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Abstract—
Low-power, high-speed neural networks are critical for provid-

ing deployable embedded AI applications at the edge. We describe
an FPGA implementation of Neural Engineering Framework
(NEF) networks with online learning that outperforms mobile
GPU implementations by an order of magnitude or more.
Specifically, we provide an embedded Python-capable PYNQ
FPGA implementation supported with a High-Level Synthesis
(HLS) workflow that allows sub-millisecond implementation of
adaptive neural networks with low-latency, direct I/O access
to the physical world. We tune the precision of the different
intermediate variables in the code to achieve competitive abso-
lute accuracy against slower and larger floating-point reference
designs. The online learning component of the neural network
exploits immediate feedback to adjust the network weights to
best support a given arithmetic precision. As the space of possible
design configurations of such networks is vast and is subject to a
target accuracy constraint, we use the Hyperopt hyper-parameter
tuning tool instead of manual search to find Pareto optimal
designs. Specifically, we are able to generate the optimized designs
in under 500 iterations of Vivado HLS before running the
complete Vivado place-and-route phase on that subset. For neural
network populations of 64–4096 neurons and 1–8 representational
dimensions our optimized FPGA implementation generated by
Hyperopt has a speedup of 10–484× over a competing cuBLAS
implementation on the Jetson TX1 GPU while using 2.4–9.5× less
power. Our speedups are a result of HLS-specific reformulation
(15× improvement), precision adaptation (4× improvement), and
low-latency direct I/O access (1000× improvement).

I. INTRODUCTION

As the end of Moore’s law inevitably approaches, the
semiconductor industry faces increasing technical and physical
challenges in the manufacturing and fabrication of viable
chips. Simultaneously, the machine learning revolution is
creating a need for more powerful processing hardware that
can train and evaluate sophisticated neural networks. FPGAs
provide a configurable computing substrate that allow us to
gracefully adapt to the end of Moore’s law by configuring
our hardware resources specifically for our computing tasks
as needed. In particular, they are a great match for machine
learning tasks as they provide parallel access to thousands of
DSP and RAM blocks.

Machine learning (ML) developers commonly use Python
as their development environment. Many popular packages
such as Tensorflow, Keras, Nengo, and others are built around
Python, and retain widespread use in the community. On
the hardware side, ML developers have embraced GPUs for
training and inference. This has been made possible by the
availability of optimized GPU libraries, high-level CUDA pro-
gramming environments, and ease of integration with Python.
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Fig. 1: High-Level picture of dataflow in the Neural Engineering Frame-
work (NEF) network evaluation. We consume inputs x, perform Matrix-
Vector multiplication with enc, add the bias to the result and generate the
activity vector. The result y is generated through another Matrix-Vector
multiplication with the dec matrix. The enc matrix is generated randomly,
while the dec matrix is trained and updated by the online Prescribed Error
Sensitivity (PES) learning rule.

FPGAs have been seen as exotic devices that have a steep
learning curve for programming because they use low-level
languages like VHDL or Verilog. To help address the pro-
ductivity gap, FPGAs now allow programming using C/C++
with High-Level Synthesis (HLS) compilers. Furthermore,
Xilinx has also introduced PYNQ, a Python environment
for accessing FPGA hardware on Zynq boards. The PYNQ
environment has a clean API for configuration of the FPGA,
data movement using DMA, access to GPIO blocks, and more.
A combination of HLS and PYNQ is a more attractive starting
point for ML developers.

FPGAs offer significant advantages over GPUs in terms
of latency, power use, and configurability. These features are
particularly critical in power-limited, edge of the network
deployments, for instance in IoT, mobile, or real-time ap-
plications. As a result, there have been many past attempts
at marrying ML and embedded FPGAs [7], [11], [13], [14],
but most focus primarily on convolutional networks. The goal
of this paper is to present an optimized FPGA backend that
integrates HLS-generated hardware wrapped in PYNQ APIs
with the Nengo [1] neural network development framework.
Nengo is a Python package for simulating spiking and non-



spiking, large-scale neural networks with unique support for
the Neural Engineering Framework (NEF) [5]. Nengo includes
a graphical interface to help visualize network topologies and
inspect real-time represented values in the model. It is flexible
and can implement traditional deep learning, vision, and motor
control applications but goes beyond that to include working
memory, hierarchical reinforcement learning, inductive reason-
ing, and planning. In fact, the world’s largest functional brain
model, Spaun [6], was built using Nengo, demonstrating the
rich range of capabilities of the framework. Nengo currently
supports CPU, GPU, SpiNNaker [10], and other backends and
is now also able to target PYNQ FPGA boards.

