departments of Philosophy and Systems Design
Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

In cortical neural networks, connections from a given neuron are either
inhibitory or excitatory but not both. This constraint is often ignored by
theoreticians who build models of these systems. There is currently no
general solution to the problem of converting such unrealistic network
models into biologically plausible models that respect this constraint.
We demonstrate a constructive transformation of models that solves this
problem for both feedforward and dynamic recurrent networks. The re-
sulting models give a close approximation to the original network func-
tions and temporal dynamics of the system, and they are biologically
plausible. More precisely, we identify a general form for the solution to
this problem. As a result, we also describe how the precise solution for a
given cortical network can be determined empirically.

1 Introduction

It is often suggested that constructing detailed theoretical models of neural
systems is indispensible to advancing our understanding of those systems
(Aamodt, 2000). The degree of biological plausibility of these models cor-
responds to our certainty regarding whether actual biological systems op-
erate in the same way as the model. Currently, biologically realistic models
are designed largely using a bottom-up methodology: observable physio-
logical constraints are respected by hand-wiring small populations of
neurons together (see, e.g., Selverston & Miller, 1980; Ekeberg, Lansner,

Neural Computation 20, 1473–1494 (2008) C© 2008 Massachusetts Institute of Technology

1474 C. Parisien, C. Anderson, and C. Eliasmith

& Grillner, 1995; Menschik & Finkel, 1999; McAlpine & Grothe, 2003).
However, many important behaviors of cellular networks are not yet
amenable to this method. The reasons vary from lack of physiological in-
formation to uncertainty regarding how to connect the elements to realize
a given network-level function. As a result, a more common approach to
modeling is to adopt a top-down method. In this case, models begin with
more simplified neurons and then either learn the desired function (see,
e.g., Zipser & Andersen, 1988; Deneve & Pouget, 2003) or analytically solve
for the necessary weights to realize some function (see, e.g., Zhang, 1996;
Pouget, Zhang, Deneve, & Latham, 1998; Seung, Lee, Reis, & Tank, 2000;
Xie, Hahnloser, & Seung, 1996; Conklin & Eliasmith, 2005; Kuo & Eliasmith,
2005). While such networks solve the problems of bottom-up models, they
have the converse problem of not being biologically plausible because of
the initial simplifying assumptions.

One central, and unrealistic, feature of networks resulting from top-
down approaches, whether learned or analytic, is that the resulting net-
works usually contain individual neurons with both negative (inhibitory)
and positive (excitatory) projections to other neurons in the network. In
contrast, there is a clear division between excitatory and inhibitory neurons
in the brain. This fact has become referred to as “Dale’s principle”: that all
projections from excitatory neurons are excitatory and all projections from
inhibitory neurons are inhibitory, except in rare cases (Strata & Harvey,
1999; Burnstock, 2004; Marty & Llano, 2005). Thus, there is seldom a mix
of excitation and inhibition resulting from a single neuron. This is in stark
contrast to neurons in top-down models. To “fix” these models, we need
to find some transformation of their connections such that all resulting
neurons have either inhibitory or excitatory connections, and all weights
from a single neuron must be positive (so that inhibitory neurons inhibit
and excitatory neurons excite). We refer to this problem of eliminating neg-
ative weights from such model networks as the negative weights problem.
Currently there exist no demonstrations of a general, biologically plausible
solution to this problem.

One simple and intuitive solution to the problem is to introduce an
inhibitory interneuron wherever a negative connection is needed, convert-
ing an excitatory signal into an inhibitory signal of equal magnitude. This
approach was used by Churchland (1995) in a model of stereoptic vision.
However, this solution remains biologically unrealistic for two reasons. First
it assumes that there are as many inhibitory cells as there are inhibitorily
connected cells in the original model. Clearly, this will vary from model to
model, but can be as high as 50% of the neurons in the model (Pouget et al.,
1998) despite the fact that only about 20% of neurons in cortex are inhibitory
(Hendry & Jones, 1981; Gabbott & Somogyi, 1986). Second, this solution as-
sumes that inhibitory neurons either receive input from or send output
to a single excitatory cell, which is clearly not the typical case (Freund &
Buzsáki, 1996). A cross-inhibitory circuit (Kamps & Velde, 2001) provides a

Solving the Negative Weights Problem 1475

solution for artificial neural networks, but it is both inefficient (introducing,
at a minimum, a 600% increase in the number of neurons) and violates
known biological connection constraints (Somogyi, Tamás, Lujan, & Buhl,
1998).

Building on work presented in Eliasmith and Anderson (2003), we
demonstrate that our general solution solves the negative weights problem
for arbitrarily connected feedforward or recurrent networks under linear
decoding schemes. The result of our proposed transformation consists of
a functionally equivalent network with no negative weights, whose pro-
portion of inhibitory to excitatory neurons matches known constraints, and
that results in only a 20% increase (i.e., the added inhibitory neurons) in the
number of cells in the original network.

2 Correcting Negative Weights

The solution is a constructive transformation for a network with a set of
mixed positive and negative synaptic weights between two neural ensem-
bles. The method makes all of the original weights excitatory and introduces
a small population of inhibitory interneurons. The end result provides two
parallel pathways, direct (excitatory) and indirect (inhibitory), which to-
gether are functionally equivalent to the original set of synapses.

