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Abstract

We present a theory and neurocomputational model of how specific brain operations produce complex decision and preference phe-
nomena, including those explored in prospect theory and decision affect theory. We propose that valuation and decision making are emo-
tional processes, involving interacting brain areas that include two expectation-discrepancy subsystems: a dopamine-encoded system for
positive events and a serotonin-encoded system for negative ones. The model provides a rigorous account of loss aversion and the shape
of the value function from prospect theory. It also suggests multiple distinct neurological mechanisms by which information framing may
affect choices, including ones involving anticipated pleasure. It further offers a neural basis for the interactions among affect, prior expec-
tations and counterfactual comparisons explored in decision affect theory. Along with predicting the effects of particular brain distur-
bances and damage, the model suggests specific neurological explanations for individual differences observed in choice and valuation

behaviors.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

How do people decide what clothes to wear, what to eat
for dinner, what car to buy, or what kind of career to pur-
sue? In traditional economics, the standard answer is that
people decide by maximizing expected utility, but psychol-
ogists have found many problems with this kind of decision
theory as a description of human behavior (e.g., Camerer,
2000; Kahneman & Tversky, 2000; Koehler, Brenner, &
Tversky, 1997; Rottenstreich & Hsee, 2001; Tversky &
Kahneman, 1991). Economists commonly take preferences
as given, but from a psychological point of view it should
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be possible to explain how preferences arise from cognitive
and affective processes. Work in this spirit has made tre-
mendous progress in revealing key features and dynamics
missed by theories disconnected from the study of cogni-
tive, emotional and socially motivated phenomena, such
as a common hypersensitivity to losses over equivalent
gains (Kahneman & Tversky, 1979) and the affective influ-
ence of prior expectations and counterfactual comparisons
on preference judgments (Mellers, 2000). Moreover, with
the rise of cognitive and affective neuroscience, it should
be possible to identify precise neural mechanisms underly-
ing these behavioral-level explanations of why people make
the choices that they do.

We propose neural affective decision theory as a psy-
chologically and neurologically realistic account of spe-
cific brain mechanisms underlying human preference and
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decision. The theory consists of four principles, which we
shall list here and describe in detail later:

1. Affect. Decision making is a cognitive—affective process,
crucially dependent on emotional evaluation of poten-
tial actions.

2. Brain. Decision making is a neural process driven by
coordinated dynamic interactions among multiple brain
areas, including parts of prefrontal cortex as well as
major subcortical systems.

3. Valuation. The brain forms preferences via interacting
but distinct mechanisms for positive and negative out-
comes, encoded primarily by dopamine and serotonin,
respectively.

4. Framing. Judgments and decisions vary depending on
how the context and manner of the presentation of
information initiate different neural activation patterns.

There is substantial empirical evidence for each of these
principles, and when integrated in the precise manner we
outline they can explain the findings of a wide range of psy-
chological and neurological phenomena.

In order to connect these principles with experimental
results in a mathematically and neurologically rigorous
fashion, we have developed a neurocomputational model
called ANDREA (affective neuroscience of decision
through reward-based evaluation of alternatives). It oper-
ates within the neural engineering framework (NEF) devel-
oped by Eliasmith and Anderson (2003), using biologically
realistic populations of neurons to encode and transform
complex representations of relevant information.
ANDREA simulates computations among several thou-
sand neurons to model coordinated activities in seven
major brain areas that contribute to valuation and decision
making: the amygdala, orbitofrontal cortex, anterior cin-
gulate cortex, dorsolateral prefrontal cortex, the ventral
striatum, midbrain dopaminergic neurons, and serotoner-
gic neurons centered in the dorsal raphe nucleus of the
brainstem.

ANDREA successfully produces detailed neural-level
simulations of behavioral findings explored in prospect the-
ory (Kahneman & Tversky, 1979) and the decision affect
theory of Mellers and colleagues (1997). It shows how spe-
cific neural processes can produce behaviors observed in
both psychological experiments and real-world scenarios
that have provided compelling evidence for these prefer-
ence and choice theories. In particular, ANDREA provides
neurological explanations for the major hypothesis of pros-
pect theory that losses have greater psychological force
than gains, as well as for the fundamental claim of decision
affect theory that the evaluation (and subsequent potential
choice) of an option is strongly influenced by its perceived
relative pleasure, an emotional determinant that is depen-
dant on expectations and counterfactual comparisons. In
our concluding discussion, we compare ANDREA to other
models in decision neuroscience, describe promising ave-
nues of expansion for ANDREA and neural affective

decision theory, and suggest additional psychological phe-
nomena that are likely to fall within the scope of our
theory.

2. Neural affective decision theory

We now examine in detail the four guiding principles of
neural affective decision theory, including connections to
and supporting evidence provided by a diverse array of
research in both psychology and neuroscience. The
ANDREA implementation of the theory we describe later
provides the formal integration of these ideas necessary for
our detailed simulation experiments.

2.1. Principle 1. Affect

According to our first principle, decision making is a
cognitive—affective process, crucially dependent on emo-
tional evaluation of potential actions. This claim rejects
the assumption of traditional mathematical decision the-
ory that choice is a ‘cold’ process involving the calculation
of expected values and utilities (Kreps, 1990; Von Neu-
mann & Morgenstern, 1947). The original 19th-century
concept of utility was a psychologically rich, affective
one based on pleasure and pain (Kahneman, Wakker, &
Sarin, 1997). In contrast, 20th-century economics adopted
the behaviorist view that utilities are mathematical con-
structions based on preferences revealed purely by behav-
ior. There is no room in this view for findings observed in
both psychological experiments and everyday life that
people’s decisions are often highly emotional, with prefer-
ences arising from having positive feelings for some
options and negative ones for others. While psychology
has introduced a more complex characterization of the
cognitive processes underlying decision making, the spe-
cific influence of affect on behavior has frequently been
ignored. Rottenstreich and Shu (2004) argue that this
neglect of affect may stem from an original desire of psy-
chological decision researchers to minimize differences
with the terminology and general themes of classical nor-
mative decision theories.

But there is increasing appreciation in cognitive science
that emotions are an integral part of decision making (e.g.
Bechara, Damasio, & Damasio, 2000, 2003; Churchland,
1996; Lerner & Keltner, 2000; Loewenstein, Weber, Hsee,
& Welch, 2001; Sanfey, Loewenstein, McClure, & Cohen,
2006; Slovic, Finucane, Peters, & MacGregor, 2002; Wagar
& Thagard, 2004). Kahneman (2003, p. 710) argues that
“there is compelling evidence for the proposition that every
stimulus evokes an affective evaluation.” Common experi-
ence suggests that emotions are both inputs and outputs
of decision making. Preference for one option over another
depends strongly on their relative emotional interpreta-
tions, and the process of decision making can itself gener-
ate emotions such as anxiety or relief. The relevance of
emotion to decision making is consistent with physiological
theories that regard emotions as reactions to somatic
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changes (Damasio, 1994; James, 1884). It also fits with
some cognitive theories of emotions, which regard them
as judgments about the extent to which ones goals are
being satisfied (Oatley, 1992). From a neurological perspec-
tive, it is easy to see how emotions can be both cognitive
and physiological, as there are numerous interconnections
among the relevant brain areas.

2.2. Principle 2. Brains

According to our second principle, decision making is a
neural process driven by coordinated dynamic interactions
among multiple brain areas, including parts of prefrontal
cortex as well as major subcortical systems. In particular,
activity in brain regions involved in assessing and acting
upon the appetitive or aversive nature of stimuli (com-
monly conceptualized as part of the brain’s reward system)
seems most crucial to understanding judgment and choice
behavior (for a review, see Sanfey et al., 2006). Empirical
neuroscientific investigation of the nature of preference
and decision has been developing rapidly, and much work
today is identifying specific brain areas involved in produc-
ing decision-related behaviors (e.g., Bayer & Glimcher,
2005; Breiter, Aharon, Kahneman, Dale, & Shizgal, 2001;
Knutson, Taylor, Kaufman, Peterson, & Glover, 2005;
McClure, York, & Montague, 2004; Montague & Berns,
2002). This nascent field of decision neuroscience represents
an exciting frontier of deep exploration into how and why
people act, think and feel as they do in choice and judg-
ment scenarios (Shiv et al., 2005).

But taking a neural approach to decision making allows
for much more than simply identifying brain areas acti-
vated in the subjects of behavioral studies. The develop-
ment of biologically plausible theories of sow brain areas
interact to produce preferences and choices can provide
more refined mechanistic explanations of decision behavi-
ors. Moreover, investigation at the neural level can suggest
novel experiments, for example the recent discovery that an
odorless nasal spray preparation of the neuropeptide oxy-
tocin increases trust in risky choice scenarios, including
those involving monetary transactions (Kosfeld, Heinrichs,
Zak, Fischbacher, & Fehr, 2005). Such a finding is one that
decision neuroscience can reveal, but that would be missed
by higher-level psychological study alone. Neuroscience
can thus inform the development of more detailed predic-
tions and richer understandings of behavioral-level
observations.

2.3. Principle 3. Valuation

Our third principle states that the brain forms prefer-
ences via interacting but distinct mechanisms for positive
and negative outcomes, encoded primarily by dopamine
and serotonin, respectively. There is extensive evidence that
midbrain dopamine neurons, such as those in the ventral
tegmental area and nucleus accumbens, are involved in
the computation of a discrepancy between the expected

and actual rewarding nature of an outcome (e.g., Knutson
et al., 2005; Schultz, 2000; Suri, 2002), although recent evi-
dence suggests that this activity is only involved in the
encoding of positive deviations from expectations, that is,
getting more than one expected. (Bayer & Glimcher,
2005). Daw, Kakade, and Dayan (2002) describe a plausi-
ble alternative brain mechanism for situations in which one
receives less than expected, arguing that serotonin innerva-
tion from the dorsal raphe nucleus of the brainstem is cru-
cial for producing characteristic reactions to negatively
valued stimuli and matters being considered (e.g., options
in a choice scenario). There are thus neurobiological rea-
sons for viewing gains and losses as being encoded and sub-
sequently assessed in a fundamentally different manner by
the brain, involving distinct neural circuits and activation
patterns. This provides the basis for our explanation of
the central finding of prospect theory that losses loom lar-
ger than gains. Our neurocomputational model ANDREA
simulates how interactions of the dopamine and serotonin
systems with the amygdala and other brain areas may
enable this asymmetric assessment of positive and negative
outcomes.