In summary, we develop an FPGA backend for Nengo to
realize low-power, low-latency embedded systems that use
neural network structures with online learning. We use an HLS
description of the neural networks that is parametric and flexi-
ble enough to cover a range of implementation possibilities. In
addition, we reformulate the parallelism in the description in
order to overcome the limitations of Vivado HLS and expose
dataflow and pipeline parallelism. Furthermore, we reduce the
precision of the arithmetic operations using Hyperopt [3] to
find optimal parameters for the design. Notably, the included
online learning allows the network to continuously adjust the
network weights to perform the desired function within the
constraint of the chosen bit precision. Finally, to demonstrate
fully embedded performance, we bypass the ARM host CPU
and directly integrate sensors and actuators with the adaptive
neural network architecture over GPIO.

II. BACKGROUND

This section introduces the Neural Engineering Framework
(NEF) [5] which is the basis of the implementation described
in this paper. Figure 1 shows the architecture and data flow
for one NEF population of neurons with online learning.

A. The Neural Engineering Framework

The NEF provides methods for implementing spiking or
non-spiking, dynamic neural computations in arbitrary vector
spaces while allowing flexibility in details such as the neu-
ron model or method of adaptation. In addition to arbitrary
feedforward networks, the NEF lends itself to biologically
plausible cognitive architectures and the control and modelling
of dynamic systems. This makes it uniquely well-suited to
online, real-time and recurrent networks, which differs from
the contemporary focus of backpropagation-trained networks.
The NEF is built on the principles of representation, transfor-
mation, and dynamics. For the purposes of this paper, we focus
primarily on the representation and transformation aspects.

Representation: The NEF takes a Din-dimensional time-
varying vector, x, as an input defined in the “state-space”
and maps it to an N -dimensional representation in “neuron-
space”. We call this mapping from state-space to neuron-space
encoding. Each vector element in this neuronal representation
corresponds to the activity, ai, of a single neuron, i, and can
be expressed as

ai = G[enci · x+ biasi] (1)
where

• enci is the ith row of the [N ×Din] encoder matrix that
defines the preferred stimulus of a neuron,
• biasi is a bias term that accounts for background activity

in a neuron, and
• G is the non-linear transfer function of the neuron model,

which in this case is the Rectified Linear Unit (ReLU)
defined as G[v] = max(0, v).
The neuron activity, ai, is then decoded to produce a Dout-

dimensional vector, y, back in state-space according to

yj = decj · a (2)

where
• decj is the jth row of the [Dout×N ] decoder matrix that

approximates the represented value in state-space given the
activity of the neurons in neuron-space, and
• a is the vector all neuron activities.

The decoders can be obtained by least-squares optimization
of the error Ex = ||x− y||. More generally, according to the
second NEF principle (transformation) we can find decoders
that represent an arbitrary linear or non-linear function, f(x),
by minimizing Ex = ||f(x)−y|| instead. In certain embedded
PD control applications, the entire Ex may be supplied exter-
nally to approximate the inverse kinematics of the problem.

The decoders may also be initialized to non-optimal values
that are adjusted in real-time using online learning according
to a particular learning rule. In this case we employ the
Prescribed Error Sensitivity (PES) [2] learning rule which
updates the decoders each step by

∆dec = −KEx · a (3)

where
• K is the learning rate that controls how quickly the system

will adapt, and
• Ex is the error signal for the given system which can be

calculated (i.e. Ex = f(x) − y), but can also be provided
directly by an external source.
The neural network developer must choose a reasonable

value for K that 1) does not overshoot and oscillate, while
2) converging quickly enough to adapt to system changes in
real-time. The neural activity, a, is included in the decoder
update term so that only those neurons involved in representing
the given stimulus in neuron-space are updated while neurons
not involved are left unaffected.

We start with set values for enc and bias elements which
are selected at random. The x, activity, and y quantities
vary with each timestep. The dec matrix is also updated once
per timestep using the PES rule and replaces conventional
backpropagation with an online learning approach. For Din

inputs, N neurons, and Dout outputs, this evaluation represents
a total of (Din+Dout)×N operations. When interfacing with
sensors and actuators, the acquisition of x inputs and y outputs
may present additional time penalties on various platforms.
The evaluation time for one pass through the computation
flow in Figure 1 should be minimized to allow the system to
respond to real-time signal characteristics for a large number
of neurons and dimensions.



Fig. 2: The Nengo GUI displaying an adaptive model with neural popu-
lations pre, post, and error with input stim, which is a sine wave. Black
solid lines show connections and the green dashed line represents the error
signal used by the learning rule to updates the decoders. The plots show
the represented value on the vertical axis and the simulation time on the
horizontal axis.