To realize the solution, we take a population of neurons to encode the
value of a higher-level variable (e.g., stimulus parameter, behavioral pa-
rameter, internal state) in an ensemble of spike trains. A particular neuron
in such a population has its encoding determined by its traditionally mea-
sured tuning curve (e.g., activity over a receptive field sensitive to a stimulus
parameter such as orientation). Mathematically we can express any such
encoding as

ai (x) = Gi
[
αi

〈
x · φ̃i

〉
n + J bg

i

]
, (2.1)

where the activity ai (spike trains) of neuron i encodes aspects of the higher-
level variable x as determined by its preferred direction vector φ̃ into a
somatic current that includes a real-valued bias current, J bg

i , to account
for background activity, and a real-valued gain, αi , that scales and con-
verts units from the higher-level variable. The biophysical properties of the
neuron, captured by the nonlinear function Gi , map this somatic current
onto the neural activity as usual, using a standard neuron model such as
Hodgkin-Huxley, Rose-Hindmarsh, or leaky integrate-and-fire (Eliasmith
& Anderson, 2003). The angle brackets denote an inner product between the
two vectors of dimension n. While we have expressed the neural activity
ai (x) as a real-valued function (i.e., a rate code) to simplify the analysis, all
of the simulations here are performed using spike trains. The methods used
here are equivalent for both rate and spiking neuron models (Eliasmith
& Anderson, 2003). This model can be used to match the experimentally

1476 C. Parisien, C. Anderson, and C. Eliasmith

observed behavior of populations of neurons. Typically the preferred direc-
tion vectors over the population are chosen to result in a statistically similar
population of bell-shaped (cosine or gaussian) or monotonic tuning curves.
However, a much wider variety of tuning curves can be captured by this
model.

Once the encoding is defined, it is possible to find an optimal linear de-
coder for estimating the higher-level variable given the activities across the
population of neurons. To determine the contribution of a particular neu-
ron to the representation, we use a least-squares optimal linear regression
method to find decoders φ that minimize the error between the original
variable and the estimate (Salinas & Abbott, 1994; Eliasmith & Anderson,
2003). This results in an estimate of the form

x̂ =
N∑

i=1

ai (x)φi , (2.2)

where N is the number of neurons in the population, ai (x) is the activity (i.e.,
spike train) from neuron i and the φi , vectors of reals, are the optimal linear
decoders (Eliasmith & Anderson, 2003). In combination, equations 2.2 and
2.1 define the neural representation of the variable x.

Given this encoding and decoding, we can determine the connection
weights between two populations, A and B, which have different tuning
curves but represent the same variable. We assume that population A re-
ceives input of the current value of x and transmits this information to B.
The set of connection weights should give a linear transformation from the
output activities of A to the input currents of B. The connection weights for
this function (i.e., the identity function b(x) = x) are

w j i = α j
〈
φ̃ jφi

〉
n , (2.3)

where φi is the decoding from a presynaptic neuron ai , φ̃ j is the preferred
direction tuning for a postsynaptic neuron b j , and α j is the gain-and-
conversion factor as defined above. These weights can be found by simply
substituting the decoding equation for population A (see equation 2.2) into
the encoding equation for population B (see equation 2.1). As a result, we
can express the activities of the b j neurons as

b j (x) = G j

[
N∑

i=1

w j i ai (x) + J bg
j

]
. (2.4)

This set of connection weights will implicitly decode the higher-level vari-
able from the spikes of one population of neurons and convert this to
somatic currents for the next population. These particular weights (see

Solving the Negative Weights Problem 1477

Figure 1: Feedforward networks computing the identity function (b(x) = x).
(a) Structure of the networks before and after the elimination of negative
weights. The neurons ai , b j , and ck form the populations A, B, and C , respec-
tively. (b) Synaptic weights for an example with 20-neuron excitatory popula-
tions. (c) Decoded output from the 20-neuron examples, stimulated with 30 Hz
band-limited white noise over 0.5 s. This demonstrates that the information
passed is largely unaffected by the change in network topologies.

Figure 1b) effectively transfer the value of the higher-level variable from
the sending to receiving populations of neurons (see Figure 1c).

While this kind of communication channel is a useful example, it per-
forms no interesting function. It is more important to be able to perform

1478 C. Parisien, C. Anderson, and C. Eliasmith

arbitrary transformations on the encoded variables. Conveniently, the same
methods can be employed. Instead of finding decoders φ to decode an es-
timate of x (i.e., computing the identity function), the same linear least-
squares method can be used to provide decoders φg(x) for some arbitrary
function g(x). These new decoders, placed into equation 2.3, then provide
the synaptic weights needed to compute an estimate of g(x), which is rep-
resented in the receiving population, B.

In either case, however, there are no constraints on the sign (positive or
negative) of the weights governing the projection from A to B. To remove
the negative weights from such a network, we can systematically manipu-
late the decoders and encoders. We present a two-step method for effecting
this transformation. We begin by examining the feedforward network (see
Figure 1a), although we eventually show that the method extends to recur-
rent connections as well (see Figure 2a).

Suppose that there is a connection from a neural ensemble A to an en-
semble B that contains a mixture of positive and negative synaptic weights.
Suppose that A encodes a value of the variable x and transmits some func-
tion of x to B. To guarantee that all weights connecting Aand B are positive,
we can add a bias to each of b j ’s connections equal to the magnitude of its
largest negative weight (from A). Performing this step (step 1) systemati-
cally for each neuron in B will make all of the connection weights positive.
However, doing this will also result in excess current flowing into neurons
in B. That is, since we have increased only connection weights in the cir-
cuit, we are guaranteed that there will be more current flowing into at least
some postsynaptic cells after this augmentation. However, our goal is to
preserve the function of the connection, so we must find a way to balance
this excess current by using an appropriate inhibitory input (step 2). To
effect this balance, we first determine what new higher-level signal (i.e.,
function of x) has been introduced by the weight augmentation. We then
remove this added bias by appropriately decoding, in population B, a set of
inhibitory neurons that also receives information about changes in x from
population A. In short, determining the excitatory bias that results from the
weight augmentation (step 1) allows us to correct it with an ensemble of
inhibitory interneurons (step 2). What is unique is that we are able to do this
abstractly with higher-level variables and so have great flexibility in relat-
ing the solution to specific neural realizations (e.g., we can vary the number
of inhibitory neurons, the response properties of the various populations,
or the functions being computed in the circuit).

