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Abstract

We propose a cognitively plausible method for representing
and querying spatial relationships in a neural architecture. This
technique employs a fractional binding operator that captures
continuous spatial information in spatial semantic pointers
(SSPs). We propose a model that takes an image with several
objects, parses the image into an SSP memory representation,
and answers queries about the objects. We demonstrate that
our model allows us to not only store and extract objects and
their spatial information, but also perform queries based on lo-
cation and in relation to other objects. We show that we can
query images with 2, 3, and 4 objects with relative spatial lo-
cations. We also show that the model qualitatively reproduces
Kosslyn’s famous map experiment.

Keywords: Semantic Pointer Architecture; spatial represen-
tation; spatial memory; spatial relations; fractional binding;
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Introduction
Capturing spatial reasoning has been a long-standing and dif-
ficult challenge when using artificial neural network mod-
els (Haldekar et al., 2017). Nevertheless, spatial cognition
has long been studied in cognitive science (Kosslyn, 1980).
Often, such research has led to proposals in which mental rep-
resentations of space are continuous (Kosslyn, 1984). These
representations are thus manipulated like physical images:
shifting them, scanning over them, extracting spatial relations
from them – effectively treating mental representations of im-
ages somewhat like physical maps. While there have been
vigorous debates on the empirical adequacy of such propos-
als (Pylyshyn, 1973), here we explore the practicalities of im-
plementing mental manipulations of this variety in compact
and efficient representations that lend themselves to imple-
mentation in neural networks.

We approach this problem by using an architecture that de-
ploys fractional binding to construct spatial semantic point-
ers (SSPs). We demonstrate that our binding architecture al-
lows us to not only store and extract objects and their loca-
tions, but also perform mental queries to find objects based
on location and in relation to other objects. It is, in particu-
lar, the ability to query such representations regarding spatial
relations that we believe makes this a promising architecture
for capturing many human mental image manipulation behav-
iors. The ability to perform such queries relies on the fact that
these representations are continuous, as proposed by Koss-
lyn and others. The specific goal of this paper is to describe
and simulate a cognitively plausible architecture that captures
core qualitative features of spatial reasoning.

Sample MNIST Digits Image

Figure 1: MNIST digits placed randomly in a 120x120 space.
Given a query of: “8” and “up and right”, the correct response
is either: “3” or “4”.

We begin by specifying our experimental design, which fo-
cuses on asking relational questions about a represented im-
age. We then describe the spatial representation we use, dis-
cuss its properties, and note its natural affinity for implemen-
tation in spiking neural networks. After this we describe how
regions are represented to allow for spatial relation queries.
Then, we describe each of the elements of our architecture, as
well as how they are integrated in the final system. We sub-
sequently present results showing the accuracy of assessing
spatial relations in a spatial working memory task. We also
use this same representation to reproduce the main feature of
Kosslyn’s famous map experiment: reaction time scaling lin-
early with spatial distance. Finally, we discuss our findings
and identify future work.

Experimental design
Our first experiment adopts a task similar to that proposed by
Weiss et al. (2016). Specifically, we construct a set of ex-
ample images to perform queries on by selecting batches of
digits from the MNIST database and placing them at random
locations on a 120x120 image. We choose between 2 and 4



digits to include in a given image. We then generate queries
automatically by randomly selecting a target digit and com-
puting its relative direction from another randomly selected
query digit. For this experiment, we limited the query direc-
tion to 4 possible quadrants: up and left, up and right, down
and left, down and right. Given the query digit and direction,
we expect the response to be one of the target digits (if there
are multiple such digits, then either one is marked correct).
For instance, in Figure 1 we show an example randomly gen-
erated image, for which we might query “What is up and to
the right of the 8?” A response of either “3” or “4” would be
marked correct.

For this experiment, we normalized the coordinates of the
digits in the 120×120 pixel image to a continuous 10x10
space, specifically the intervals x ∈ [−5,5] and y ∈ [−5,5],
before encoding them in a memory through our model vi-
sual system. Given our chosen representation, this range was
found to provide a good trade-off between accuracy and pre-
cision.

We also performed a second experiment, similar to the
visual-spatial map experiment by Kosslyn et al. (1978). Koss-
lyn’s map experiment recorded the time that it takes for a
subject to scan from one location to another in memory, and
demonstrated that closer objects are typically reached faster.
For our experiment, we used a memory of several digits
placed randomly, and scanned from a queried starting object
to the queried ending object.