B. Nengo

Nengo [1] is a Python framework that enables high-level
description, debugging, visualization, analysis, and deploy-
ment of neural networks. It is actively used and developed
with 24 contributors, 333 stars, and 110 forks on github
(https://github.com/nengo/nengo) at the time of writing. While
alternative frameworks exist [1] for simulating large-scale
neural models or cognitive phenomena with various levels
of biological plausibility, Nengo has a proven track record
modelling dynamic, real-time, and large-scale behaviours.
Nengo is also largely agnostic to the backend implementation
which allows the user to target several hardware backends
including CPUs, GPUs, SpiNNaker, and now FPGAs (with
this paper). A key feature of Nengo is the optional integrated
graphical user interface (GUI) that helps to develop and
visualize computations. Figure 2 shows how the GUI displays
a simple network including connections and real-time values
from the simulation. The implementation described in this
paper encompasses the error, pre, and post populations seen
in the GUI. That is to say we accept an input (stim) that is
represented internally (pre) and produce an output (post) that
is learned based on an error signal.

III. NENGOFPGA

In this section, we describe the design and engineering of
NengoFPGA, a new FPGA backend for Nengo. The founda-
tions of the NEF approach to representation and transformation
shown in Equations 1, 2, and 3 are embodied in the basic
sketch shown in Algorithm 1. This is the starting point for
the High-Level Synthesis implementation and the basis of the
following discussion of improvements, and refinements.

A. Design Parametrization and Weight Storage

To support the use of NengoFPGA in various embedded
scenarios, we first target parametrization of the design. We
identify the problem size model parameters N , Din, and
Dout as the primary factors that determine the neural network
configuration. The weight matrices (enc, dec) and vector
(bias) need to be loaded only once into the chip at startup,

and require the memory sizes to be fixed based on the design
parameters. Full on-chip storage is used in embedded contexts
to eliminate external memory accesses during operation and
to enable rapid response to real-time events from the outside
world. The size of the network that can be held on chip
is up to 32k neurons but varies with design choice: having
fewer bits of precision will allow more values to be stored,
and similarly, having less parallelism requires less replication
(e.g. for inputs) and can also allow larger networks to be
stored but can slow down overall network response times.
Our optimization tool, Hyperopt, allows the exploration of
such implementation parameters (or hyper-parameters). The
set of hyper-parameters can be automatically tuned to suit
the resource, accuracy, and performance requirements of the
application. For subsequent analyses we allocate memory for
N = 4096 and Din, Dout = 8 as the maximum size at compile
time for all designs.

B. HLS Formulation

Efficient, scalable parallelization of the NEF equations is the
primary role of the HLS description. While the parallelism
potential is abundant in the matrix-vector operations, it is
not trivial to harness this parallelism for several reasons,
including:
• The NEF implementation has temporal dependency. Since

consecutive evaluations of the neural model have a temporal
dependency, inputs and outputs to this NEF implementation
must be streamed sequentially. This prevents inputs from
being batched and evaluated in parallel which, is commonly
done with other models.
• The encode and decode loop topologies are inverted; loops

over N are followed by Din for encode, while loops over
Dout are followed by N for decode. To maximize the
extent of parallelization for both the encode and decode
computations, we must aim to split the tasks across the
N neurons. This is because in typical NEF formulations
N � Din and N � Dout.
• The decode step from Eq. 2 requires a contribution from

each neuron to create the output, y. Thus, in order to
parallelize across N , we have to restructure our code. The
nested loops of the decode step are inverted and a partial
result, yk, is generated in each parallel section. After the
decode step, the partial results are then accumulated into the
single output, y =

∑
k y

part
k , and streamed out sequentially.

• Each parallel section is allocated an independent portion
of the encoder, enc, and decoder, dec, weights. However,
the input, x, and error signal, Ex, must be shared between
threads.
Inspection of data dependencies in the inner loops on lines

2 and 8 of Algorithm 1 suggest that they should each take 2
cycles to compute. The overall network should take 2 ∗ N ∗
(Din + Dout) + 2 ∗ N cycles to evaluate. For example, a
model with N = 200 and Din = Dout = 2 should require
2000 cycles. For the first-pass HLS implementation in Vivado
HLS 2016.1, the decode loops are perfectly nested and are
automatically flattened but has II = 6. The encode inner loop
has II = 5 and the outer loop is not pipelined since it cannot
be flattened and the inner loop cannot be unrolled. As a result,

https://github.com/nengo/nengo


Algorithm 1: A basic sketch of the NEF
implementation without consideration for
hardware or HLS structure or limitations.