2.4. Principle 4. Framing

The last principle states that judgments and decisions
vary depending on how the context and manner of the pre-
sentation of information initiate different neural activation
patterns. The importance of framing is evident from the
long history of influential work by Tversky and Kahneman
(1981, 1986; see also Kahneman & Tversky, 2000). They
demonstrated that framing a decision in terms of either
losses or gains can substantially affect the choices that peo-
ple make, and related phenomena have been observed in
many real-life arenas such as the stock market and con-
sumer choice (Camerer, 2000). We contend that framing
can be understood even more deeply from the neural affec-
tive perspective we propose in our first two principles. The
simulation results we describe later show how this enriched
conception of framing allows for the integration of diverse
lines of behavioral decision research, as well as the postula-
tion of important new predictions and hypotheses.

We take the concept of framing to encompass any
potential effects of the manner or context of presentation
on decisions and judgments. Following this characteriza-
tion, such findings as preference reversals when outcomes
are evaluated jointly versus separately (e.g., Hsee, Loewen-
stein, Blount, & Bazerman, 1999; Hsee, Rottenstreich, &
Xiao, 2005) might also be considered to be framing results.
Another such framing effect is illustrated by the ‘trolley-
footbridge’ dilemma (e.g., Greene, Sommerville, Nystrom,
Darley, & Cohen, 2001): most people consider flipping a
switch to kill one person instead of five morally justified,
but consider it immoral to personally push a person into
the path of an oncoming trolley, killing that person but
preventing the trolley from killing five others. We will also
explain some of the findings of the decision affect theory of
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Mellers and colleagues (1997) as framing effects that differ-
entially activate specific neural systems.

These four principles make strong claims about the pro-
cesses that constitute human decision making, but alone
they are not sufficiently precise to explain particular experi-
mental results. We now describe a rigorously defined, bio-
logically realistic neurocomputational model that specifies
how different brain areas might interact in a manner consis-
tent with neural affective decision theory to produce
observed behavioral phenomena.

3. The ANDREA model

A neuropsychological theory consists of a set of hypoth-
eses about how specific brain operations produce observed
behaviors. Because of the complexity of the brain, compu-
tational models are indispensable for theoretical neurosci-
ence, both for precisely specifying relevant neural
structures and activities and for examining their implica-
tions through appropriate simulation experiments. Litt,
Eliasmith, and Thagard (2006) proposed a biologically
detailed neural model of reward system substrates of valu-
ation and decision. We describe here the primary func-
tional components of this model, and introduce several
explanatorily valuable additions regarding neural response
characteristics and the complexity of emotional arousal
encoding. This version of the model we call ANDREA,
for affective neuroscience of decision through reward-based
evaluation of alternatives.

Our model applies the neural engineering framework
(NEF) developed by Eliasmith and Anderson (2003), and
has been implemented in MATLAB using the NEF simula-
tion software NESim (see Appendix A). Neural popula-
tions (‘ensembles’) and their firing activities are described
in the NEF in terms of mathematically precise representa-
tions and transformations, with the dynamic characteristics
of neural computations characterized using the tools of
modern control theory. Appendix B outlines the exact
mathematical nature of representation, transformation
and dynamics as defined by the NEF. This rigorous, gener-
alized mapping of high-level mathematical entities and
transformations onto biophysical phenomena such as spike
patterns and currents allows for biologically constrained
computations and dynamics to be implemented in physio-
logically realistic neural populations, and has proven suc-
cessful in modeling phenomena ranging from the
swimming of lamprey fish (Eliasmith & Anderson, 2000)
to the Wason card task from cognitive psychology (Elia-
smith, 2005b).

Fig. 1 shows the connectivity structure between the dif-
ferent brain regions we have modeled. A comprehensive
examination of afferent and efferent transmission among
these regions would feature many more connections than
we have included. The interactions shown represent partic-
ular paths of coordinated activity that contribute to
observed behaviors, rather than a full characterization of
all relevant neural activity. Appendix A provides details

DLPFC
A

5-HT
VS

DA

Fig. 1. Basic connectivity framework. Dotted arrows represent external
inputs to the model. Abbreviations: 5-HT, dorsal raphe serotonergic
neurons; ACC, anterior cingulate cortex; AMYG, amygdala; DA,
midbrain dopaminergic neurons; DLPFC, dorsolateral prefrontal cortex;
OFC, orbitofrontal cortex; VS, ventral striatum.

regarding the specific numbers of neurons used to model
each of these brain areas, as well as the physiological
parameters used to model individual neurons in each of
these populations. Each input-output relation symbolized
by a connection line in Fig. 1 maps onto one or more spe-
cific mathematical transformations, as summarized in
Appendix C. We now describe these coordinated neural
computations as they are relevant to explaining decisions
and valuations.

3.1. Subjective valuation by emotional modulation

Valuation of alternatives and other information is an
essential part of decision making. Central to the perfor-
mance of this task by ANDREA is an interaction between
the amygdala and orbitofrontal cortex (Fig. 1). Much
research has implicated orbitofrontal cortex in the valua-
tion of stimuli (e.g., Rolls, 2000; Thorpe, Rolls, & Maddi-
son, 1983), particularly in light of its extensive connections
with sensory processing areas of the brain. Several recent
studies have indicated an important role for orbitofrontal
neurons in providing a sort of “common neural currency”
(Montague & Berns, 2002) which allows for the evaluation
and comparison of figurative (or even literal) apples and
oranges (Padoa-Schioppa & Assad, 2006). Recent studies
of the amygdala have challenged its traditional association
with mainly aversive stimulus processing, showing instead
activation based on the degree to which stimuli are salient
or arousing, rather than a specific valence type (for a
review, see McClure et al., 2004). This has inspired a rein-
terpretation of classic results as indicating that negatively
appraised events may be in general more emotionally
arousing than positive outcomes, perhaps because of a
need to alter current behavior in response to aversive feed-
back. In accord with research on the role of the amygdala
in emotional attention (Adolphs et al., 2005) and multipli-
cative scaling observations for visual attention (e.g., Treue,



256 A. Litt et al. | Cognitive Systems Research 9 (2008) 252-273

2001), ANDREA performs a multiplicative modulation by
amygdala-encoded emotional arousal of the valuation
computation performed in orbitofrontal cortex (Fig. 2).
That is, orbitofrontal valuations are modeled as being mul-
tiplicatively dampened or intensified, depending on
whether the individual is in a lowered or heightened state
of affective arousal, respectively.

Let V represent baseline orbitofrontal stimulus valua-
tion, based on initial sensory and cognitive processing
and provided as an input in our model. Taking A4 to repre-
sent amygdala-encoded emotional arousal, we characterize
the output subjective valuation S at time ¢ as

S(t) = A(2) - V(1) (1)

Thus, increased levels of emotional arousal will amplify the
subjective valuation of stimuli by orbitofrontal cortex,
while lower arousal levels lead to valuation attenuation.

OFC input

As we discuss in our later account of prospect theory, AN-
DREA also introduces realistic biological constraints im-
posed by neural firing saturation that help to explain
valuation behaviors observed in humans, an advancement
over our earlier reward system model (Litt et al., 2006).

3.2. Surprise as deviation from expectations

Fig. 2 shows that our model generates amygdala activity
upsurges accompanying changes in the valuation input to
orbitofrontal cortex, and that these upsurges are valence-
asymmetric: negative changes in valuation (losses) produce
greater affective arousal increases than equivalent positive
changes (gains). This neurological behavior is produced
mainly through a modulation of amygdala-encoded emo-
tional arousal by a reward prediction error signal. This is
simply the discrepancy between expected and actual stimu-

0 0.1 0.2 0.3 0.4

o
w

2.5

15

AMYG output

0.5

0.5 0.6 0.7 0.8 0.9 1

OFC output
|

_4 Il Il Il Il

0.5 0.6 0.7 0.8 0.9 1

Il Il Il Il Il J

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1

time

Fig. 2. Arousal modulation of valuation. (a) The “emotionless” input signal to orbitofrontal cortex consists here of positive and negative valuation
changes of varying magnitude. The vertical axis can be interpreted as a sort of neural currency scale: upward steps in the graph thus represent gains, while
stepping down indicates a loss. Positive/negative sign corresponds to appetitive/aversive valence. (b) Emotional arousal reflected in amygdala activity.
Decoded output from spiking neuron populations (see Appendix B). Upsurges correspond to arousal increases coinciding with changes in the externally
provided stimulus value signal in (a), demonstrating the role such changes play in influencing emotional engagement. (c) Multiplicative modulation of the
activity presented in (a) by that shown in (b). Emotional arousal can induce significant changes in valuation from the baseline input signal.
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lus valuation, and as such represents the effect of the sur-
prising nature of a stimulus on how emotionally arousing
it is.

For this computation we employ the temporal difference
(TD) model (Sutton & Barto, 1998), due to its simple math-
ematical structure and robust correspondence with experi-
mental neural activity observations (e.g., Schultz, 2000).
TD computes reward prediction error (E) based on the dif-
ference between the latest reward valuation and a weighted
sum of all previous rewards (P). Using our arousal-modu-
lated signal S as the input regarding current stimulus valu-
ation, this leads to the modeled recurrent equations

E(1) =S() - P(t=1) (2)
Pt)y=P(t—1)+o-E(1), (3)

where o is a learning rate constant between 0 and 1. This
activity has typically been modeled by increased midbrain
dopamine firing with positive prediction errors (that is, get-
ting more than expected) and firing rate depression for neg-
ative errors (getting less than expected) (Schultz, 1998,
2000; Suri, 2002). While this approach seems valid for par-
ticular ranges, recent work has called into question the fea-
sibility of midbrain dopamine acting alone to perform this
computation (Daw et al., 2002; Dayan & Balleine, 2002). In
particular, such physiological constraints as low baseline
firing rates make it difficult to envision how activity depres-
sion could be used to well encode highly negative predic-
tion errors, a concern supported by recent experimental
findings (Bayer & Glimcher, 2005).