Methods
Spatial representation
We employ the method for spatial representation proposed by
Komer et al. (2019). This method generalizes the notion of
binding that is employed by several vector symbolic archi-
tectures (VSAs) to continuous spaces. The method defines
a “spatial semantic pointer” (SSP) to be the result of a frac-
tional binding. The particular binding used is the circular con-
volution operator proposed by Plate (1995), which is essen-
tially element-wise multiplication of vectors in Fourier space.
The natural extension of this is then element-wise exponenti-
ation in Fourier space. Supposing B is a fixed d-dimensional
vector (i.e., semantic pointer), fractional binding is defined by
expressing the binding in the complex domain:

Bk = F −1
{

F {B}k
}

, k ∈ R, (1)

where F {·} is the Fourier transform, and F {B}k is
an element-wise exponentiation of a complex vector—
analogous to exponentiation using fractional powers
(e.g., b2.5)—permitting k to be real. This representation can
thus map from a continuous space, R, to a high-dimensional
vector space, Rd . Because the high-dimensional space of
semantic pointers can support construction of cognitive
structures, various kinds of syntactic inference, and so
on (Eliasmith, 2013), this proposed representation provides a
novel link between such cognitive operations and continuous
spaces.

To explore this link, in this work we use a generalization
of the representation to multiple dimensions (Komer et al.,
2019). We can represent points in Rn by repeating equa-
tion 1, n times, using a different semantic pointer for each
represented dimension (i.e., for each axis), and then binding
all of the resulting vectors together. For n = 2 (i.e., for a 2-D
spatial map), the SSP that represents the point (x,y) is defined
as the vector resulting from the function:

S(x,y) = Xx ~Y y, (2)

where X and Y are fixed semantic pointers, x and y are reals,
and we are using fractional binding as defined by equation 1.

In this work we explore querying spatial relations between
multiple objects in memory – for instance, asking “What is
below and left of the 3?” To specify the spatial query, we
represent the region of space being queried (e.g., below and
left) as another SSP. The SSP that represents a continuous
region (e.g., a solid rectangle), specified by some infinite set
of points R, is defined as:

S(R) =
∫
(x,y)∈R

Xx ~Y y dxdy. (3)

To move this region to be relative to a given starting point,
we exploit the shift property of SSPs. In particular,

Bk1 ~Bk2 = Bk1+k2 , k1,k2 ∈ R. (4)

This means that to shift any SSP, we only need to convolve
the spatial representation of a region or objects with the SSP
representing the coordinates of the shift direction. For exam-
ple, we can shift a region representing a direction, (e.g., “up
and right”) to the location of an object to generate a region
representing a query (e.g., the “8” in the previous example).

Conversely, we can also leverage this property to shift the
entire spatial memory relative to the origin. This gives rise
to a notion of movement through the space and an egocentric
interpretation of the space rather than the previous allocentric
interpretation. Thus this method of semantic pointer supports
both egocentric and allocentric coding of space.

To represent a single object occupying some location, we
bind its tag (OBJ) with the SSP from equation 2:

M = OBJ~S(x,y). (5)

In general, to represent a set of m labelled objects together in
the same memory, we can use superposition:

M =
m

∑
i=1

OBJi ~S(xi,yi), (6)

with a distinct semantic pointer OBJi tagging each object.
Furthermore, rather than placing objects at singular points

in memory, it may be more intuitive to bind objects to regions
in memory. This can be done similarly:

M =
m

∑
i=1

OBJi ~S(Ri), (7)
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Figure 2: Heatmap of the four locations from Figure 1, repre-
sented by a single spatial semantic pointer (equation 6).

with Ri representing the region that a particular object occu-
pies. This representation allows us to represent notions of
size and shape in memory as well.

Given a representation like that in equation 6 or 7, we can
query it in a number of ways. For example, to determine what
object(s) are within some region R, we can compute:

M~S(R)−1, (8)

where (·)−1 corresponds to the approximate inverse vector
used to unbind using circular convolution. By the properties
of binding and superposition, the resulting vector will have
the highest cosine similarity (i.e., dot product) with the ob-
ject(s) within R.

While only part of our architecture is currently imple-
mented in a neural network (see below), all of the opera-
tions, except fractional binding, needed for the architecture
have previously been implemented in spiking neural network
models (Eliasmith, 2013). The fractional binding itself is im-
plemented in spiking neurons by Komer et al. (2019). These
implementations use the methods of the Neural Engineering
Framework (Eliasmith & Anderson, 2003).