1 for i < N do
2 ai = Jbias

i

3 for j < Din do
4 ai += xj ∗ encij
5 end
6 ai = Gi(ai)
7 end
8 for j < Dout do
9 for i < N do

10 yj += ai ∗ decji
11 decji += −K ∗ Exj ∗ ai

12 end
13 end

Algorithm 2: A sketch of the NEF imple-
mentation with the decode step restructured to
more closely match the structure of the encode
step.

1 for i < N do
2 ai = Jbias

i

3 for j < Din do
4 ai += xj ∗ encij
5 end
6 end
7 for i < N do
8 al = ai

9 for j < Dout do
10 yj += Gi(al) ∗ decji
11 decji += −K ∗ Exj ∗Gi(al)
12 end
13 end

1 for k < UFAC do
2 for i < d N

UFAC
e do

3 ai = Jbias
ki

4 for j < Din do
5 ai += xkj ∗ encij
6 end
7 end
8 for i < d N

UFAC
e do

9 al = ai

10 for j < Dout do
11 ypart

kj += Gi(al) ∗ decji
12 decji += −K ∗ Exkj ∗Gi(al)
13 end
14 end
15 end
16 for j < Dout do
17 for k < UFAC do
18 yj += ypart

kj

19 end
20 end

Algorithm 3: (Right) A sketch of the NEF implementation that has been restructured for
parallelism by a factor of UFAC across the number of neurons, N .

the design requires 6026 cycles for a model of this size which
is much worse than our estimate.

To overcome the limits of the HLS compilation, we have to
supply additional information [8] to the compiler. We perform
the following optimizations guided by the need to describe
HLS code with care:
1. Restructuring of the decode loops to prefer parallelization

over N as it is larger and contains most parallelism;
2. Unroll-friendly description of the design with a third level

of loop that the compiler can recognize as parallelizable; and
3. Pipeline and dataflow concurrency directives (i.e. prag-

mas) attached to the proper loop bodies.
Restructuring: As observed earlier, maximum parallelism

is available over the N neurons. This suggests the need
to reformulate the decode loops accordingly. In the first
restructuring step, the decode process is inverted as seen in
Algorithm 2. We do not fuse the outer loops over encode and
decode operations to ensure the inner loops are fully optimized
in isolation. Since we are using the simple Rectified Linear
neuron model, we move G into the decode loop as a ternary
operation to simplify the encode loop. With the restructured
loops, we also introduce al on line 8 to exploit data reuse. As
a result of these optimizations, we improved the decode loop
two-fold with II = 3, now requiring 4829 cycles overall.

Parallelization: Once the outer loops have been harmo-
nized between the encode and decode loops, it may seem
tempting to simply apply the UNROLL pragma followed by
DATAFLOW to evaluate the unrolled loop copies in parallel.
However, Vivado HLS was not able to correctly identify the
independence of the parallel sections and produced sequential
hardware while still using the larger resource cost of unroll.
To overcome this limitation, we factor out an explicit outer
loop for unrolling to make the parallelism more obvious to the
compiler. This loop for unroll factor, UFAC , is introduced as
shown in Algorithm 3. This alone was not sufficient to improve
performance. The network weights, enc and dec, required by
each parallel section were partitioned along their N -dimension
but instead they had to be explicitly partitioned using an extra
dimension in the array structure (i.e. enc[N][D] becomes
enc[UFAC][N/UFAC][D]). This three-dimensional struc-

ture was understood by the compiler for concurrent access.
We add extra logic to handle the cases when UFAC is not a
factor of N ; zero-padding arrays and computing loop bounds
as the ceiling i < d N

UFAC e. With this foundation for capturing
parallelism, we finally turned to explicit pragma hints to
expose the pipeline and dataflow parallelism in the problem.

Pipeline and Dataflow Pragmas: The use of flexible,
parametrized code requires variable loop bounds that cannot
be easily unrolled. In order to use the PIPELINE pragma
on a nested loop, all sub-loops must be fully unrolled. As
a result, nested loops with variable bounds are unable to be
pipelined automatically. This leaves the large encode loop over
N untouched. Variable scope also plays an important role,
forcing us to declare the activities, a, within the for loop on
line 1 of Algorithm 3. The DATAFLOW pragma optimization
attempts to run all blocks within a module or loop concurrently
using dataflow analysis to identify dependencies. After adding
the DATAFLOW directive, the design is able to take advantage
of parallelism.