Accordingly, we adopt an interacting opponent encod-
ing of positive prediction errors by midbrain dopamine
and negative errors by serotonergic neurons in the dorsal
raphe nucleus of the brainstem. This is supported by a vari-
ety of experimental studies in humans and other animals
(Deakin, 1983; Evenden & Ryan, 1996; Mobini, Chiang,
Ho, Bradshaw, & Szabadi, 2000; Soubrié, 1986; Vertes,
1991; for a review, see Daw et al., 2002). By separating
the encodings of losses and gains, we are able to distinctly
calibrate the modulatory effects of positive and negative
valuation changes to provide a plausible neural mechanism
for loss aversion (Appendix C). That is, asymmetries in
loss—gain valuation can be modeled via differing amygdala
sensitivity to inputs from dorsal raphe or midbrain areas,
perhaps realized in actual brains through differences in spe-
cific neurotransmitter receptor concentrations in the amyg-
dala, or similar mechanisms of connectivity strength
variation (e.g., receptor sensitivity differences).

3.3. Increased behavioral saliency of negative outcomes

Valence-asymmetry in emotional arousal is further
strengthened in our model through the activities we have
assigned to the anterior cingulate and dorsolateral prefron-
tal cortices, specifically via a proposed dissimilarity in the
influences of losses and gains on required behavioral plan-
ning. Much evidence supports the importance of dorsolat-

eral prefrontal cortex in the planning, representation and
selection of goal-directed behaviors (e.g., Owen, 1997),
and the anterior cingulate cortex in the detection of con-
flicts between current behavior and desired or expected
results, interfacing appropriately with dorsolateral prefron-
tal in the process (e.g., Bush, Luu, & Posner, 2000). We
hypothesize an increased behavioral saliency of negative
reward prediction errors, as such results may indicate that
current behavior needs to be modified, rather than be sim-
ply maintained or strengthened as a positive error would
indicate. Such a situation would introduce the attendant
cognitive resource requirements of new action plan forma-
tion and execution in response to the displeasing outcome,
as well as potential environmental risks stemming from
altering current behavior. We model this increased behav-
ioral saliency through a corresponding increase in emo-
tional arousal (Appendix C). Thus, feedback from
dorsolateral prefrontal cortex and the anterior cingulate
to the amygdala in our model further increases the affective
influence of losses over similarly sized gains.

In combination with the previously discussed roles of
dopamine and serotonin in influencing the amygdala, we
arrive at our final characterization of how emotional arou-
sal Ais influenced by the saliency of unexpected gains and
losses, as well as potential behavioral modification costs
associated with the latter:

A(t) = 4,(¢) + - DA(#) + 7 - 5-HT(¢) + C(¢). (4)

A represents a degree of emotional arousal determined by
external factors unrelated to reward prediction error or the
described dorsolateral-cingulate contribution. In previous
work we have provided this as a straightforward input sig-
nal to the model (Litt et al., 2006). We shall describe later
how ANDREA expands 4, arousal by incorporating prior
expectations regarding valuation targets, which allows for
a neurobiological explanation of decision affect theory
(Mellers, Schwartz, Ho, & Ritov, 1997). DA and 5-HT
are the opponent encodings of positive and negative reward
prediction error, respectively, with y chosen to be a connec-
tion-strength constant greater than f to simulate an in-
creased influence of serotonin-encoded losses over
dopamine-encoded gains on emotional state. Finally, C
represents the additional costs associated with losses that
increase their behavioral saliency, and hence emotional im-
port, as determined by activity in the anterior cingulate and
dorsolateral prefrontal cortices.

4. A neural account of prospect theory

Prospect theory, a theoretical framework for under-
standing risky choice developed by Kahneman and Tver-
sky (1979, 1982, 2000), has been applied to many
preference and choice behaviors commonly exhibited by
people. The most famous such phenomenon is loss aver-
sion, whereby people behave asymmetrically in their per-
sonal valuations of objectively equivalent losses and
gains. Central to prospect theory’s resolution of this and
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other inconsistencies between classical decision research
and actual behavior is a redefined characterization of the
nature of subjective evaluations of decision outcomes.
The resulting value function proposed by the theory has
the following essential characteristics (Kahneman & Tver-
sky, 1979; Tversky & Kahneman, 1984): (i) subjective value
is defined on gains and losses — that is, deviations from a
neutral reference point — rather than on total wealth, as
is typical of expected utility theory; (ii) the value function
is concave for gains and convex for losses; and (iii) the
curve is steeper for losses than gains. Taken together, an
asymmetric sigmoid value function is the well-known result
(Fig. 3).

4.1. Loss aversion

Neural affective decision theory, via the ANDREA
model, provides a compelling explanation of loss aversion.
The combination of arousal modulation of subjective valu-
ation and the increased affective import of losses produces
emotionally influenced orbitofrontal valuations that over-
weight losses. This can be seen in Fig. 2, and even more viv-
idly in the simplified simulation of Fig. 4. The resulting
effects on thinking and behavior would produce the asym-
metries in peoples’ evaluations of and responses to gains
and losses that have been documented and explained by
prospect theory.

We turn now to extending this neural account of loss
aversion into a detailed biological explanation for the spe-
cific shape of prospect theory’s sigmoid value function.

4.2. The value function of prospect theory
In developing a neural theory of preference that meshes
with the behaviorally inspired prospect theory value func-

tion, the first step is to identify brain regions that should
be expected to produce responses corresponding to the

VALUE

LOSSES GAINS

Fig. 3. A hypothetical prospect theory value function, illustrating
subjective valuation commonalities observed in tests of numerous subjects.

sorts of behaviors monitored in psychological studies of
preference and valuation. As discussed earlier, it seems nat-
ural to look to orbitofrontal cortex as the site of activity
mapping directly onto people’s subjective valuations of
gains and losses. It has been implicated strongly in tasks
related to valuation and comparison of outcomes, events
and perceived stimuli in general, and we have described a
fundamental affective modulation of this encoding that
may form the basis of the subjective nature of ultimate out-
come valuation.

The next step is to identify features of the ANDREA
model that might explain the specific nature of the sigmoid
value function, as described previously in terms of three
primary characteristics (Fig. 3). Feature (i) of the curve,
valuation in terms of reference point deviation, identifies
the sort of input signal to be modulated in orbitofrontal
cortex. Since the degree to which a stimulus is considered
a loss or a gain is a representation of its divergence from
a neutral reference, evaluating such changes in value calls
for a step-style input, similar to those shown in Figs. 2
and 4, where the subjective valuation of a deviation of size
X will be determined by the emotional modulation pro-
duced by an input valuation step from 0 to X. For example,
to produce orbitofrontal activity corresponding to the sub-
jective valuation of a loss of $200, we measure the emotion-
ally modulated output from orbitofrontal cortex to a step
input that moves from 0 (the reference point) to our target
value (—200). Leaving aside feature (ii) for a moment, the
third aspect of the prospect theory value curve, a steeper
slope for losses than gains, is simply loss aversion (Kahn-
eman & Tversky, 1979). The biological account of loss
aversion we previously described will thus serve as a critical
component of our neural explanation of the S-curve.

The second feature of the sigmoid value function, the
leveling-off of loss and gain valuations at the extremes,
requires appeal to additional neurological mechanisms. In
particular, we introduce the notion of neural saturation.
Any type of neuron has hard biological constraints on
how fast it can fire. Each action potential is followed by
a refractory period of repolarization during which the neu-
ron cannot fire, and issues such as cellular respiration
requirements and local neurotransmitter depletion intro-
duce unavoidable limitations on spike rates. In the context
of neurocomputation in the NEF (and hence ANDREA),
this means that the range of values that can be encoded
by any neural population is limited. This inherent restric-
tion can actually serve an explanatory purpose in the case
of the prospect theory value function. To explain how
ANDREA could produce leveling-off valuations at the
extremes, note that we encode values through increasing
neural spike rates in the encoding population as these val-
ues become larger (in either the positive or negative-direc-
tion). Thus, in attempting to provide subjective valuations
for very large gains or losses, neurons in orbitofrontal cor-
tex will begin to saturate, as they simply cannot fire fast
enough to produce linearly distinctive affective responses
to increasingly large value deviations.



A. Litt et al. | Cognitive Systems Research 9 (2008) 252-273 259

Q
N
1

OFC input

AMYG output T

(2]

OFC output

L
IS

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1
time

Fig. 4. Unbalanced evaluation of gains and losses. (a) The input signal to orbitofrontal cortex consists of positive and negative changes in value of equal
magnitude. (b) Arousal level modulated by prediction error and likely behavioral saliency of stimuli. The loss induces a much greater arousal increase than
the equal gain. (c) The outcome of the unevenness displayed in (b). Reductions in stimulus valuation (losses) are disproportionately amplified compared to

gains.

An alternative encoding of value magnitude through
activated population size, rather than the firing levels of a
fixed population, would seem to deny this saturation-based
account of diminishing marginal sensitivity. Such a scheme
might be akin to accumulator models that have been
applied to numerosity encoding in intraparietal regions
(Roitman, Brannon, & Platt, 2007). However, applying this
approach to valuation encoding seems less plausible from a
neurophysiological resources perspective; while the salient
brain areas do have millions of neurons, all of these would
require direct connectivity to areas interpreting magnitude
information in order to impart the same information as
naturally rate-tuned transmitter release by a population
which encodes magnitude via firing rates. Indeed, accumu-
lator models generally allow for cardinal value encodings
on restricted integer scales such as 2-to-32, rather than
the potentially arbitrary and quasi-analog scale on which
valuations often lie.