Step 1: Given a communication channel as defined above, the currents
flowing into the b j neurons are as follows:

Jj (x) =
N∑

i=1

ω
orig
ji ai (x) + J bg

j , (2.5)

Solving the Negative Weights Problem 1479

Figure 2: Recurrent networks acting as a neural integrator (ẋ = 0). (a) Structure
of the networks before and after the elimination of negative weights. Neural
ensembles are drawn as single units for simplicity. The recurrent synapses ω

are targeted by the transformation. (b) Decoded output from a neural integrator
before and after the elimination of negative weights. Inputs are 1 s square pulses
at various levels, and the networks are run for 3 s. The individual curves are from
each of 10 distinct simulations. This demonstrates that the network dynamics are
largely unaffected by the change in network topologies. (c) A section of spike
trains for the recurrent neurons and the interneurons, showing characteristic
firing patterns.

1480 C. Parisien, C. Anderson, and C. Eliasmith

where ω
orig
ji contain both positive and negative connection weights. We

augment each of these weights by a positive amount, equal in magnitude
to the most negative weight entering b j :

ω j i =ω
orig
ji + �ω j (2.6)

�ω j =−mini
(
ω

orig
ji

)
. (2.7)

Now the current entering b j is given by

Jj (x) =
N∑

i=1

ω j i ai (x) + J bg
j (2.8)

=
N∑

i=1

ω
orig
ji ai (x) +

N∑
i=1

�ω j ai (x) + J bg
j , (2.9)

where ω j i are all nonnegative. The bias term
∑N

i=1 �ω j ai (x) results in a
positive excess current flowing into each b j neuron. We will introduce a
population of inhibitory interneurons to correct this bias.

Step 2: To define this inhibitory population, it is helpful to consider a
higher-level signal represented by the bias current. Decomposing the bias
term using the encoder-decoder relationship of equation 2.3,

N∑
i=1

�ω j ai (x) =
N∑

i=1

α j φ̃
f
j φ f ai (x) (2.10)

= α j φ̃
f
j

N∑
i=1

φ f ai (x) (2.11)

= α j φ̃
f
j f (x), (2.12)

where φ̃
f
j and φ f, respectively, are the encoders and decoders for a scalar sig-

nal f (x). The φ f can be indexed by each input neuron ai , as in equation 2.3,
but for simplicity, we define each decoder to be a small, uniform, positive
constant. This choice of decoders is not important for our exposition of the
method. However, because this choice defines f (x), the bias function, and
because the bias function determines weights to and from the inhibitory
population (as we discuss shortly), our choice of decoders is important to
the precise topology of the network. In addition, an assumed bias func-
tion is empirically testable, thus connecting our method to experimental
evidence, as we describe in section 5. This means that certain choices for
f (x) will be determined to be appropriate and others will not be. Indeed,

Solving the Negative Weights Problem 1481

it is quite likely that f (x) varies with different kinds of inhibitory neurons,
different transmitters, different anatomical regions, and so on. Thus, our
purpose in having characterized the method in terms of a bias function is
to provide a degree of flexibility that allows its application across a wide
variety of circuits in an empirically relevant manner.

In this simple case, we scale φ f so that f (x) remains within the range [0,1]
to be consistent with the range of the representation of x in the circuit (see
Figures 1 and 2). Having defined φ f, we can solve for the function encoders:

φ̃
f
j = �ω j i

α jφ f
. (2.13)

As a brief aside, note that in cases where the A population always has
some neuron active for a value of x (which we assume is the common case),
the bias function will be nonzero for the entire domain of x. Let us then break
the bias function into a constant part (the minimum value) and a variable
part, so that f (x) = f1 + f2(x), where f1 = min(f (x)). We have found that
it is advisable to slightly underestimate this minimum to compensate for
decoding errors and noise in the circuit. Since only the variable component
is dependent on x, the constant can be absorbed into the background current
of the B neurons. This reduces the amount of inhibitory current that must
be provided by the interneurons, which can prove useful for reducing the
firing rates of the inhibitory cells. Note, however, that splitting the bias
function into two parts is not essential to the method. Presumably empirical
evidence for a given circuit would determine whether this variation is
relevant.

Adopting this decomposition of the bias function, we can now express
the bias current as follows:

J f
j (x) = α j φ̃

f
j f (x) (2.14)

= α j φ̃
f
j (f1 + f2(x)) (2.15)

= α j φ̃
f
j f1 + α j φ̃

f
j f2(x). (2.16)

The first component of equation 2.16 is constant, so it can be incorporated
into the background current of the b j neurons as suggested:

J bgnew
j = J bg

j − α j φ̃
f
j f1. (2.17)

The second part of equation 2.16 is dependent on x and so must be corrected
by an explicit input from the inhibitory population C .

The first step in creating this inhibitory population is to define how the
interneurons ck will be tuned. Since the bias function f (x) is always posi-
tive, these neurons will receive only inputs greater than zero. Specifically,

1482 C. Parisien, C. Anderson, and C. Eliasmith

Figure 3: Sample tuning curves for an ensemble of 50 interneurons. The small,
negative domain allows some neurons to show substantial minimal firing at
low values of the positive-only input.

recall that we have scaled φ f to be in the range [0, 1]. We set all of the en-
coders φ̃

f
k in C to 1, giving only positively sloped (“on”) neurons. Since the

decoders φ f are already positive, all of the connection weights from A to C
will now be positive. To determine appropriate thresholds for the inhibitory
neurons, we can turn to experimental studies of the tuning sensitivities of
interneurons in the striate cortex (Azouz, Gray, Nowak, & McCormick,
1997). In response to a range of direct injected current, neurons showed
near-zero firing at low current. However, in response to visual stimuli,
some neurons showed a substantial minimal response (i.e., nonzero firing
to no stimulus, that is, at x = 0). We therefore allow firing thresholds in C
to reach −0.1 which results in neurons with similar minimal firing. Figure 3
shows a sample set of tuning curves for ck neurons in our networks, illus-
trating this property. Functionally, minimal firing is important as it allows
greater neural activity at low magnitudes of x, substantially improving the
representational accuracy of f (x) in C .