These improvements have progressed from 6026 cycles
using a naive approach to 4829 cycles with some restructuring
and with an unroll factor of 12 (UFAC = 12), the latest design
shows an improvement of 15× requiring only 399 cycles.

Direct I/O Access: In addition to HLS optimizations, direct
I/O access is achieved by adding ports of appropriate width
to the module with no protocol. Physical pins from the board
package are then connected directly to the module with an
XDC file. NengoFPGA can use this strategy to connect to
on-board peripherals or the physical world using GPIO pins.

C. Fixed-point Design

Floating-point numbers support representation of numeri-
cal quantities with high dynamic range, but neural network
operations are often amenable to fixed-point precision with
little, if any, loss in accuracy [11], [13] . For our NEF
implementation, we identify a set of different variable groups
for custom fixed-point representation including the input, x,
output, y, encoder, enc, and decoder, dec, matrices, along with
intermediate values. Furthermore, to ensure accurate scaling of
the quantities, we introduce a hyper-parameter, K SHIFT ,



that normalizes the values depending on the learning rate K.
The proper selection of this scaling parameter reduces the
number of fractional bits required [9]. The final result extracted
from the evaluation is then shifted back to recover the signal.

The switch to fixed-point representation further reduces the
cycle count by over 4× to 92 using and unroll factor of
28 (UFAC = 28) for our example with N = 200 and
Din = Dout = 2. The choice of variable precisions and
scaling parameters to achieve this result defines a search
space that is intractable for a brute-force search with ≈ 1020

possibilities. As a result, a more efficient strategy is necessary.

D. Parameter Tuning
We use a hyper-parameter tuning package called Hyper-

opt [3] to automate the design space exploration process and
discover the optimized hyper-parameter assignments quickly.
Hyperopt determines an optimal design for the given con-
straints and also logs all progress, thereby: 1) showing con-
vergence trends to determine how many trials are required;
2) making it possible to iterate on the search space, cost
function, or simulation; and 3) making it possible to extract
the Pareto optimal points for the given formulation.

Each fixed-point data type is defined by a number of integer
and fraction bits, rounding approach, and overflow handling
technique. The Vivado HLS ap_fixed type encapsulates all
these specifications into a C++ template type. We made an
intuitive pre-selection of the rounding and overflow modes for
our types to reduce the search space. For data storage (weights)
and transmission variables (input), we round towards +∞, and
saturate the overflow values. For internal arithmetic, we use
truncation of small values below one least significant bit and
wrapping on overflow to improve computation speed.

Initial Bounding: To compute the bounds for the search,
we initially set all types to floating-point as a reference
design. Then we set each type to a large 64-bit fixed-point
representation and select each fixed-point type individually
for inspection. In each inspection, we sweep the candidate’s
fixed-point precision (integer and fraction bits) from high (64
bits) to low (1 bit) and observe when accuracy deviates from
the reference floating-point design. We define accuracy in
terms of the overall algorithm goal where we aim to minimize
the absolute representational error Ex = |x − y|. We use
the HLS implementation of an adaptive controller that learns
to represent a sinusoid as the test case for evaluating error.
As our reference design uses floating-point, there will be
an inherent error, Efloat

x . We expect our fixed-point solution
error, Efixed

x , to be marginally better than the reference
floating-point solution. For each set of parameters, we identify
the smallest precision where the floating-point error exceeds
fixed-point error, Efloat

x ≥ Efixed
x .

Optimization: Once our bounds are set up, we perform
the optimization using a cost function. The HLS code that
evaluates error is repurposed to also return the cost values
(resources, and scheduled cycle counts) through a single step
of the HLS compilation that generates RTL code. We do
not run the expensive place-and-route phase at this point to
speed up the search. The fastest design was found using the
cost function Ex ∗ cycles, but other cost functions produced
competitive results more quickly. We also use the cost function
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Fig. 3: System level view of the NengoFPGA design mapped to the PYNQ
board. Nengo models are defined by Python code running on the CPU and
interact with the FPGA accelerator over AXI. The FPGA fabric interfaces
directly with the external inputs and outputs over GPIO.

Ex ∗ resources, where the resource cost is the maximum %
of LUTs, DSPs, and BRAMs used. For this optimization we
lock the unroll factor at 1 (UFAC = 1). The minimization
of resources is proportional to cycle count, since resource
usage determines the degree of parallelism that is possible.
Thus this cost function produces designs balanced in accuracy
and performance. In addition, using UFAC = 1 reduces the
effort required by the HLS compiler, which allows Hyperopt
to run 3–4× faster than minimizing cycles directly, while only
incurring a small performance penalty.