Fig. 5 illustrates the results of running simulations based
on the preceding description. Each data point at X along
the horizontal axes of Fig. 5b and c is the result of measur-
ing a modulated orbitofrontal valuation output in a simu-
lation providing orbitofrontal cortex a step input from 0 to
X, in accord with the reference-deviation characterization
of value in prospect theory. As expected, the effects of loss
aversion are clear, with the slope differential indicating a

greater affective impact of losses over equivalent gains.
The 2:1 slope ratio observed here for moderate losses and
gains mirrors behavioral evidence in the decision literature
(e.g., Kahneman, Knetsch, & Thaler, 1991). Finally, the
concavity features of the value function have been success-
fully replicated in these simulations. Fig. 6 shows the spe-
cific role of neural saturation in this regard. Each row in
these spike rasters represents an individual orbitofrontal
cortex neuron, and each point represents a single action
potential at a specific point in time produced by the neuron
in question. Clearly, equal changes in the size of a loss or
gain do not necessarily produce similar changes in neural
spiking, particularly as neurons begin to saturate. This
causes a decreasing distinctness in firing response at the
extremes, which we propose as the neurological basis for
the leveling-off in loss and gain valuation observed in
behavioral studies. Overall, the mechanisms we have out-
lined combine to produce a detailed, biologically plausible
neural explanation of the nature of the value function
described by prospect theory.

4.3. Framing through reference-value manipulation
Understanding how individuals respond differently

depending on the manner in which information regarding
a situation is presented is considered to be one of the primary
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Fig. 6. Orbitofrontal cortex spike rasters. Note the clear difference in
activity between (a) and (b) (a 52% increase in immediate post-event
spiking). This is in contrast to the relative similarity in spiking in (b) and
(c) forced by neural saturation, as the $50 change moves farther away
from the reference-value of 0. This response characteristic forms the basis
of our neural explanation for the concavity features of the prospect theory
value function.

explanatory successes of prospect theory. A famous illus-
tration of the power of framing is the presentation of two
different choice-sets to subjects regarding the consequences
of different plans to handle the outbreak of a disease
expected to kill 600 people (Tversky & Kahneman, 1981,
1986):

Problem 1: Program A — 200 people will be saved.
Program B — 1/3 probability 600 are saved, 2/3
probability nobody is saved.

Problem 2: Program C — 400 people will die.

Program D — 1/3 probability nobody will die,
2/3 probability 600 will die.

Faced with the choice in Problem 1, 72% of subjects chose
Program A over B, whereas only 22% of subjects chose
Program C over D when faced with Problem 2. Clearly,
though, Programs A and C are objectively equivalent, as
are their respective alternatives. The framing of situations
in terms of losses or gains may thus cause dramatic rever-
sals of preference in decision scenarios.
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The mechanisms implemented in the ANDREA model
provide a realistic neural basis for such framing effects.
We describe means by which objectively equivalent out-
comes can produce markedly different subjective valuations
in orbitofrontal cortex, depending on the manner in which
each is framed. In particular, note that feature (i) of the
prospect theory value function, the definition of subjective
valuation on deviations from some neutral reference-value,
points towards an obvious mechanism for the framing of
decisions: variation of the reference value itself. In the dis-
ease example, Problem 1 is framed in terms of lives saved
rather than lives lost, while the reverse is true for Problem
2. Thus, choosing ‘““zero” reference points from which sub-
jective valuations shall deviate in each case should lead to
different values for each problem. For Problem 1, “zero
lives saved” would indeed correspond to 0 on a scale mea-
suring the total number of people of our original 600 who
are expected to be left alive after the choice of a given pro-
gram for combating the disease. Crucially, however, the
“zero lives lost” reference point for Problem 2 would cor-
respond to the value 600 when measured on this same scale,
since 600 out of 600 people alive indicates that no lives
have been lost, as required.

Thus, in the case of the Program A option in Problem 1,
a subjective valuation deviation described as “200 people
out of 600 will be saved” represents a positive-direction devi-
ation from 0 lives saved to 200 lives saved. In contrast, the
objectively equivalent Program C option in Problem 2,
described as “400 people out of 600 will die”, represents a
negative-direction deviation from 0 lives lost to 400 lives
lost, that is, from 600 left alive down to 200 left alive. Note
that both deviation construals end at the value 200 on the
scale of people still alive, since they are objectively equiva-
lent outcomes. Nevertheless, because of our multiplicative
modulation of valuation deviations by emotional arousal,
opposite directions of deviation will produce subjective val-
uations that are emotionally amplified in opposite direc-
tions. Fig. 7 illustrates the results of characterizing this
type of framing as a manipulation of the deviation reference
point. We obtain a subjective valuation of orbitofrontal
step input corresponding to Program A that is much more
positive than that of a step input corresponding to Program
C, simply because of opposite directions of emotional mod-
ulation. This would explain the preference reversal that
occurs upon switching decision frames, as what was seen
as a gain in comparison to one reference-value is suddenly
evaluated as a loss in comparison to a different referent.
Later we will discuss framing effects that operate in ways
other than varying reference-values, and how these different
sorts of framing can in combination explain the observed
interactions between affect, prior expectations and counter-
factual comparisons explored in decision affect theory.

4.4. Predictions

Our neurological explanation of prospect theory sug-
gests a range of testable neural-level predictions and
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Fig. 7. Simulation results for framing in terms of gains and losses. (a)
Objectively equivalent outcomes (ending up with 200 people alive)
evaluated as deviations from different reference points. The thin-lined
step input represents Problem 1/Program A, and the heavy line Problem 2/
Program C (Tversky & Kahneman, 1981). (b) Opposite directions of
deviation produce opposite directions of emotional amplification in
subjective valuation, leading to more a positive outlook towards Program
A than Program C.

hypotheses. Litt et al. (2006) outline several such predic-
tions in relation to loss aversion and the behavioral influ-
ence of serotonin. For example, the extent of a particular
individual’s hypersensitivity to losses is hypothesized to
be correlated with the concentration in the amygdala of a
specific serotonin receptor subtype, which would influence
the degree to which negative reward prediction errors affect
amygdala activity. As well, degraded connectivity between
midbrain dopamine neurons and the raphe serotonin sys-
tem is predicted to increase emotionally influenced over-
valuation of both gains and losses, due to mutual
attenuation effects that we have modeled between these sys-
tems. Such correlation between loss and gain sensitivity has
indeed been shown in recent work by Tom and colleagues
(2007). The particular neural activity they describe suggests
the mechanism underlying this relationship may involve
important additions to the computations captured in the
ANDREA model, such as the effects of noradrenergic
circuits.

Further empirical investigation of the neural correlates
of loss aversion can provide more such tests and potential
falsifications of the relationships proposed in ANDREA,
although practical barriers to imaging brain stem serotoner-
gic activity limit the capacity of the approach of the Tom
et al. study in this respect. Additionally, this work and other
explorations of “prospect theory on the brain” by this team
did not show any significant amygdala activity relevant to
loss aversion (Tom, Fox, Trepel, & Poldrack, 2007; Trepel,
Fox, & Poldrack, 2005). Besides the studies we have previ-
ously cited that indicate an important role for the amygdala
in emotional valuation, significant amygdala activity
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directly corresponding to loss aversion has contrastingly
been directly observed in other fMRI experiments (e.g.,
Weber et al., 2007). Such discrepancies and limitations
might be resolved by employing alternative experimental
techniques; for instance, it is possible to temporarily dimin-
ish cerebral serotonin levels by an ingestion of a tryptophan
depleting drink (Cools et al., 2005), which our model sug-
gests would specifically diminish loss aversion. Depletion
studies of decision-related phenomena hold much promise
for testing the validity of neurocomputational models like
ANDREA, as well as advancing our understanding of the
biological bases of complex behaviors and cognitions. Var-
ious other anomalous choice-related behaviors arising from
specific disconnections and damage patterns are also
described by Litt et al. (2006). The enriched conceptions
of decision phenomena provided by neural-level exploration
allow for postulation of potential influences on behavior
that would be missed by studies restricted to examining
higher-level psychological processing.

A straightforward set of additional predictions deriving
from our ANDREA simulations would be expectations of
activation of the brain regions described in our model
(Fig. 1) to be observed in imaging experiments involving
people performing preference and choice tasks. But a more
interesting explanatory and predictive utility of the model
involves the study of individual differences in value func-
tions. While the general features of the curve have been
reproduced by many different experiments and in large
numbers of people, the specific functions of different indi-
viduals are known to vary widely (e.g., Kahneman & Tver-
sky, 1982). Because our simulations essentially represent
the value function produced by a single brain (to which
we have complete access, as its designers and builders)
the model offers biological reasons for why and how indi-
vidual value functions vary, while preserving some com-
mon general features. As discussed previously,
connectivity strength between dorsal raphe serotonin and
the amygdala can influence loss aversion, and thus the nat-
ure of the subjective valuations performed in orbitofrontal
cortex. In persons with heightened serotonin sensitivity in
the amygdala, we would expect to see a value function with
an even steeper slope for losses than that of gains. The
opposite also holds, in terms of lessened serotonergic influ-
ence or stronger midbrain dopaminergic connectivity, with
either of these cases predictive of less discrepancy in slope
between losses and gains (i.e., reduced loss aversion). The
damaged innervation between the raphe and midbrain
mentioned earlier would have the effect of steepening both
the loss and gain portions of the curve, although the slope
ratio might be unaffected. These connectivity manipula-
tions can be understood psychologically as altering the
extent to which one is emotionally aroused by losses and
gains, with this affective influence central to producing sub-
jective valuations of these deviations from a reference
point.

We also predict that specific neural saturation range dif-
ferences between brains may underlie individual differences

in value function shape, with more readily saturating
orbitofrontal populations prone to producing curves that
level-off quicker and more markedly. In the NEF, this sat-
uration can itself be modeled asymmetrically around 0, so
we can readily create a neural system of specific architec-
ture and connectivity that yields significant leveling-off
for losses but much less so for gains, or vice versa. In
sum, the ANDREA model allows for numerous experi-
mentally testable neural-level predictions regarding pros-
pect theoretic behavior.