Using the spatial representation
In this section we briefly demonstrate the use of equations 3,
4, and 6. All of the SSP representations in the model are 512-
dimensional. We begin by encoding multiple objects into the
memory, as per equation 6, is demonstrated in Figure 2. Here
we can see an example of the four objects from Figure 1 being
encoded into the represented space. While we are showing
a decoding of this representation mapped into the continu-
ous space, the full representation is a single 512-dimensional
vector. The number of objects in memory does not change
the size of the representing vector, although there are effec-
tive limits on capacity (Komer et al., 2019). We also tested

a region based system by binding every digit to the square
region occupied by the digit rather than just a single point.

To query such a representation, we can construct a region
vector. A region vector, as defined by equation 3, is also a
512-dimensional SSP, but it represents an entire region in-
stead of a specific point. Region vectors can be used just like
a regular location vector. We can bind objects to it, add it to
a memory, and we can also use it to extract objects that are
located within a region. Furthermore, as regions are integrals
over pointers raised to coordinate exponents, binding a region
to a point vector shifts the exponents in the integral by the co-
ordinates of the point (see equation 4), which in turn shifts the
entire region represented by the integral (see Figure 3-Top) in
the direction of the point relative to the origin. In our experi-
ment, this allows us to pre-compute four regions at the origin
and then use binding to shift them to generate any specific
query vector (see Figure 3-Bottom). Notably, when region
vectors are used to query memories encoding objects at those
locations, there is no need to extract the coordinates of the
objects being searched over; all computations are performed
within the space of our SSPs, without multiple encoding and
decoding steps.

Model architecture
In this section we briefly describe each of the components
in our model that perform the tasks described in the exper-
imental design section. We also describe the integration of
the components and overall flow of information through the
model.

Image generation
The images processed by the system are generated by using
batches of 28x28 pixel images from the MNIST database and
placing them randomly on a 120x120 image (see Figure 1).
Because queries are limited to the 4 diagonal directions, we
ensured the digits are not too close in the vertical or horizontal
direction. We also ensured the digits do not overlap. We
generated sets of 5,000 samples for images containing each
of 2, 3, and 4 digits.

MNIST Network
In order to generate the SSP representation from the exper-
iment images, we use a straightforward convolutional deep
neural network as a perceptual module. It consists of two 3-
by-3 convolution layers with 32 and 64 filters respectively.
These were followed by a 128 unit fully connected dense
layer and a 10 unit fully-connected dense layer for classifica-
tion. This network was trained on the MNIST dataset achiev-
ing 99% validation accuracy.

Since our work focuses on representing spatial relation-
ships rather than classifying multi-digit MNIST images, we
use the actual coordinates of the digits to generate a saccade-
like cropping of the full image to 28x28 sub-images before
providing them to the convolutional network. The identified
images are then mapped to random 512-dimensional seman-
tic pointers, which are bound to SSP encoded locations, and
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Figure 3: Demonstration of shifting the region representa-
tion for a “down and right” query (top panel), to a point en-
coded as an SSP (middle panel), resulting in a region vector
for querying “down and right” with respect to the point (bot-
tom panel).

Figure 4: Flowchart of entire process

summed across all objects. This process results in a memory
representation in the 512-dimensional space, which is sub-
sequently queried using a region representation as described
above.

Cleanup memory
When using SSP representations, as with any compressed
VSA, the extracted location vector of an object includes
noise. When there are multiple objects in the memory, the
amount of noise grows. As a result, VSAs of this sort typi-
cally include a cleanup memory that maps a noisy vector onto
the nearest known vector in the space. In the case of a con-
tinuous space, to extract the (x,y) location of the query digit,
we generate the known vectors by sampling the continuous
space on a 100x100 grid. This grid covers the two [−5,5]
axes of the image. To implement the memory, we perform
a simple dot product similarity check between the extracted
noisy vector and the set of known vectors to find the closest
matching vector within the resolution of our grid. Dot prod-
ucts are easily computed in parallel, making this a quick and
effective way to reduce noise and improve performance. This
kind of memory can be efficiently implemented in spiking
neurons (Stewart et al., 2011).