Usage: Hyperopt exploration is configured in a Python
script containing the structure of the problem. Hyperopt is then
connected to a shell script that invokes the HLS compilation
as well as the adaptive controller test.

IV. METHODOLOGY

We implement the NengoFPGA backend split across the
ARM CPU, and the FPGA fabric of the PYNQ-Z1 Zynq board.
The core nengo package is directly integrated with the nengo-
fpga package to seamlessly connect standard Nengo models
directly with the FPGA backend.

To use this environment, the neural model is first described
using a typical Nengo network description. The nengo-fpga
extension uses PYNQ drivers to load the network weight
matrices to the FPGA on-chip RAMs once at the start of a
simulation. This system-level description is diagrammed in
Figure 3. We interface the FPGA HLS core directly with
GPIO for getting inputs and driving outputs, to remove the
ARM processor from the loop. This lets us run the adaptive
neurons directly connected to GPIO pins. In this configuration,
the ARM is only required to begin execution on the FPGA,
but may have varied level of involvement depending on the
application. If I/O is connected via the ARM each step,
performance becomes limited by the DMA transfer between
the ARM and FPGA. Even small networks cannot improve
beyond a step time of 715µs compared to a direct I/O design
that can operate over 1000× faster at a sub-microsecond step
time of 0.678µs for N = 64. We use Vivado 2016.1 with
PYNQ version 2.1 for our mapping.

V. RESULTS

In this section, we evaluate the performance, resource usage,
and error behaviour of our NengoFPGA implementation.

A. Impact of HLS Code Description
High-Level Synthesis tools like Vivado HLS offer a con-

venient way to express your design and communicate opti-
mization intent. Through various parallelism-centric reformu-
lations, described in Section III-B, we took a sample design



at Din = 2, Dout = 2, and N = 200 and sped it up over 15×
while only using 2× more resources. As shown in Figure 4,
the bulk of the speed up comes from unrolling, but the
restructuring along with pragmas (DATAFLOW+PIPELINE)
lay the groundwork to deliver this performance. The use of
fixed-point types permits an extra 2× improvement in unroll
factor and reduces cycle count further by over 4× when given
the same resource budget (the entire chip).
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Fig. 4: Performance improvements due to incremental, cumulative op-
timizations of HLS code. Baseline is the naive approach, Restructured
has the decode loop inverted, Dataflow includes pipeline and dataflow
pragmas, Unroll is unrolled with UFAC = 12, and Fixed-Point is the
fixed-point design unrolled with UFAC = 28

B. Impact of Parameter Tuning with Hyperopt
As discussed earlier, a brute-force exploration of the design

space is intractable. Hyperopt can help search this design space
if we first bound the possible range of parameter values.

Initial Bounding: In Figure 5a, we show the effect of
varying the enc word bits from 1–38 and varying integer
bits from 1–16. The diagonal cut off indicates infeasible
combinations where integer bits exceed total word bits. We
see that as we increase integer bits above 7 and word bits
above 8, we are able to achieve very low error. For reference,
floating-point error value for this design is 6.68e−3. Similarly,
Figure 5b illustrates the effect of precision selection of the
error signal, Ex, on overall accuracy. Here, an increase in the
number of word bits above 17–18 yields low error. Thus, most
of the accuracy improvement is tied to having high precision
representation of small quantities.

Sensitivity of Precision to Design Parameters: The error
signal, Ex, is extremely sensitive to design parameters such
as the number of neurons, N . This suggests that the Hyperopt
tool will give different results for different neural network
configurations. For example, Figure 6 shows the parameters
optimized for one N cannot simply be transferred to another
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Fig. 5: Effect of varying precision of single parameters (rest locked at 64b
fixed-point). Encoder bits should have a sufficient number of integer bits,
while error signals being small need a larger number of fraction bits.

value of N . The distributed representation in neuron-space is
such that as N increases, the average magnitude of the decoder
decreases. This results in different optimal choices of precision
for different N . Consequently, we define a general fixed-point
design that uses the largest observed integer and fractional
bits required over the space of design parameters, in this case
from N = 64 to N = 4096. This design performs well over
all values of N considered (see Figure 6).
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Fig. 6: Representational error of designs optimized using different values
of N in the Hyperopt simulation compared to a general fixed-point solution
and a floating-point solution.

Convergence Rate: Hyperopt is fundamentally limited by
the speed of the HLS tools. The frontend HLS passes must be
run to produce resource and cycle count estimates. As shown
in Figure 7, the best observed configuration (lowest cost) is
reached after ≈ 1500 trials, which takes ≈ 12 hours to run
on an Intel i7-6700K CPU. However, it takes ≈ 500 trials, or
about 4 hours, to get within 99% of the best design (lowest
cost). Thus, Hyperopt is a tractable approach for optimizing
design parameters with Vivado HLS in the loop for a few
hours of trials.