5. A neural account of decision affect theory

The hedonic influence of prior expectations and coun-
terfactual comparisons on the subjective valuation of out-
comes is characterized by the work of Mellers and
colleagues on what they call decision affect theory (Mel-
lers & McGraw, 2001; Mellers et al., 1997; Mellers, Sch-
wartz, & Ritov, 1999). Its fundamental claim is that
evaluation by an individual of an outcome, event or deci-
sion option is strongly influenced by the “‘relative plea-
sure” it is considered to provide (Mellers, 2000). This
relativity derives in part from the effects of counterfactual
comparisons, as illustrated by the finding that Olympic
silver medalists are more likely to feel disappointed than
bronze medalists because of generally higher personal
expectations (McGraw, Mellers, & Tetlock, 2005).
Another factor is the degree to which an obtained out-
come is considered surprising, with greater emotional
impact for unexpected results (either good or bad) than
for expected outcomes. The mathematical expression of
decision affect theory is

Ro = J[uo + d(uo — ug) * (1 — so)] (5)

(cf. Eq. (1) in McGraw et al., 2005). Rg is the emotional
feeling associated with the obtained outcome and J is a lin-
ear function relating the felt pleasure to a specific numeri-
cal response. 1o and ug are the respective utilities of the
obtained and expected outcomes, and d(uo — ug) is a disap-
pointment function that models how the obtained outcome
is compared to the alternative expected outcome. sg is the
subjectively judged probability of the obtained outcome
actually occurring, so the weighting by the complementary
(1 — so) term models the degree to which the obtained out-
come was not expected (i.e., the subjective probability that
something else would occur). The importance of emotional
influence becomes clear with the finding that people will
choose what feels best — that is, make decisions in such a
manner as to maximize average positive emotional experi-
ence (Mellers et al., 1997).

Thus feelings about outcomes and choices, and hence
the decisions people may be expected to make, are greatly
influenced by the size and valence of the discrepancy
between anticipated and actual results. The expected emo-
tional reaction to gaining $20 will be vastly different if the
prior expectation is gaining $100, versus the case where the
expected yield is only $1. Indeed, the degree of influence of
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this discrepancy from anticipated results is such that an
objectively worse outcome can sometimes be morepleasur-
able than one which is better. Consider the easily imagin-
able experience of feeling happier in stumbling across a
20-dollar bill while walking home from work than from
receiving an underwhelming 1% raise the same day, despite
the monetary value of the raise being significantly higher
than that of the found note. Decision affect theory thus
describes in a revealing and systematic fashion the nature
of certain situations in which less can actually feel like
more. In describing a neural basis for the theory suggested
by ANDREA, we shall draw upon an integration of the
sort of framing discussed in our examination of prospect
theory with the effects of the emotional-context of informa-
tion presentation on valuation and choice, which we now
explore in depth.

5.1. Framing through direct emotional arousal influence

Our earlier discussion of framing effects focused on the
type most discussed in prospect theory, concerning alterna-
tive descriptions of losses and gains. However, framing can
affect decisions in other ways, as in the trolley-footbridge
experiments of Greene and colleagues (2001). These exper-
iments are not reference-value manipulations, and are
therefore not explainable by the neural mechanisms that
we described for prospect theory. The judgment of moral-
ity reversal occurs between two outcomes that are both
described as killing one person to save five others. The
manipulation involved here is not one of reference point,
but rather the personal or impersonal nature of the specific
action performed that leads to the described outcome. It is
thus differing contexts of choice presentation (i.e., the nat-
ure of the situation story) that produce the change in situa-
tional evaluation, rather than any suggestive presentation
of choices in terms of either losses or gains. We will call this
emotional-context framing, in contrast to the reference-
value framing we discussed in relation to prospect theory.

We propose that emotional-context framing in the trol-
ley-footbridge dilemma occurs through increased arousal
associated with the direct, personalized action of pushing
a person to their death, compared to the more detached
and impersonal act of flipping a switch that will cause a
trolley to divert from hitting five people towards hitting a
single person. Such an increase in emotional engagement
induces greater amplification of the subjective evaluation
of causing a death in the personal case, which would pro-
vide a neurological basis for the reversal in typical judg-
ments of the morality of the actions in question. fMRI
experiments by Greene and colleagues seem to support this
neural account of the trolley-footbridge dilemma, showing
increased amygdala and orbitofrontal activity in cases of
highly personal characterizations of morally debatable
actions (Greene & Haidt, 2002; Greene, Nystrom, Engell,
Darley, & Cohen, 2004).

Fig. 8 illustrates the neural explanation we have
described for the type of framing produced by changing
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Fig. 8. Simulation results for framing that changes emotional-context. (a)
A step input to orbitofrontal cortex indicating a negative change in value,
such as the consideration of a situation in which one’s actions cause the
death another person. (b) Two different base arousal inputs to the
amygdala, corresponding to differing levels of context-produced emotional
engagement. (c) Because of differing base arousal levels, arousal upsurges
corresponding to the negative valuation deviation differ as well. (d) Higher
context-motivated base arousal leads to greater amplification of the
subjective valuation change, and thus a belief that the more arousing
scenario is actually worse than the objectively equivalent but less arousing
scenario.

the emotional-context of the presented information. Just
as for reference-value framing, we get different subjective
valuations for scenarios that have identical objective val-
ues, which would allow for preference reversals to occur
when the decision frame is altered. The primary difference
is that this mechanism employs a direct manipulation of
emotional arousal state, whereas our neural basis for the
reference-value framing caused emotional modulation
changes indirectly though manipulation of valuation devia-
tion reference points.

5.2. Decision affect theory as an integrated framing
phenomenon

Explanation of the experimental results examined in
decision affect theory requires both reference-value framing
and emotional-context framing. The hedonic impact of
counterfactual comparisons can be produced by setting
the reference point of the valuation deviation for an
obtained outcome to the value of the unobtained counter-
factual result, which is exactly reference-value framing.
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Then winning $20 when the counterfactual comparison is a
$100 win would be construed as a loss, whereas a counter-
factual comparison to winning only $1 would reframe the
$20 win as a gain. In addition, the degree to which the
obtained outcome was unexpected can have the effect of
emotional-context framing. We formally model this in
ANDREA by having emotional-context influence neural
behavior through the arousal input 4; (see Eq. (4)) in a
manner that takes into account the perceived probability
of the obtained outcome X actually occurring:

Ay (t) = Ao(t) + 4 - (1 — Ploutcome X]). (6)

In this enriched conception of emotional arousal, A4 fills
the previous role of A4; as a base arousal level determined
by external factors and provided as an input to the model.
Ay emotional arousal is now explicitly increased in inverse
proportion to the expected probability of obtaining the
outcome under consideration. Surprising, low-probability
outcomes produce higher arousal than unsurprising out-
comes, where 1 — P[X] is closer to 0. The constant multi-
plier 2 may be related to the relative affect-richness of the
outcome in question, as this variable seems strongly related
to the degree to which uncertainty affects valuations (Rot-
tenstreich & Hsee, 2001).

This direct manipulation of base emotional arousal is a
formalization of emotional-context framing, in this case a
context related to outcome uncertainty. It and reference-
value framing, implemented in ANDREA by the mecha-
nisms described earlier, together produce the canonical
finding of decision affect theory that objectively worse out-
comes can sometimes feel better than more advantageous
alternatives (Fig. 9). The mechanisms described above
and illustrated in Fig. 9 allow us to map the standard math-
ematical model of decision affect theory (Eq. (5)) onto spe-
cific neural structures and computations. The calculation of
subjective utilities and their subsequent comparison, as
embodied in the d(up — ug) term in Eq. (5), are performed
neurologically through step-functional deviation in orbito-
frontal cortex exactly as we modeled for prospect theoretic
subjective valuation. The ‘disappointment’ effects of com-
paring obtained and expected outcome valuations result
from prediction error computations by dopamine and sero-
tonin networks feeding back to influence emotional arousal
encoded in the amygdala, which in turn modulates orbito-
frontal valuations. The subjective probability augmenta-
tion to our arousal representation (Eq. (6)) is identical to
the (1 — sp) surprise term in the decision affect theory
model of Mellers and colleagues. In combination with
our multiplicative modulation of valuation by affective
arousal (Eq. (1)), it is clear that this enhancement also
has similar mathematical effects to that of for the surprise
term in Eq. (5).

Figs. 10 and 11 show the results of more comprehensive
simulations of the behavioral findings of Mellers and col-
leagues (Mellers et al., 1997, 1999). In Fig. 10, the value
of the unobtained counterfactual comparison outcome is
held constant at $0 (i.e., neither losing nor gaining money)

while the obtained outcome value and the expected proba-
bility of obtaining that outcome are varied. Fig. 11
describes an opposing experiment where the $0 is the
unvarying obtained outcome — that is, subjects neither lose
nor gain any money. What is instead varied is the expected
probability of obtaining this $0 outcome and the value of
the unobtained outcome used as a counterfactual compari-
son. In both figures and in both the behavioral and
ANDREA simulation results, lower-probability curves
(corresponding to surprising obtained outcomes) produce
more intense affective experiences, as reflected by more
extreme emotional response ratings. As well, there are cases
in both the behavioral findings and our simulation data
where an objectively worse outcome produces a more posi-
tive emotional response than one which is objectively
greater. For instance, both Fig. 10a and b show more ela-
tion from winning $17.50 instead of $0 with an expected
probability of such a win of only 0.09 than for winning
$31.50 instead of $0 when the anticipated probability of
this outcome is 0.94. The surprising smaller gain feels bet-
ter than the unexpected larger gain. Our proposed neural
basis for decision affect theory thus provides a plausible
and thorough biological characterization of the
phenomenon.

We have been able to explain the central findings of
decision affect theory using the same mechanisms that we
applied to the phenomena explained by prospect theory,
with the addition of framing by emotional-context. A
major motivating factor for the exploration of any subject
at more basic levels of explanation is the desire to unite
findings that are disconnected at higher levels of study
through a set of shared lower-level mechanisms. In this
vein, an important undertaking in the neuroscientific
exploration of the psychology of preference and choice is
to uncover shared underpinnings for phenomena that have
yet to be rigorously tied together at the behavioral level.
ANDREA demonstrates such a means to connect decision
affect theory and prospect theory via the two neural mech-
anisms for framing we have outlined.