We can now define the soma current delivered to the ck neurons:

Jk(x) =αk φ̃k f (x) + J bg
k (2.18)

=αk

∑
i

φ f ai (x) + J bg
k (2.19)

=
∑

i

ωki ai (x) + J bg
k , (2.20)

Solving the Negative Weights Problem 1483

where ωki = αkφ
f are the positive input weights. Since we have corrected

for the constant part of f (x) in the background current of the b j neurons,
we adjust the background current for each ck :

J bgnew
k = J bg

k − αk f1. (2.21)

This way, C will output only the needed correction, the variable component
of f (x), f2(x), defined earlier.

We can now use C to estimate f2(x) by finding the appropriate decoders
as in equation 2.2. Specifically, we find a set of positive decoders φk to
decode the variable component:

f̂2(x) =
∑

k

φkck(f (x)). (2.22)

Importantly, our earlier choice of the bias function plays a critical role in
determining the value of these decoders. This is because these decoders
are being found in order to estimate (part of) that original bias function. If
the bias function changes, so will the φk , and hence so will the connection
weights from C to B.

Note that even though some of the ck neurons may be sensitive to nega-
tive values, these values never need to be represented since the bias function
is always defined to be positive. We can thus ignore negative values when
solving for the φk , guaranteeing only positive decoders. Note also that while
larger populations of neurons improve the accuracy of the representation
of this function in C (Eliasmith & Anderson, 2003), a highly accurate repre-
sentation is provided by using 20% of the total number of cells in A and B
(see section 4), meeting the biological constraint that originally motivated
this method. In general, the proportion of inhibitory cells is determined by
our knowledge of the specific biological circuit being modeled.

We can now complete our circuit by incorporating the additional current
from the inhibitory neurons into B. The total current into the b j neurons is
now given by the total from A and C :

J j (x) =
∑

i

ω j i ai (x) + J bgnew
j −

∑
k

ω jkck(f (x)), (2.23)

where ω jk = α j φ̃
f
j φk . The resulting network preserves the original transfor-

mation using only positive synaptic weights as desired.
In the case of a recurrent circuit, we simply substitute bi neurons for

the ai neurons in the above derivation, so that we consider synapses from
neurons bi to b j . Otherwise the method is identical. Note also that we made
no limiting assumptions regarding the function of the original weights or

1484 C. Parisien, C. Anderson, and C. Eliasmith

the nature of the representation across the populations. As a result, the
method is generally applicable.

To summarize, the end result of the application of this method is the
transformation of an original mixed weight circuit to a new positive weight
circuit with parallel pathways that performs the same neural computation
as the original circuit. A direct excitatory pathway computes the intended
function with an extra bias component resulting from a weight augmenta-
tion that guarantees only positive connections. An inhibitory pathway com-
prising interneurons corrects for that bias also using only positive weights.
The target neurons thus keep the same soma current and the same rep-
resentation that they had in the original network. This transformation is
clearly repeatable for multiple-layer or recurrent networks. The resulting
circuits bear a strong resemblance to biological networks since feedforward
and feedback inhibition are common cortical features, the proportion of
inhibitory and excitatory connections can be made to reflect that observed
in cortical networks, and the structure as shown in Figure 1a is consistent
with highly connected interneurons (Buzsáki, 1984; Freund & Buzsáki, 1996;
Somogyi et al., 1998).

3 Network Simulations

To demonstrate the solution, we apply the transformation to models of two
typical network structures, feedforward and recurrent. Both the original
and transformed networks are run in the Neural Engineering Simulator
(NESim), which provides a Matlab environment for developing and test-
ing computational models under the framework described here and by
Eliasmith and Anderson (2003).1 All simulations use leaky integrate-and-
fire (LIF) neurons (Koch, 1999) with 10% background noise and realistic
postsynaptic currents (PSCs; see below).

3.1 Feedforward Networks. The feedforward networks are an imple-
mentation of the general structure defined in equations 2.1 to 2.4 and cor-
rected using the method defined above. While the simulations use LIF
neurons, the construction method itself is independent of the LIF model,
and requires no additional considerations to account for its temporal as-
pects. We aim to demonstrate that network performance is robust to the
temporal changes introduced by the inhibitory pathway.

The feedforward networks consist of two populations, A and B, of 200
LIF neurons each, or 300 each in the case of vector representation. A en-
codes the input signal, which it passes on to B. To determine the relevant
biophysical parameters, we simulate hippocampal principal neurons with

1NESim may be found at http://compneuro.uwaterloo.ca/. The method to correct
negative weights has been added to NESim as an automated process.

Solving the Negative Weights Problem 1485

AMPA-mediated PSCs with decay constants of τ = 5 ms (Jonas, Major, &
Sakmann, 1993). The transformation introduces a population of either 50
or 75 fast-spiking (FS) inhibitory interneurons, to match the 20% propor-
tion found in cortex (Hendry & Jones, 1981; Gabbott & Somogyi, 1986).
Hippocampal AMPA-mediated synapses on inhibitory interneurons are
fast (Geiger, Lübke, Roth, Frotscher, & Jonas, 1997; Carter & Regehr, 2002;
Walker, Lawrence, & McBain, 2002), being well modeled by PSCs with τ =
1 ms for these synapses. Slower GABA-mediated inhibitory synapses with
τ = 4 ms project onto the B neurons (Bartos, Vida, Frotscher, Geiger, &
Jonas, 2001; Bartos et al., 2002). Thus, signals from both pathways arrive
with similar amounts of delay at target cells. The parameters for the LIF
neuron models are as follows: membrane time constant τRC = 10 ms; re-
fractory period τref = 1 ms; peak firing rates over the represented range are
chosen from a uniform distribution over 200 to 400 Hz. Inhibitory interneu-
rons are similarly modeled, except that their firing saturates at a higher rate:
between 500 and 700 Hz (Azouz et al., 1997).