Full system
Before running an experiment, we set up the model by ran-
domly selecting two 512-dimensional unitary semantic point-
ers to use as axis vectors (i.e., X and Y in 2). We also create
a vocabulary of ten 512-dimensional semantic pointers, one
for each digit. We then pre-compute 10x10 region vectors for
each query, as well as a 100x100 resolution cleanup memory.

We then feed an image into the model architecture, the full
pipeline of which is depicted in Figure 4. The image is clas-



sifed by the MNIST network, and an object memory is cre-
ated by summing the SSP representations for each digit in the
image, as described above. Extraction of the location of the
query object (i.e., the object mentioned in the query) proceeds
by performing an inverse convolution on the memory with the
query object to find its location, and the cleanup memory is
used to reduce noise on the found location. Generating the
region to search is accomplished by convolving the identi-
fed location of the query object with the region vector corre-
sponding to the query direction to find the region where the
target object might be. Extracting objects in the region occurs
by performing an inverse convolution between the shifted re-
gion and the original memory. Finally, the similarity between
the results of this query and each object in the vocabulary is
calculated as a dot product. The object with the highest simi-
larity determines the model’s response to the query.

Scanning System
The scanning system involves similar steps. We reuse the axis
vectors as well as the pre-computed cleanup memory tables
from the previous system. The map image is converted to a
memory vector as above. Given a starting and ending object,
the locations are extracted by performing inverse convolution
with the objects in question on the memory. These locations
are cleaned with the cleanup memory and used to determine
the direction vector of the scanning using SSPs:

V = (Xx5 ~Y y5)~ (Xx2 ~Y y2)−1 (9)

where x5 is the x position of the “5”, and so on. We then
normalize this vector, shrinking it to a 0.05 unit step, and re-
peatedly apply it to the starting vector (Vt+1 = Vt ~V where
V0 = Xx5 ~Y y5 ).

To scan the memory, we started at the starting location
from above, and extracted the objects in that location with
inverse convolution. The scan location is then updated by
convolution with the step vector generated above, shifting the
location towards the target object, and the above steps are re-
peated. A dot product similarity comparison is used at each
step to determine what objects were extracted or “seen” by the
scan. A 0.8 similarity threshold is used to determine when the
target object has been reached.

Results
Relational Query Experiment
For the query experiment, we ran 5,000 randomly generated
experiments for each of 2, 3, and 4 digit images. For the
experiment, we tested the accuracy of the output by sim-
ply marking the response as correct if the model response
matched an object in the queried region.

Table 1 shows the results from the experiment involving
identifying a target digit given an image, a query object, and
a query. Correctness is calculated by comparing the output
to all digits in the correct direction. Baseline performance is
the probability of answering a query correctly by randomly
selecting one of the remaining digits in the image. This is

2 Digits 3 Digits 4 Digits
Point Representation
Accuracy 92.18 84.40 72.90

Region Representation
Accuracy 95.98 87.22 81.24

Baseline probability 100.00 71.76 62.60

Table 1: Experimental results for spatial relation queries.

calculated by dividing the average number of correct answers
in each image by one less than the total number of digits in
the image. Naturally for the 2 digit case, there is only one
possible answer other than the digit used to query so the prob-
ability would be 100%. The baseline probability is very high
due to the broadness of our query.

The results from the 2 object query indicate that using a
region vector decreases accuracy compared to a simple lo-
cation query. A location query with two objects in memory
(e.g., what is at location (x,y)) has 100% accuracy (results
not shown). In this experiment, the 2 digit case is similar to a
location query, but for a region. The drop in accuracy is likely
because as the region representation becomes larger, a single
vector is being used to represent the effective superposition
(integral) of many vectors (all those defining the region). This
result suggests that region size will determine decoding accu-
racy, a hypothesis to test in future work.

The 3 and 4 digit experiments showed that extracting ob-
ject information from an object-location memory improved
performance by about 13% and 10% for point based mem-
ory and 15% and 19% for region based memory compared to
the baseline guessing probability. Representing object loca-
tions as regions in memory rather than singular points pro-
vided dramatic improvements in accuracy, particularly in the
4 digit case. This is likely due to the fact that a query re-
gion is more similar to a square within the region than a sin-
gle point, leading to higher accuracy extractions with inverse
convolution. This suggests that more specific queries involv-
ing smaller or tighter regions would yield higher accuracy as
their shapes would more closely resemble the regions the ob-
jects are bound to compared to the large query regions used
in our experiment. Comparing the differences in accuracy for
queries of different shapes and sizes is a topic for future study.