5.3. Predictions

There are undoubtedly other kinds of framing besides
the reference-value and emotional-context types that we
have discussed. Additional brain mechanisms may be
required to explain other cases in which differing modes
of identical information presentation produce divergent
results, such as the case of reversals in preference when
options are considered jointly versus separately (e.g., Hsee
et al., 1999, 2005). Emotional-context framing could also
be relevant to explaining a prominent result in constructive
memory research. In the car accident study by Loftus and
Palmer (1974), they describe significant effects on speed-of-
impact memory judgments by subjects based simply on the
emotiveness of the action verb used to describe the collision
between two cars (“contacted each other” producing lower
remembered speed judgments than “smashed into each
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Fig. 9. Decision affect theory as an integration of framing ideas. (a) Counterfactual comparisons between obtained and unobtained outcomes are encoded
through appropriate setting of valuation deviation reference points, as in reference-value framing. (b) The surprising natures of obtained outcomes are
encoded through direct manipulation of base emotional arousal input, as in emotional-context framing (Eq. (5)). (c) The effect of surprise can outweigh an
objectively larger valuation deviation, producing greater hedonic intensity for a surprising smaller gain than an unsurprising larger one in this case. (d) The
subjective valuation of an objectively worse outcome is greater than that of the better outcome, because of the added pleasure of being surprised by the

smaller gain here.

other”). This seems analogous to the baseline emotional
arousal manipulation inherent in our second neural fram-
ing mechanism, which in turn causes increasingly amplified
subjective valuations that would correspond to inflated
speed judgments by subjects when asked more emotively
framed questions by Loftus and Palmer.

Further predictions arising from the framing mecha-
nisms we have described relate to how the neural activity
making up these mechanisms, and hence the effects of
framing, could be induced without performing explicit
decision framing. For instance, it might be possible to
manipulate default subjective valuation reference points
either upwards or downwards via positive or negative
priming, or perhaps even through direct neuropharmaco-
logical intervention to influence orbitofrontal activity. This
could potentially produce effects similar to reference-value
framing in a less conspicuous manner. Similarly for emo-
tional-context framing, manipulation of affective arousal
in a manner wholly unrelated to situation context could
cause “‘bleed-over” effects identical to those produced by
situation-related arousal modulation. Methods of manipu-
lation include prior exposure to violent or sexual imagery,
relaxing or stressful preceding tasks, and direct pharmaco-
logical modulation of amygdala activity. There is a wide

variety of means by which brain activity similar or identical
to our mechanisms of framing can be induced either
behaviorally or neurochemically, and we predict that such
alternative routes should produce behaviors in people sim-
ilar to explicit framing effects, regardless of whether or not
they are aware of how they are being influenced.

6. General discussion

We have shown how neural affective decision theory, as
stated in our four principles and as implemented in the
ANDREA model, can account for the central phenomena
described by prospect theory and decision affect theory.
Our view of the general process of decision making is sum-
marized in Fig. 12. People are presented with a decision
problem by verbal or perceptually experienced descriptions
which they must interpret based on the context in which the
decision is being made, resulting in an overall representa-
tion of the problem that is both cognitive and emotional.
Options, outcomes, and goals can be encoded by verbal
and other cognitive representations, but with an inelimin-
able emotional content; in particular, goals are emotionally
tagged. The translation of the presentation of a problem
and its context into an internal cognitive—emotional
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Fig. 10. Comparing behavioral and simulation results in decision affect
theory. (a) Behavioral findings of Mellers et al. (1997), for lotteries with a
constant $0 unobtained counterfactual comparison and varying obtained
outcomes and expected obtained outcome probability. Emotional
response was reported by subjects by ratings of feelings on a scale of 50
(extreme elation) to —50 (extreme disappointment) (b) Results of model
simulations of the Mellers et al. experiment in (a), with data points
determined through simulations in line with our proposed neural basis for
decision affect theory (Fig. 9).

representation produces framing effects, because different
representations will invoke different neural affective evalu-
ations. ANDREA shows how these evaluations can be
computed by coordinated activity among multiple brain
areas, especially the orbitofrontal cortex, the amygdala,
and dopamine and serotonin systems involved in encoding
positive and negative changes in valuation. The result is
decisions that select options inducing the highest emotional
subjective valuations.

ANDREA has greater explanatory scope than other
neurocomputational models of decision and reward that
have focused on in-depth modeling of more restricted sub-
systems of the brain, and accordingly limited ranges of
behavioral phenomena. Two such examples are the model
of reward association reversal in orbitofrontal cortex by
Deco and Rolls (2005) and the GAGE model of cogni-
tive—affective integration in the Iowa gambling task and
self-evaluations of physiologically ambiguous emotional
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Outcome-tso -$50 -$40 -$30 -$20 —$10

Emotional Response (OFC output)
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Unobtained Outcome ($)

50 I L
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Fig. 11. Comparing behavioral and simulation results in decision affect
theory, opposite experiment to that described in Fig. 10. (a) Behavioral
findings of Mellers et al. (1997), for lotteries with constant $0 obtained
outcome and varying wunobtained counterfactual comparison outcome
value and expected obtained outcome probability. (b) Model simulation of
the experiment in (a), with data points determined through simulations in
line with our proposed neural basis for decision affect theory (Fig. 9).

states (Wagar & Thagard, 2004). Additionally, a straight-
forward diffusion decision process implemented in supe-
rior colliculus cells seems able to accurately characterize
accuracy and reaction time in simple two-choice decision
tasks (Ratcliff, Cherian, & Segraves, 2003). Task modeling
of this sort is important for exploring basic details of neu-
ral mechanisms for specific phenomena, but examining
brain processes on a larger scale is required for explaining
more complex and wide-ranging psychological findings,
such as prospect theory and decision affect theory. Buse-
meyer and Johnson (2004) describe a connectionist model
that they apply to a range of behaviors as diverse as those
explored by ANDREA, including preference reversal
effects and loss aversion. The network model called affec-
tive balance theory (Grossberg & Gutowski, 1987) also
explores a wide range of risky decision phenomena in a
mathematically sophisticated fashion, and proposes effects
of emotional-context on cognitive processing that are
largely consistent with those implemented in ANDREA.
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Fig. 12. Overview of neural affective decision theory.

The main improvement that our approach offers over
these two models is in neurological realism, as reflected
by modeled characteristics of individual processing units
(‘neurons’) and the mapping of proposed computations
onto specific brain regions and interactions supported by
empirical findings. The models of Grossberg and Gutow-
ski (1987) and Busemeyer and Johnson (2004) are not
comparable in this respect to either ANDREA or the pre-
viously mentioned works of Deco and Rolls (2005) and
Wagar and Thagard (2004). This of course is not a criti-
cism of such methods of modeling. Rather, it is more of
an indication of the different levels at which theoreticians
can formulate explanations of behaviorally studied psy-
chological phenomena. While the proposed mechanisms
are interesting from the larger perspective of computa-
tional models of decision making, these artificial neural
networks are of a fundamentally different nature than
ANDREA and similar models in computational cognitive
neuroscience.

A recent model of decision-related interactions between
basal ganglia and orbitofrontal cortex by Frank and Claus
(2006) recognizes the utility of taking the sort of broad-scale
approach we employ in our design of ANDREA, and main-
tains a similar level of neurological realism and detail.
Despite certain similarities regarding modeled brain regions
and proposed computations, this model diverges from
ANDREA in several fundamental ways, leading to both dif-
ferent mechanisms and different explanatory targets for each
of our models. After briefly describing the structure of the
Frank and Claus (2006) model, we compare it in detail with
our own model of valuation and choice phenomena.

The main focus of the Frank and Claus model is the
means by which basal ganglia dopaminergic activity and
orbitofrontal computations enable adaptive decision mak-
ing responsive to contextual information. Computation
and representation of expected decision value information
is accomplished through a division of labor between sub-
cortical dopamine and prefrontal networks. A basal gan-
glia dopaminergic network learns to make decisions
based on the relative probability of such decisions leading
to positive outcomes. This process is augmented by orbito-
frontal circuits that provide a working memory representa-
tion of associated reinforcer value magnitudes that
exercises top—down control on the basal ganglia activity,
which allows more flexible response to rapidly changing
inputs. The proposed computations are detailed, elegant

and well-supported by empirical data, and the model is
effective in explaining decision-related behaviors as diverse
as risk aversion/seeking, reversal learning, and peoples’
performance in a variant of the Iowa gambling task in both
normal and brain-damaged scenarios.

While ANDREA does not implement the specific compu-
tations proposed by Frank and Claus (2006), this is due more
to differing targets of explanation than to any major incon-
sistencies in our respective conceptions of the roles of various
brain regions in decision making. Both models describe
important functional differences between orbitofrontal-
amygdala networks and dopaminergic activity in line with
empirical findings demonstrating the involvement of orbito-
frontal cortex in valuation and dopaminergic encoding of
reward prediction error. How these subsystems might inter-
act is a question that both ANDREA and Frank and Claus
(2006) address, and one that has been neglected in previous
theoretical modeling of the neurobiology of reward. Never-
theless, whereas Frank and Claus develop a comprehensive
characterization of how orbitofrontal cortex learns and rep-
resents reinforcer value, our goal is to describe how specific
external influences differentially alter the magnitudes of these
orbitofrontal-encoded values, such as via the asymmetric
emotional modulation by losses and gains on valuations that
we describe as the basis of loss aversion in prospect theory.
As a result, the models are best suited to providing neural
explanations of different psychological phenomena, and
where they address similar phenomena they do so with con-
trasting emphases on specific relevant brain mechanisms.