For the scalar communication channel, neurons respond to values within
the range [−1, 1]. In the vector example, neurons are tuned to magnitudes
less than or equal to 2. In the polynomial transformation, Aneurons respond
over [−1 to 1], and B neurons respond over [−1.5 to 1.5]. The inhibitory
neurons in C always respond over the range [−.1, 1] as discussed earlier.
In all cases, the thresholds at which neurons begin to fire are chosen from a
uniform distribution over the relevant range.

Two of the feedforward networks represent scalars in both ensem-
bles, and one network represents a three-dimensional vector. Connection
weights between these ensembles are found by least-squares optimization
(Eliasmith & Anderson, 2003), depending on the transformation desired.
For the simple communication channel, we let g(x) = x, as discussed in
the previous section, and for the polynomial transformation, we let g(x) =
0.5x2 − x.

In the subsequent simulations, we generate 10 networks to determine
the systematic effects of the network transformation. For each of the 10
networks, we independently transform the network to remove negative
weights and then simulate it over a 1 second period. We use 30 Hz
band-limited white noise signals to test the scalar networks. For the vec-
tor networks, the three-dimensional vector input follows a helical path,
(sin(40t), cos(40t), sin(10t)).

3.2 Postsynaptic Currents and Temporal Decoding. Spikes in the net-
work simulation produce PSCs in postsynaptic cells with exponential decay.
A model of a simple exponential PSC is given by

h′(t) = 1
τ

e−t/τ , (3.1)

1486 C. Parisien, C. Anderson, and C. Eliasmith

Figure 4: Postsynaptic current. (a) A 5 ms PSC in the time domain. The double
filter gives the PSC a noninstantaneous rise time. (b) Frequency response of the
PSC.

where τ is the synaptic time constant. However, this model results in in-
stantaneous rise times in the PSC. For the simulations in this work, we use
a more realistic PSC, defined as the application of two such exponentials.
Specifically, this PSC model is the convolution of two of the above exponen-
tial filters, h′

1(t) ∗ h′
2(t), where h′

1(t) and h′
2(t) have different time constants.

We set the constant for the first filter to be the primary decay constant,
and we set the second at 20% of this. As shown in Figure 4, the PSC now
has a noninstantaneous rise time, more typical of PSCs observed in vivo
(Jonas et al., 1993). The additional filtering of the PSC does not substantially
change the dynamics described for the recurrent networks.

Given the expression for the PSC, h(t), we can decode an estimate for
a temporal signal x(t) from a population of spiking neurons using the
following:

x̂(t) =
∑
i,n

φi h(t − tin), (3.2)

where tin give the spike time occurrences from neuron i . Temporal decod-
ing, then, is the summation of individual PSCs over time using the same
decoders φi found earlier. We introduce noise into the simulations using
gaussian spike time jitter with zero mean. This equation is analogous to
equation 2.2, and does not change the rest of the derivations. Input to the
first layer of neurons (here, layer A) is given by multiplying the signal x(t)
by the encoders φ̃i and directly injecting the current into the neuron somas
as in equation 2.1.

Solving the Negative Weights Problem 1487

Figure 5: Higher-level block diagram for the neural integrator. The boxes denote
the input and state variables, and the circles denote the input and dynamics
matrices. For clarity, we use the state variable, x(t), in place of the transfer
function, h′(t), to designate the population.

3.3 Recurrent Networks. To implement a network with recurrent con-
nections within an ensemble, we use an adaptation of modern control theory
to neural dynamics as described in Eliasmith and Anderson (2003). There it
is shown that the state equation for a linear dynamical system implemented
in a biologically plausible network can be written as

x(t) = h′(t) ∗ [A′x(t) + B′u(t)], (3.3)

for the state variables x(t), input u(t), postsynaptic current response h′(t),
neural dynamics matrix A′ = τsyna pseA + I, and neural input matrix B′ =
τsyna pse B, where A and B are the dynamics and input matrices for any linear
dynamical system in standard form (the dimensions of the matrices reflect
the dimension of the represented signal). Applying this characterization to
a scalar integrator (i.e., where A = [0] and B = [1]) results in A′ = [1] and
B′ = [τsyna pse] defining the neural circuit (Eliasmith & Anderson, 2003). This
circuit is shown in Figure 5.

To explicitly implement this circuit, we define two neural ensembles, H
and G, to represent the two state variables u(t) and x(t), respectively. For
this simulation, H has 100 LIF neurons, and G has 200 neurons. We find the
connection weights by substituting equation 3.3 into the encoding equation
equation 2.1 for G, giving:

gi (x(t)) = Gi
[
αi 〈x(t) · φ̃i 〉 + J bg

i

]
= Gi

[
αi 〈h′(t) ∗ [A′x(t) + B ′u(t)]φ̃i 〉 + J bg

i

]
= Gi

[∑
i

ω j i gi (x(t)) +
∑

i

ωil hl (u(t)) + J bg
i

]
,

where the recurrent connection weights ω j i = αi φ̃iφ j A′ and the weights
from H to G are ωil = αi φ̃iφl B ′. The resulting network contains fully recur-
rent connections among the neurons of G.