The decrease in accuracy as number of digits in the im-
age increases is expected, as a higher number of digits adds
difficulty in selecting the correct output since the memory en-
codes all of the digits. It is a standard property of VSAs for
decodability to decrease as a function of the number of ob-
jects represented in a structure. While we have not deter-
mined the maximum capacity of the proposed representation,
being able to store and reasonably accurately recall the rela-
tions between four numbers is consistent with standard esti-
mates of working memory capacity at 4 items (Buschman et
al., 2011).



0 20 40 60 80 100

0

20

40

60

80

100

Digit Map

Figure 5: Digits placed randomly in a 120x120 space to rep-
resent a map of objects. The memory is scanned from “5” to
“1” and “5” to “2”.

0 25 50 75 100 125 150 175 200
Steps

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Scanning from Five to One
Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine

0 25 50 75 100 125 150 175 200
Steps

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Scanning from Five to Two
Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine

Figure 6: Similarity outputs over time for scanning from the
“5” to “1” (top) or “5” to “2” (bottom).
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Figure 7: Plot of steps to reach target object vs the distance
between starting and target objects over 100 trials (Pearson’s
R > 0.99, p-value < 10−6).

Image Scanning
An image is generated with the same method as in the first
experiment to represent a map of objects, with each digit rep-
resenting an arbitrary object in the map (Figure 5). For the
experiment shown in Figure 6 we chose the object “5” as the
starting location and the two objects “1” and “2” to be the
near and far target objects respectively. From the two plots,
we can see a peak at the 0 mark for the starting object “5”
which falls away, and a peak at the target object, “1” and “2”,
when the scan reaches it.

This experiment was repeated 100 times, with the number
of steps required to reach a similarity threshold of at least 0.8
recorded for each trial (Figure 7).

Kosslyn et al. (1978) showed that human spatial memory
is represented in a metric space by demonstrating that further
objects take longer to scan to in memory, with time linearly
related to distance. This experiment shows that the qualitative
cognitive behaviour demonstrated by Kosslyn’s map scanning
experiment is naturally captured by our SSP memory repre-
sentation.

Discussion
Our proposed architecture is able to receive an image of mul-
tiple objects and generate an SSP representation. Subse-
quently given a spatial relation query the model can success-
fully answer with reasonably high accuracy. This provides
evidence that the SSP representation can be used to encode
continuous spaces in a kind of mental map using representa-
tions easily implementable in neural networks. In short, our
results show that such representations can be used to repro-
duce qualitative cognitive behavior relying on spatial manip-
ulation of information encoded in this manner.

A critical next step is to compare human performance on
this same task with the proposed model. Preliminary results
suggest that accuracy can be manipulated by appropriately
choosing the base vectors (i.e., X and Y ), and manipulating



the dimensionality of the vector space being used. The range
of these parameters that match human performance remains
to be determined.

There are many possibilities for extending this model. Our
particular focus was on two kinds of spatial relation query.
However, the direction queries could be generalized to be in
any direction (e.g., specifying a vector direction and generat-
ing a cone region in that direction). As well, other manipula-
tions, such as spatial rotations, shifts, and so on, can be per-
formed without decoding the SSP. There are a wide variety of
psychological results that can provide points of comparison
for such manipulations.

Furthermore, the representation itself could be made more
complex. For instance, introducing the color of the object
(encodable as another 3D continuous space for RGB values),
or additional features is natural in this framework. We expect
additional information encoded in the memory will adversely
affect performance, as seen in human memory tasks.

Finally, the full model can be implemented in a spiking
neural network to determine if the proposed representations
are robust to biologically plausible implementation. While
we expect that this will be successful, given past work that
has implemented each of the components, it remains to be
seen what effect such implementation has on the accuracy of
responding to spatial queries.

Conclusions
We have demonstrated that spatial semantic pointers (SSPs)
using fractional binding provide a viable method of represent-
ing spatial relationships in a simple model supporting two
kinds of visual spatial reasoning. This method lends itself
well to implementation in neural networks, and is consistent
with cognitive work suggesting that internal representations
used in mental imagery represent continuous mental spaces.
We believe this is one of few available suggestions for how
complex object representations (i.e., high-dimensional fea-
ture vectors for digits) can be encoded in a continuous space,
and manipulated to answer questions about relations in that
space.
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