The most prominent difference is that of representa-
tional complexity of amygdala activity. In both models,
the amygdala encodes the magnitude of losses and gains
in proportion to overall activity level, which then influences
orbitofrontal representations of reward values. Frank and
Claus (2006) do not explore how the amygdala forms such
representations of reinforcer magnitude, providing them
instead as direct model inputs. In contrast, ANDREA
models multifaceted means by which emotional arousal
related to outcome magnitude is encoded by the amygdala
(Egs. (4) and (5)). This allows for the postulation of neural
explanations for phenomena not addressed by Frank and
Claus (2006), such as multiple mechanisms for framing
and the observations of decision affect theory. In addition,
while both models describe loss aversion as resulting from
greater amygdala activation by losses than equivalent
gains, ANDREA offers specific neurological reasons of
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how this might occur through differential calibration of dis-
tinct loss and gain reward prediction error networks, as
well as feedback to the amygdala from dorsolateral and
cingulate processing of behavioral saliency. Our detailed
characterization of how the amygdala comes to represent
magnitude information thus allows us to both explain addi-
tional phenomena and provide more complete biological
mechanisms for valuation and decision behaviors simu-
lated by both models.

Important structural differences between the models
result from their differing conceptions of amygdala activity.
The Frank and Claus (2006) model focuses primarily on
the top—down biasing effect of orbitofrontal activity on
gradual, multi-trial learning in the basal ganglia dopamine
network, with much less emphasis on the reciprocal influ-
ence of relative reinforcement probability computations
on orbitofrontal activation. We are able to explore in depth
such effects in ANDREA through feedback of reward pre-
diction error information to the amygdala that influences
its encoding of emotional arousal, which in turn modulates
orbitofrontal valuations. These valuations have top—down
biasing effects on reinforcement learning and action selec-
tion similar to those modeled by Frank and Claus (2006),
for instance how differing orbitofrontal representations of
identical reward values caused by framing effects produce
different activity in dopamine and serotonin prediction
error subsystems.

There are several other issues on which the models differ in
important ways. Perhaps the most obvious is regarding the
role of serotonin acting in opponency with dopamine in
reward prediction error. Frank and Claus (2006) argue that
the low baseline firing rates of dopaminergic cells need not
mean that firing rate depressions are less capable of encoding
highly negative outcomes, as there may exist countervailing
sensitivity differences in dopamine receptors to firing bursts
versus dips. While they remain open to a role for serotonin
in negative reinforcement learning and aversive stimulus
processing mediated within OFC, they argue for the central-
ity of dopamine firing dips to negative valuation processing
mediated by the basal ganglia, even in light of evidence show-
ing these dips are physiologically limited in scope (e.g., Bayer
& Glimcher, 2005). Our model can be considered structurally
consistent with this line of reasoning, since the mutual bias-
ing effects we have implemented between dopamine and sero-
tonin produce the same dopaminergic firing depressions
utilized computationally by Frank and Claus in cases where
we describe encoding via serotonergic activity. Clearly,
though, the models differ markedly in the degree to which
they assign explanatory import to dopamine firing dips ver-
sus concomitant serotonergic firing increases. Further differ-
ences are evident in respective extents of brain region
modeling. Frank and Claus employ more complex concep-
tions of orbitofrontal cortex and midbrain dopamine areas
than are implemented by ANDREA, differentially utilizing
specific subpopulations of these broadly defined brain areas.
In contrast, ANDREA includes limited but important con-
tributions from anterior cingulate and dorsolateral prefron-

tal cortices. These include involvement in encoding the
behavioral relevance of outcomes, how this encoding may
differ for positive and negative outcomes, and the subsequent
effects of behavioral saliency on emotional arousal. These
are brain regions omitted in the model of Frank and Claus
(2006) that they acknowledge may be crucial to understand-
ing decision phenomena. Finally, ANDREA is the first
model to explore a possible role for neural saturation in
explaining the nature of subjective valuation. This effect is
not examined in the Frank and Claus work, which does
not address the leveling-off of the prospect theory value func-
tion for increasingly extreme losses and gains. Thus, while
these two models are fairly consistent with one another
and share similarities in their large-scale approaches to mod-
eling the neural foundations of decision making, they both
make unique contributions to explaining different aspects
of relevant behaviors and psychological processes.

One of the most fertile areas for future applications of
neural affective decision theory and the ANDREA model
is the burgeoning field of neuroeconomics, which operates
at the intersection of economics, psychology, and neurosci-
ence (Camerer, Loewenstein, & Prelec, 2005; Glimcher &
Rustichini, 2004; Sanfey et al., 2006). Examples of such
applications include the previously mentioned findings
regarding preference reversal in joint versus separate option
evaluation (Hsee et al., 1999, 2005) and observed interac-
tions between risk, uncertainty and emotion (Rottenstreich
& Hsee, 2001), both of which seem explainable via the neuro-
logical mechanisms we have modeled. Unlike traditional
economic theory, we do not take preferences as given, but
rather explain them as the result of specific neural opera-
tions. A person’s preference for 4 over Bis the result of a neu-
ral affective evaluation in which the representation of A
produces a more positive anticipated reward value (or at
least a less negative value) than the representation of B. As
depicted in Fig. 12, the neural affective evaluation of options
depends on their cognitive—emotional representation, which
can vary depending on the presentation and context of infor-
mation. This dependence explains why actual human prefer-
ences often do not obey the axioms of traditional
microeconomic theory. In addition to neuroeconomics, we
are exploring the relevance of our theory and model to
understanding ethical judgments, the neural bases of which
are under increasing investigation (Casebeer & Churchland,
2003; Greene & Haidt, 2002; Moll, Zahn, de Oliveira-Souza,
Krueger, & Grafman, 2005). Finally, while neural affective
decision theory is primarily intended as a descriptive account
of how people actually do make decisions, but it can provide
a starting point for developing a prescriptive theory of how
they ought to make better decisions (Thagard, 2006).

Like all models, ANDREA provides a drastically sim-
plified picture of the phenomena it simulates, and there
are many possible areas for improvement and extension.
These include increasing the complexity of individual pop-
ulations, adding more brain areas, modeling more relation-
ships between brain areas, and exploring the effects of
neuronal firing saturation beyond simply orbitofrontal
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cortex. Nevertheless, we have described a variety of neuro-
biologically realistic mechanisms for fundamental decision
processes, and shown their applicability to explaining sev-
eral major experimental findings in behavioral decision
research. Besides implementing original mechanistic ideas,
such as a role for saturation in explaining diminishing mar-
ginal sensitivity in prospect theory, ANDREA contributes
to two important classes of explanation in decision neuro-
science: (1) Generalization and novel syntheses of hitherto
unrelated mechanisms of neural processing (e.g., multipli-
cative models of attention and reward reinforcement learn-
ing); and (2) Specific and detailed grounding of behaviorally
explored psychological phenomena in such plausible and
realistic neurocomputational mechanisms. The result, we
hope, is a deeper understanding of how and why people
make the choices that they do.
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Appendix A. Neurocomputational details

Our reward model was implemented in MATLAB 7.0.1
on a PC with an Intel Pentium 4 processor running at
2.53 GHz, with 1.00 GB of RAM available. For simula-
tions of the extent that we have conducted and described
here, these specifications represent close to the minimum
required, based on the memory and other resource require-
ments of the most recent version of the NESim NEF simu-
lation software running within MATLAB. NESim
documentation and software download links are available
online at http://compneuro.uwaterloo.ca.

We modeled spiking activity for a total of 7600 neurons
spread over seven specific populations (Fig. 1), using the
common and physiologically realistic leaky-integrate-and-
fire (LIF) model for each of our modeled neurons (see
Appendix B). In particular, we use 800-1200 neurons for
simulating each of the amygdala, orbitofrontal cortex, ven-
tral striatum, anterior cingulate cortex, and dorsolateral
prefrontal cortex, representing one- to three-dimensional
vectors as needed in the neural engineering framework
(Appendix B). The areas representing midbrain dopaminer-
gic neurons and the dorsal raphe nucleus of the brainstem
are each modeled with 1200-neuron ensembles, each with
several discrete subpopulations, in order to capture the
additional complexities involved in the encodings and
transformations we assign to these areas in our model
(recurrent, rectified, biased-opponent calculation of reward
prediction error; see Appendix C).

Each individual neuron is based on a reduced-complexity
biophysical model that includes features fundamental to

most neurons, including conventional action potentials
(spikes), spike train variability, absolute refractoriness,
background firing, and membrane leak currents. The mem-
brane time constant for our LIF neurons is set to 10 ms, with
arefractory period (a post-spike delay during which the neu-
ron may not fire) of 1 ms. We introduce at simulation run-
time 10% Gaussian, independent zero-mean noise, relative
to normalized maximum firing rates, to simulate the noisy
environment in which our neurons operate. These choices
are based on plausible biological assumptions (see Eliasmith
& Anderson, 2003), and we have made reasonable efforts to
select neurobiologically realistic values for other network
cell parameters as well. For example, our 5 ms synaptic time
constant for dorsal raphe serotonergic neurons is consistent
with the 3 ms decay constants observed in vivo (Li & Bayliss,
1998). Neurons in the cortical areas we have modeled have
been shown to have maximum firing rates ranging from
20-40 Hz in dorsolateral prefrontal and orbitofrontal areas
(Wallis & Miller, 2003) to at least 50 Hz in anterior cingulate
cortex (Davis, Hutchison, Lozano, Tasker, & Dostrovsky,
2000). Thus, our selection of a 10-80 Hz saturation range
for neurons in these model ensembles is a physiologically rea-
sonable compromise to maintain population sizes that are
manageable for simulation purposes. Ensembles must grow
increasingly large to allow for meaningful representation
with slower-firing, smaller saturation-range neurons making
up the ensembles.