Hyperopt Design Optimization: Starting from the op-
timized HLS implementation, and the bounded parameter
ranges, we begin the Hyperopt optimizations. We choose the
cost function Ex ∗ cycles, subject to a resource threshold.
Designs above the resource threshold are not discarded, but
rather aggressively penalized so Hyperopt will stay below the
threshold. The thresholds used were 100% for BRAMs and
LUTs and 120% for DSPs. The DSP threshold is higher since
it is observed that Vivado can successfully compile designs
in this range by making use of abundant LUTs to the handle
additional DSP requirement. This Hyperopt run produced 5
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Fig. 7: Normalized convergence of cost minimization for Hyperopt tri-
als. These are independent, best-so-far trends, so combining Error and
Resource trends may not result in the overall Error×Resource cost trend.



Pareto optimal designs, of which 1 is infeasible (too many
resources) and 3 are slow. The final design of the 5 is the
fastest design discovered. The cost function Ex ∗ resources
produced 11 Pareto optimal designs 3–4× faster than the
Ex ∗ cycles minimization, and all of which are feasible and
competitive in performance. As a result, the Ex ∗ resources
minimization is analysed herein as it produces multiple good
designs, better illustrating the possible solution space. Figure 8
shows the resulting error and resource cost combinations of
each trial as a datapoint on the plot. As expected, smaller
designs tend to have higher error than larger designs. However,
a large number of design configurations are clearly dominated
by those along the Pareto optimal curve, which are shown in
Figure 9. The final optimized designs use precisions between
8–26 word bits for most data types with the exception of
the error signal which uses between 37–48 word bits. These
designs offer comparable accuracy against slower and larger
floating-point designs and in some cases beat the floating-point
solution in accuracy.
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Fig. 8: The Pareto optimal front resulting from Hyperopt trials minimizing
the product Ex ∗ resources.

Pareto Optimal Designs: Referring to Figure 9, We observe
that there is little difference in resource usage between designs
of the Ex ∗ resources optimization. These optimized designs
are manually unrolled to maximize replication and deliver
high performance. All of these Pareto optimal designs are
unrolled to a factor of 24 (UFAC = 24) and therefore have the
same cycle count. The optimal design from the Ex ∗ cycles
minimization (labelled Cycles) is unrolled to a factor of 28
(UFAC = 28) resulting in slightly higher performance.

As well, there exists an accuracy-resource trade-off where
the Pareto optimal fixed-point designs achieve an unroll factor
of 24–28, while the floating-point design is limited to a factor
of 12. The general fixed-point solution using the largest integer
and fraction bit configurations from the Pareto designs can
only be unrolled to a factor of 20.

The reduced BRAM usage in design 1 indicates reduced
precision in the larger array structures enc, dec, and activity
that results in high error. The reduced DSP usage in design
2 indicates reduced precision throughout the arithmetic which
also leads to reduced accuracy. Designs 3–8 all have similar
resource usage, however designs 3 and 4 appear to be using
precision ineffectively. Designs 9–11 begin to show diminish-
ing returns as they use far more resources without a significant
improvement in accuracy. The “Cycles” design has comparable
resources and error but is justified in its increased speed. The
floating-point design also uses comparable resources but it has

half the parallelism as the Pareto designs and therefore much
worse performance, as discussed later. The general fixed-point
design is resource heavy and has an error slightly worse than
the floating-point design, which illustrates the shortcomings of
fixed-point arithmetic over large dynamic ranges.
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Fig. 9: Resource usage and Error trade-offs for the Ex∗resources Pareto
optimal designs compared to the Ex ∗ cycles optimal design, the general
fixed-point, and the floating-point solution. N = 200, Din = Dout = 2.

Floating-point vs. Fixed-Point Speed: We now compare
the speeds of floating-point and fixed-point implementations
on the FPGA after design optimization. Due to its large
memory footprint, the floating-point design is limited to half
the network size of the fixed-point design (i.e. NDfloat =
2 ∗ NDfix). The complexity of the floating-point operations
saturates the DSPs of the PYNQ board at an unroll factor of
12. In contrast, the fixed-point designs require fewer bits to
store the network weights, and are able to take advantage of
both DSP and LUTs effectively to support an unroll factor up
to 28. The 1-D trials in Figure 10 demonstrate that runtimes
scale poorly for floating-point designs while the fixed-point
solutions are faster by 4–5×. Furthermore, the general fixed-
point design takes more resources (while staying within chip
capacity), but it is only marginally slower than the fastest
discovered design.

