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Introduction

o We Iintroduce a new RNN, the LMU, that
outperforms LSTMs by 10° x on a 10° x more
difficult memory task.

o The LMU sets a new state-of-the-art result on
PSMNIST (97.15%) — a standard RNN benchmark.

o The LMU uses 38% fewer parameters and trains
10x faster than competitors.

Methods

LMUs provide the optimal solution for representing a
sliding window of 6 seconds using d variables [1, 2].

It does so by implementing the dynamical system:
fr(t) = Am(t) + Bu(t)
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The memory m(t) € R4 orthogonalizes the previous
6 seconds of history, as In:

u(t —60") ~ Sﬂ; (%) m;(t)

where P are the shifted Legendre polynomials.
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Model Validation Test

RNN-orth 88.70 89.26
RNN-1d 85.98 86.13
LLSTM 90.01 89.86
LSTM-chrono 88.10 88.43
GRU 02.16 92.39
JANET 92.50 91.94
SRU 92.79 92.49
GORU 86.90 87.00
NRU 95.46 05.38
Phased LSTM  88.76 89.61
.MU 96.97 97.15
FF-baseline 82 .37 02.65

Left: SotA performance of
RNNs on the permuted
sequential MNIST
benchmark. 102K vs
165K parameters. LMU
uses d = 256 dimensions.

LMU vs LSTM
memory capacity for
different delay lengths
given a 10Hz white noise
input. 500 vs 41,000
parameters. 105 vs 200
state variables.
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Main Results

1071

Memory Capacity of Recurrent Architectures

LMU-0 (T=100)
—— LMU-0 (T=1000)
— LMU-0 (T=10000)
— LMU-0 (T=100000)

LSTM (T=25)

- LSTM (T=100)

LSTM (T=400)
LSTM (T=1600)

100 101 102 103 10 105
Delay Length (# Time-steps)

o Consists of an optimal linear memory coupled with nonlinear units.

Architecture

o Stackable and trainable via backpropagation through time.
o A and B are discretized by an ODE solver and can be trained
together with 6 — although this is typically unnecessary.
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Nonlinear

h; = f (Wxx + Wphy 1 + W my)

Impact

o Many opportunities to replace LSTMs with LMUs.

o LMUs are derived from first principles, hence
amenable to analysis (unlike most other RNNs).

o Deployed on low-power, spiking neuromorphic
hardware for energy-efficient Al (see figure).
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Figure: LMU running on Braindrop — mixed
analog-digital spiking neuromorphic hardware [3].
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