1488 C. Parisien, C. Anderson, and C. Eliasmith

We run this simulation using recurrent NMDA-mediated synapses with
τ = 150 ms as is common (Kinney, Peterson, & Slater, 1994; Seung, 1996).
In keeping with the previous method, we introduce a population of 40
inhibitory interneurons I into the recurrent connections. We do not modify
the input connections, so all changes in network function are attributable
to the transformed recurrent weights. Synapses from G to I are NMDA
mediated, with τ = 150 ms. Synapses from I to G are GABA mediated,
with τ = 4 ms. The LIF neuron parameters for the integrator network are
otherwise the same as for the neurons of the feedforward networks.

For each of 10 networks generated of this type, we independently trans-
form the network to correct negative weights and test each version with
square-pulse input signals. We test 10 pulses of amplitudes from −1 to 1 at
intervals of 0.2 (omitting 0). We test each pulse for 1 s and observe the drift
of the signals for 2 s after the pulse.

4 Results

We determine the effectiveness of the method by generating a variety of net-
work types. We investigate linear, nonlinear, and multidimensional trans-
formations in feedforward networks, as well as recurrent networks simu-
lating a neural integrator. The results shown here examine changes in the
accuracy and dynamics of the networks as a result of correcting negative
synaptic weights. These results demonstrate that the method is effective in
preserving the intended functionality of the networks.

We first consider a feedforward network that acts as a simple commu-
nication channel, which sends a scalar time-varying signal between two
200-neuron populations A and B. The transformation introduces a popula-
tion of inhibitory interneurons, as demonstrated in Figure 1a. We simulate
with parameters based on hippocampal networks by using fast AMPA-
mediated PSCs (Jonas et al., 1993). Figure 1b demonstrates that all negative
connection weights are eliminated with this method. Figure 1c shows the
results of using a scalar input defined by 30 Hz band-limited white noise
with root mean square (RMS) = 0.5 on both the original and transformed
networks. Table 1 summarizes the effects of the transformation on the er-
ror in various representations and computations averaged over 10 different
networks (i.e., networks with independently and randomly chosen neuron
response functions) of each type. As demonstrated there, the transformation
is both effective, with differences in RMS error below 0.25%, and general,
being robust to the dimension of the represented signal or the linearity
of the computation performed by the network. While the behavior of the
transformed network does not perfectly match that of the original, the dif-
ferences are reasonable and maintain the intended behavior of the network.

Recurrent networks present unique challenges for introducing inhibi-
tion. If the inhibitory pathway is too slow, unbalanced excitatory feedback
could cause instability. As well, errors introduced by the additional pathway

Solving the Negative Weights Problem 1489

Table 1: Network Simulation Results.

Original RMS Error Corrected RMS Error
Network Type (% of Magnitude) (% of Magnitude)

Scalar 2.68 2.68
Vector 5.61 5.85
Polynomial transformation 3.49 3.46
Learned weights 4.35 4.23

Original drift τ (s) Corrected drift τ (s)
Integrator 34.6 27.3

Notes: The RMS error is in the signals represented by 10 networks before and after the
weight correction. The error is given as the difference in magnitude of the represented
value from the ideal result. The integrator drift is the average time constant for an expo-
nential drift in the signal.

could substantially change the dynamics of the system. To test the response
of such a network, we examine a model of the scalar neural integrator
described above, which has been implicated in eye control in the oculomotor
system (Robinson, 1989; Fukushima, Kaneko, & Fuchs, 1992; Moschovakis,
1997; Eliasmith & Anderson, 2003). A side-by side comparison between the
integration of input signals before and after this transformation is shown
in Figure 2b. Table 1 summarizes the average drift speed time constant dif-
ference between 10 sets of original and transformed networks. The trans-
formed networks largely preserve the dynamics of the original networks.
We do see some adverse effects, as the drift rate increases by 21.1% on av-
erage and the standard deviation of 1/τ increases significantly from 0.0416
to 0.0557. However, the networks still provide a reasonable approximation
to the intended behavior.

4.1 Arbitrary Weight Structures. While general, the example networks
we have considered so far are generated by the analytic methods described
by Eliasmith and Anderson (2003). In particular, we have expressed the
synaptic weights as the product of decoding and encoding components
and the relevant dynamics and input matrices. Since this is a new method,
the majority of models do not use it. As a result, for the solution to be usable
in general, it must be possible to take an arbitrary mixed-sign connection
matrix and transform it into a biologically plausible circuit. Conveniently,
the method described earlier extends to models with experimentally de-
termined, prespecified, or learned weights. In these cases, the encoding-
decoding abstraction defined here has not been used; it is not possible to
decompose the weights into separate encoding and decoding components.
Notice, however, that the original weights w j i = α j 〈φ̃y

j φ
x
i 〉n only need to be

decomposed for the encoder-decoder relationship of the bias function in
equation 2.13. Thus, it is sufficient to know only the gain-and-conversion
factor α j to decompose the weights as needed. To find α j , we can simply fit

1490 C. Parisien, C. Anderson, and C. Eliasmith

the neural nonlinearity G j [·] to the neural responses assumed in the orig-
inal model (many models will in fact already have defined an equivalent
parameter). Once α j is determined, we can correct negative weights for an
arbitrary circuit.

To demonstrate this method, we use a Hebbian rule to learn a com-
munication channel like that shown in Figure 1a (Eliasmith & Anderson,
2003). As in the earlier example, we connect two populations of 200 LIF
neurons each, except that the initial connection weights ω j i are chosen from
a uniform distribution over the same range as found in one of the existing
networks. We update the connection weights using a standard delta rule,
seeking to minimize the variance in the neural responses:

�ω j i = −κ(b j (x) > 0)ai (x)(b j (x) − b̄ j (x)), (4.1)

where κ is the learning rate and b̄ j (x) is a running mean of the activity.
Once the weight updates stabilize, we perform the transformation on the
network.