PYNQ vs. Jetson TX1 GPU: The Jetson TX1 is not the
latest embedded GPU, however, it uses 20 nm technology and
the PYNQ board uses an FPGA with 28 nm technology making
the TX1 a reasonable comparison. We developed an optimized
CUDA implementation of Nengo for the TX1 in order to
compare performance with PYNQ. The NEF computations
are composed of common matrix algebra primitives that map
to highly optimized cuBLAS library calls. A small subset of
the functions, including the neural model G and the feedback
error calculation Ex = |f(x) − y|, are written in CUDA and
optimized directly. Since Nengo operates on I/O signals that
cannot directly interface to the GPU core, these signals must
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Fig. 10: Comparing execution times of a floating-point design, a general
fixed-point design, and two differently optimized fixed-point designs.
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Fig. 11: GPU performance normalized against FPGA performance. The
FPGA is 10–484× faster and uses 2.4–9.5× less dynamic power.

be copied over requiring frequent host-device transfers every
timestep of evaluation. Coupled with the small size of the
problem, the I/O heavy nature of the computation puts the
GPU at a disadvantage compared to the PYNQ FPGA.

The performance of the GPU compared to the FPGA is
summarized in Figure 11. As expected, it shows that the FPGA
is 10–484× faster, and uses 2.4–9.5× less dynamic power than
the GPU (measured with a P3 P4455 plug-in Power Monitor).
As the problem size grows, the cost of I/O is amortized
over the computation improving the efficiency of the GPU
hardware. Thus, the FPGA speedups are highest ≈484× for
the smaller neural networks, but drop to ≈10× for the larger
sizes. The FPGA also consistently uses less dynamic power,
using only 0.4–0.5 W of dynamic power while the GPU uses
a wider range of 1.2–3.8 W.

Spinnaker: Nengo-Spinnaker can evaluate ≈8K neurons
with 16-D at 1 ms execution time on a single 16-core custom
ARM chip operating on a 1.5 W power budget. Our PYNQ
board can process 8K neurons with 8-D in 106µs with a 3 W
power draw on a single Zynq chip. This translates into a 4.5×
performance advantage (linear scaling to account for 8-D vs.
16-D) with 2× more power resulting in more than a 2× better
energy efficiency ratio in favour of the FPGA.

C. Practical Application of NengoFPGA
Although the size of networks that can be run with Nen-

goFPGA is limited by on-chip memory, there are many useful
applications well within our capacity. For example:
• A population of 3000 neurons with 6 representational

dimensions can form the basis of an efficient adaptive motor
controller [4]. NengoFPGA can evaluate a model this size
in under 31µs.
• As few as 500 neurons can adapt to a randomly generated

15-joint body simulation [12]. We evaluate 500 neurons with
Din = 30 (15×2 for position and velocity) in under 24µs.
• We also test NengoFPGA as an adaptive PID controller

for an inverted pendulum in a simulated Python environment
using 1000 neurons and 1 dimension. The fixed-point design
has an evaluation time under 4µs and has a competitive
RMSE of 5.66e−3 compared to 5.45e−3 for the floating-
point reference design.

VI. CONCLUSION

The use of embedded Python-capable PYNQ FPGA boards
offers a promising solution to the heavy workload computing
required by the machine learning revolution. Using High-
Level Synthesis in conjunction with the PYNQ Python API
helps make FPGA programming more accessible. We have
shown how a structured HLS approach tailored to hardware

can be used to exploit the parallelism of the problem reducing
the cycles required to evaluate a neural network by 15×.
Furthermore, we showed that the fixed-point hyper-parameters
can be optimized automatically using Hyperopt for cost func-
tions comprising of resource usage, accuracy, and cycle count
to further reduce cycles by an addition 4× — an overall
improvement of over 65×. In addition, the reduced precision
of the fixed-point representation allows larger models, with up
to 32k neurons, to be stored on chip while still outperforming
the floating-point counterpart, which can only support 16k
neurons. Using direct I/O access improves performance 1000×
compared to a design limited by ARM DMA, from a step time
of 715µs to 0.678µs. We also demonstrated that our FPGA
implementation outperforms the Jetson TX1 GPU by 10–484×
for neural network populations of 64–4096 neurons and 1–8
representational dimensions while using 2.4–9.5× less power.

This project is the first step in creating a fully featured
FPGA backend for the Nengo neural network development
environment. Beyond low-power, low-cost embedded scenar-
ios, we plan to extend this work to larger FPGAs to address
larger cloud and edge computing workloads.
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