Practical considerations nonetheless made necessary
some limitations on biological realism. Principally, the sat-
uration ranges we selected for our modeled subcortical
regions are appreciably higher (by roughly a factor of 10)
than those observed empirically for typical neurons in these
areas. The much larger neural ensemble sizes that would be
required for clean representation and transformation using
the extremely low experimentally observed firing rates
would have made our large-scale simulations computation-
ally impracticable given available resources. We addition-
ally support this compromise of biological realism by
noting that significantly higher firing peaks (greater than
100 Hz) are observed in the bursting behavior of both cer-
tain raphe serotonergic neurons (e.g., Gartside et al.,
2000; Hajoés, Gartside, Villa, & Sharp, 1995) and subpopu-
lations of the amygdala (Driesang & Pape, 2000; Paré &
Gaudreau, 1996), and to less degree in midbrain and stria-
tum dopaminergic neurons as well (Hyland, Reynolds,
Hay, Perk, & Miller, 2002). The specific activity our model
produces in these subcortical areas seems well-suited to cod-
ing via bursting neurons (large but transient firing upsurges
that interpose lengthier periods of near-zero activity). While
we do not define here an explicit alternative neuron model to
LIF, Eliasmith (2005a) describes how bursting could be
incorporated into the NEF, and thus NESim simulations.

For the most part, we have chosen neuron firing thresh-
olds (that is, the respective input levels above which indi-
vidual neurons begin to respond) from an even
distribution over a range represented symmetrically around
zero, with neuron preferred directions in the space of
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representation also chosen from an even distribution (i.e.,
equal numbers of ‘on” and ‘off neurons; see Appendix
B). The exceptions to this rule are single subpopulations
of both the dorsal raphe and midbrain dopaminergic
regions. In these cases, our establishment of minimum fir-
ing thresholds of zero combines with an exclusive use of
positively sloped ‘on’ neurons in these subpopulations to
produce insensitivity to negative values (i.e., rectified
reward prediction error encoding). This corresponds well
with experimentally observed physiological limitations in
the computation of reward prediction error in these brain
regions (see Bayer & Glimcher (2005), as well as the discus-
sion of dopamine and serotonin within the main text
description of the ANDREA model).

Appendix B. NEF representation, transformation and
dynamics

The NEF consists primarily of three fundamental prin-
ciples regarding the representation of information in neural
populations, the means by which these representations are
transformed through interactions between populations,
and the control theoretic nature of the characterization of
neural dynamics. Eliasmith and Anderson (2003) present
a rigorous explication and analysis of the NEF, but the
mathematical details we outline here should be sufficient
for understanding the fundamental nature and operation
of our neural model of affective choice and valuation.

Consider a neural ensemble whose activities a,(x) encode
some vector quantity x(¢#) mapping onto a real-world quan-
tity (eye position, emotional arousal, etc.). Note that this
quantity need not be a vector; scalars, functions, and func-
tion spaces can be represented and manipulated in the NEF
in a near-identical fashion. The encoding of x involves a
conversion of x(#) into a neural spike train:

= Zé(t = GilJi(x(2))],

where Gj-]is the nonlinear function describing the specific
nature of the spiking response, J; is the current in the cell
body (soma) of a particular neuron and 7 and » are relevant
indices (i indexing specific neurons, n indexing the individual
spikes produced by a given neuron). The nonlinearity G we
employ is the common leaky-integrate-and-fire (LIF) model:

dv,/dt = —(V; — J;(x)R) /<R, (B2)

where V; represents somatic voltage, R the leak resistance,
and tRC¢ the RC (membrane) time constant. The system is
integrated until the membrane potential V; crosses the
threshold V7, at which point a spike o(¢ — ¢;,) is generated
and V; is reset to zero for the duration of the refractory per-
iod, v (Eliasmith & Anderson, 2003). A basic description
of the soma current is

Ji(x) = oc,-(&&,- *X)

(BI)

8 (B3)

where J{x) is the current input to neuron 7, x is (in this
case) the vector variable of the stimulus space encoded by

the neuron, o; is a gain factor, ¢, is the preferred direction
vector of the neuron in the stimulus space, J** is a bias
current (accounting for any background activity) and #;
models any noise to which the system is subject. Note in
particular that the dot product (¢;-x) describes how a
potentially complex (i.e., high-dimensional) physical quan-
tity, such as an encoded stimulus, is related to a scalar sig-
nal describing the input current. For scalars, the encoding
vector is either +1 (an ‘on’ neuron) or —1 (an ‘off’ neuron).
(B1) thus captures the nonlinear encoding process from a
high-dimensional variable, x, to a one-dimensional soma
current, J;, to a train of neural spikes, d(7 — #;,).

Under this encoding paradigm, the original stimulus
vector representation can be estimated by decoding those
activities; that is, converting neural spike trains back into
quantities relevant for explanations of neural computation
at the level of our chosen representations. A plausible
means of characterizing this decoding is as a specific /in-
eartransformation of the spike train. In the NEF, the origi-
nal stimulus vector x(7) is decoded by computing an
estimate X(¢) using a linear combination of filters /¢) that
are weighted by certain decoding weights ¢;:

Za t) * hi(£); = Zh

where the decoding weights are calculated by a mean-
squared error minimization (Eliasmith & Anderson, 2003)
and the operation ‘"’ indicates convolution. The /t) filters
are linear temporal decoders, which are taken to be the
postsynaptic currents (PSCs) in the associated neuron i
for reasons of biological plausibility. Together, the nonlin-
ear encoding in (B1) and the linear decoding in (B4) define
an ensemble ‘code’ for the neural representation of x.

The next aspect of the NEF to examine is the means by
which computations are performed in order to transform
the representations present in a given model. The main task
needed to be performed is the calculation of connection
weights between the different populations involved in a
transformation. As an example, let us consider the trans-
formation z = x - y. The process of connection weight cal-
culation can be characterized as substituting into our
encoding Eq. (B1) the decodings of x and y (as per (B4))
in order to find the encoding of z, which represents our
transformation of interest:

cr(z) = el -¥) = Gilowgu(x - y) +

o <¢k Z al d) Z b ) Jblas
Z (Uk,j(l

where oy = ockqﬁkqﬁ ¢} represents the connection weights
between neurons i, j and k in the x, y, and z populations,
respectively. It should be noted that the nonlinear neural
activity interaction suggested in this example is avoided

(B4)

Jlt{)ias]

=G,

_ Gk + JbldS
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in our actual model — all interactions are implemented in a
purely linear fashion, as is typically taken to be the case in
real neural systems (see Eliasmith & Anderson (2003), for
complete implementation details).

Finally, dynamics play a fundamental role in the overall

operation of our model, such as in our recurrent reward
prediction error computation. We can describe the dynam-
ics of a neural population in control theoretic form via the
dynamics state equation that is at the basis of modern con-
trol theory:
x(f) = Ax(¢) + Bu(?), (B5)
where A is the dynamics matrix, B is the input matrix, u(z)
is the input or control vector, and x(¢) is the state vector. At
this high-level of characterization we are detached from
any neural-level implementation details. It is possible, how-
ever, to introduce simple modifications that render the sys-
tem neurally plausible. The first step in converting this
characterization is to account for intrinsic neural dynamics.
To do so, we assume a standard PSC model given by
h(t) = 1 'e”* and then employ the following derived rela-
tion (Eliasmith & Anderson, 2003):

A =7A+1

B =B

so that our neurally plausible high-level dynamics charac-

terization becomes

x(t) = h(t) * [A'x(t) + B'u(?)]. (B7)
To integrate this dynamics description with the neural

representation code we described previously, we combine

the dynamics of (B7), the encoding of (B1), and the popu-
lation decoding of x and u as per (B4). That is, we take dec-
odings x =}, hi(t —t;,)¢; and 0=}, hi(t —t,)¢; and
introduce neural dynamics into the encoding operation as
follows:

S a(e— 1) = G (dxt0) +1]

=G :%<<75,-[A’i(t) + B/ﬁ(t)}> + Jf.’iﬂ

ai<&>i[A’Zhj(t

B>yt - tkn)¢,3]> 4 Jbias
kn

(B6)

=G,

§ wlj n

Jn

+Zwikhk(t — thn) + T (B8)
kn

It is interesting to note that /(¢) in the above characteriza-
tion defines both the neural dynamics and the decoding of
the relevant representations. w; = oc,(qS A'qS Y and wy =
oc,<(f>,B/qbk> describe the recurrent and 1nput connection
weights, respectively, which implement the dynamics de-

Table C1

Transformation summary

Brain Inputs Outputs

area

AMYG Aot A() = A(t) + B- DA + 7y - 5-
(ext.) HT(z) + C(1),
Aq(2) where A,(t) = Ay (¢) + /- (1 — Ploutcome
DA(7) X)
5-HT(¢)
e0)

OFC V(1) (ext.) S(1) = A (1) - V(1)
A(t)

5-HT S(7) E(n=Pt—1)— S
E*(1) 5-HT(t) = 6E (1) — (1 — 0)E'(1)
P(t—1) P(1)=P(t — 1) + aE(1)

DA S(1) E'(t)=S(t) - P(t—1)
E (1) DA(t) = cE' (1) — (1 — 0)E (1)
P(t—1) P(1)=P(t — 1) + aE(1)

VS DA(?) E(1) = DA(¢) — 5-HT(¢)
5-HT(?)

ACC S(1) B(t)=2-(S5(t) = 0)-1
E(1) R(t) = B(t)/[n + E(1)]
) Ao

DLPFC R(?) C(t)y=p-5HT(1)
5-HT(?)

Ap and V are provided as external inputs to the model. Note the recurrent
connectivity and opponent interaction between 5-HT and DA. Abbrevi-
ations: AMYG, amygdala; OFC, orbitofrontal cortex; 5-HT, raphe dor-
salis serotonergic neurons; DA, midbrain dopaminergic neurons; VS,
ventral striatum; ACC, anterior cingulate cortex; DLPFC, dorsolateral
prefrontal cortex.

fined by the control theoretic structure from (B7) in a neu-
rally plausible network.

Appendix C. Representation/transformation summary

Table C1 encapsulates the complete inputs, outputs and
transformations we use to model specific interactions
between the brain regions included in our model (see also
Fig. 1 and discussions of equations in the main body for
more high-level, conceptual characterizations of connectiv-
ity and signal transformation). Variable names are as in the
text of the Methods section.

These equations describe explicitly the nature of the con-
nectivity relationships and signal transformation processes
outlined in Fig. 1 and discussed in the main body descrip-
tion of the ANDREA model.
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