Table 1 shows the RMS error averaged over 10 learned networks before
and after the transformation tested on 30 Hz band-limited white noise. As
with the analytic circuits, the RMS difference between the mixed-weight
and positive weight circuits is small and remains below 0.15%.

5 Discussion

Both feedforward and recurrent networks, and both analytic and learned
circuits, can be effectively transformed with this method. In each of the feed-
forward cases, the circuits demonstrate only minor changes in performance
as measured by RMS error, indicating that the method is robust and largely
insensitive to the computation performed. It is notable that the dynamics
of the neural integrators changes, as shown by a slightly faster mean drift
rate. This is expected, since the transformed network is subject to a small
delay and extra noise in the inhibitory path. Practically speaking, this sug-
gests that models that allow the presence of negative weights (i.e., ignore
interneurons) may systematically overestimate network performance for a
given number of neurons. However, the intended dynamics remain highly
similar, preserving the overall function of the network.

Importantly, the synaptic organization required by this method is
strongly similar to that found in cortical networks. Depending on the type
of network transformed, we introduce either feedforward or feedback in-
hibition (Buzsáki, 1984; Somogyi et al., 1998). Since the inhibitory neurons
are connected as an ensemble, each neuron receives a large number of in-
puts and projects a large number of outputs (on the order of the connected
populations). Again, this matches cortical observations (Freund & Buzsáki,
1996), eliminating a central shortcoming of past solutions, as outlined in

Solving the Negative Weights Problem 1491

section 1. The resulting inhibitory circuits are also robust; in virtue of our
high-level solution to the problem (i.e., having adopted a population cod-
ing approach), the loss of a small number of neurons or connections will
not dramatically affect the overall accuracy of the network (Eliasmith &
Anderson, 2003). For similar reasons, there are no constraints on how many
inhibitory neurons must be used. Although more neurons result in a better
correction of the bias, this is a parameter that can be experimentally in-
formed. In short, unlike previous techniques, this method can be applied
to a variety of networks while maintaining biological plausibility.

5.1 Predictions. As noted during the description of the method, there
are some steps in the transformation that are subject to experimental tests.
Recall that in the network transformation, we add a bias to each of the
synaptic weights in order to make them positive (i.e., all excitatory). For
each postsynaptic neuron b j , we add a bias to all of its incoming weights
equal to the magnitude of its largest negative weight. These augmented
weights increase the level of current flowing into the postsynaptic neurons,
which is then corrected by the new inhibitory interneurons. As explained
earlier, the weight bias computes some additional function of the higher-
level values represented by the neurons. We let this function, which we
call the bias function, take on an arbitrary form by defining a set of linear
decoding weights for the function to be uniform positive constants. As an
example, given monotonic response functions, this bias function will take
on an approximately parabolic shape, where the decoded value increases
with the magnitude of the input. This is an interesting prediction about the
response properties of the neurons involved: while the excitatory neurons
are tuned to the time-dependent signal (x(t)), the inhibitory neurons are
tuned to the sum of their inputs.

While the bias function is an abstract computation, the resulting current
must be explicitly processed by the inhibitory interneurons and as such will
determine their firing patterns. It is here that this solution can be informed
by experimental results. We have let the bias function take a form that is
effective, but it is not based on the observed effects of neural inhibition in
a circuit. As a result, we can consider the effects of removing inhibition
from this model circuit (see Figure 6). Specifically, we can predict that if
this is the correct biasing current, a GABAA-receptor antagonist bicuculline
experiment that blocks inhibition should result in deviations like those
shown in Figure 6. Such an experiment, even if it contradicts this specific
prediction would provide valuable information as to the precise form of the
bias function.

It is an open problem as to how the inhibitory weights in these networks
may be learned. While in this description the inhibitory weights are de-
pendent on the most negative weight in the initial network, in reality there
would be no initial network. It may be possible to pose an optimization
problem related to Figure 6, where the inhibition linearizes the response at

1492 C. Parisien, C. Anderson, and C. Eliasmith

Figure 6: The effects of removing inhibition in a feedforward network. The
x-axis is the input to the network, and the y-axis is the decoded output for
that input. As shown, removing inhibition from the modified network retains
good representation at low magnitudes, suggesting that the inhibition primarily
linearizes the response at higher magnitudes.

high magnitudes. Such an optimization must be solved by a plausible local
learning rule. We leave exploration of such rules as an important future
challenge.

6 Conclusion

In general, this method can be taken to show that biologically implausible
models that assume mixed weights do not in principle perform functions
that cannot be performed by the brain. However, it is clear that direct
comparisons between mixed weight models and the mechanisms found
in biological systems may be misleading. In particular, the magnitude and
distribution of weights and the kinds of currents observed within cells will
be different in the models before and after employing this transformation.
As a result, we expect the method to be particularly relevant for more
explicit comparisons of models to experimental results.

Acknowledgments

We are grateful to Bryan Tripp, Ray Singh, and the anonymous reviewers
for their helpful discussions and comments. This work is supported by the
National Science and Engineering Research Council of Canada (261453-
05), the Canadian Foundation for Innovation (3358401), and the Ontario
Innovation Trust (3358501).

Solving the Negative Weights Problem 1493

References

Aamodt, S. (Ed). (2000). Computational approaches to brain function [Special issue].
Nature Neurosci., 3(11s).

Azouz, R., Gray, C. M., Nowak, L. G., & McCormick, D. A. (1997). Physiological
properties of inhibitory interneurons in cat striate cortex. Cereb. Cortex, 7, 534–
545.

Bartos, M., Vida, I., Frotscher, M., Geiger, J. R. P., & Jonas, P. (2001). Rapid signaling
at inhibitory synapses in a dentate gyrus interneuron network. J. Neurosci., 21(8),
2687–2698.

Bartos, M., Vida, I., Frotscher, M., Meyer, A., Monyer, H., Geiger, J. R. P., et al.
(2002). Fast synaptic inhibition promotes synchronized gamma oscillations in
hippocampal interneuron networks. Proc. Natl. Acad. Sci. U.S.A., 99(20), 13222–
13227.

Burnstock, G. (2004). Cotransmission. Curr. Opin. Pharmacol., 4, 47–52.
Buzsáki, G. (1984). Feed-forward inhibition in the hippocampal formation. Prog.

Neurobiol., 22, 131–153.
Carter, A. G., & Regehr, W. G. (2002). Quantal events shape cerebellar interneuron

firing. Nature Neurosci., 5, 1309–1318.
Churchland, P. M. (1995). The engine of reason, the seat of the soul: A philosophical journey

into the brain. Cambridge, MA: MIT Press.
Conklin, J., & Eliasmith, C. (2005). A controlled attractor network model of path

integration in the rat. J. Comput. Neurosci., 18(2), 183–203.
Deneve, S., & Pouget, A. (2003). Basis functions for object-centered representations.

Neuron, 37, 347–359.
Ekeberg, O., Lansner, A., & Grillner, S. (1995). The neural control of fish swimming

studied through numerical simulations. Adapt. Beh., 3(4), 363–384.
Eliasmith, C., & Anderson, C. H. (2003). Neural engineering: Computation, representa-

tion and dynamics in neurobiological systems. Cambridge, MA: MIT Press.
Freund, T., & Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6,

637–470.
Fukushima, K., Kaneko, C. R. S., & Fuchs, A. F. (1992). The neuronal substrate of

integration in the oculomotor system. Prog. Neurobiol., 39, 609–639.
Gabbott, P. L., & Somogyi, P. (1986). Quantitative distribution of GABA-

immunoreactive neurons in the visual cortex (area 17) of the cat. Exp. Brain Res.,
61(2), 323–331.

Geiger, J. R. P., Lübke, J., Roth, A., Frotscher, M., & Jonas, P. (1997). Submillisecond
AMPA receptor-mediated signaling at a principal neuron-interneuron synapse.
Neuron, 18, 1009–1023.

Hendry, S. H., & Jones, E. G. (1981). Sizes and distributions of intrinsic neurons
incorporating tritiated GABA in monkey sensory-motor cortex. J. Neurosci., 1(4),
390–408.

Jonas, P., Major, G., & Sakmann, B. (1993). Quantal components of unitary EPSCs at
the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol.
(London), 472, 615–663.

1494 C. Parisien, C. Anderson, and C. Eliasmith

Kamps, M. de, & Velde, F. van der. (2001). From artificial neural networks to spiking
neuron populations and back again. Neural Networks, 14, 941–953.

Kinney, G. A., Peterson, B. W., & Slater, N. T. (1994). The synaptic activation of IV-
methyl-D-aspartate receptors in the rat medial vestibular nucleus. J. Neurophysiol.,
72(4), 1588–1595.

Koch, C. (1999). Biophysics of computation: Information processing in single neurons. New
York: Oxford University Press.

Kuo, P. D., & Eliasmith, C. (2005). Integrating behavioral and neural data in a model
of zebrafish network interaction. Biol. Cybern., 93(3), 178–187.

Marty, A., & Llano, I. (2005). Excitatory effects of GABA in established brain net-
works. Trends Neurosci., 28(6), 284–289.

McAlpine, D., & Grothe, B. (2003). Sound localization and delay lines—Do mammals
fit the model? Trends Neurosci., 26(7), 347–350.

Menschik, E. D., & Finkel, L. H. (1999). Cholinergic neuromodulation and
Alzheimer’s disease: From single cells to network simulations. Prog. Brain Res.,
121, 19–45.

Moschovakis, A. K. (1997). The neural integrators of the mammalian saccadic system.
Front. Biosci., 2, d552–577.

Pouget, A., Zhang, K., Deneve, S., & Latham, P. E. (1998). Statistically efficient esti-
mation using population coding. Neural Comput., 10, 373–401.

Robinson, D. A. (1989). Integrating with neurons. Annu. Rev. Neurosci., 12, 33–45.
Salinas, E., & Abbott, L. F. (1994). Vector reconstruction from firing rates. J. Comput.

Neurosci., 1, 89–107.
Selverston, A. I., & Miller, J. P. (1980). Mechanisms underlying pattern generation

in lobster stomatogastric ganglion as determined by selective inactivation of
identified neurons. I. Pyloric system. J. Neurophysiol., 44(6), 1102–1121.

Seung, H. S. (1996). How the brain keeps the eyes still. Proc. Natl. Acad. Sci. U.S.A.,
93, 13339–13344.

Seung, H. S., Lee, D. D., Reis, B. Y., & Tank, D. W. (2000). Stability of the memory of
eye position in a recurrent network of conductance-based model neurons. Neuron,
26, 259–271.

Somogyi, P., Tamás, G., Lujan, R., & Buhl, E. H. (1998). Salient features of synaptic
organisation in the cerebral cortex. Brain Res. Rev., 26, 113–135.

Strata, P., & Harvey, R. (1999). Dale’s principle. Brain Res. Bull., 50(5/6), 349–350.
Walker, H. C., Lawrence, J. J., & McBain, C. J. (2002). Activation of kinetically distinct

synaptic conductances on inhibitory interneurons by electrotonically overlapping
afferents. Neuron, 35, 161–171.

Xie, X., Hahnloser, R. H. R., & Seung, H. S. (1996). Double-ring network model of
the head-direction system. Phys. Rev. E, 66, 041902.

Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of
the head-direction cell ensemble: A theory. J. Neurosci., 16(6), 2112–2126.

Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network that
simulates response properties of a subset of posterior parietal neurons. Nature,
331, 679–684.

Received July 30, 2006; accepted August 2, 2007.

