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Abstract

Spinal neural networks in larval zebra'sh generate a variety of movements such as escape,
struggling, and swimming. There have been a number of untested proposals regarding possible
mechanisms at both the network and neural levels to account for switches between these be-
haviours. However, there are currently no detailed demonstrations of such mechanisms, so it is
not possible to determine which are plausible and which are not. Here we propose a detailed,
biologically plausible model of the interactions between the swimming and escape networks in
the larval zebra'sh. This model shows how distinct behaviours can be controlled by anatomically
overlapping networks. More generally, this paper demonstrates a method for constructing spiking
networks consistent with both high-level behavioural descriptions and available neural data.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Two distinct rhythmic motor patterns, classi'ed as ‘escape’ and ‘swimming,’ are
observed in the larval zebra'sh. Escape is characterized by large amplitude waves
propagating along the body of the 'sh in a C- or S-shaped pattern. Normal swimming
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is de'ned as movement that possesses rhythmic alternating movements of the tail, with
bends propagating from the rostral to the caudal end [1].
Two possible means by which both escape and swimming behaviours could be gen-

erated by the same network have been suggested. One possibility is that of a uni'ed
network [5]. Such a network would use diFerent control signals in order to elicit dif-
ferent motor behaviour from the same network of neurons. The other possibility is that
there exist separate classes of spinal interneurons implicated in the diFerent behaviours.
Anatomical and functional evidence clearly shows that there are diFerences in the

spinal networks of zebra'sh during escape and swimming movements, supporting the
second hypothesis [4]. Nevertheless, because swimming and escape are produced by
the same muscles and motoneurons in 'sh, there must be some interaction between the
interneurons responsible for these behaviours.

2. Larval zebra�sh system description

The two classes of interneuron included in the model are the circumferential de-
scending (CiD) interneurons and the multipolar commisural descending (MCoD) in-
terneurons.
In zebra'sh larvae, CiD interneurons have been found to be active during escapes but

not swimming [4]. CiD interneurons are characterized by sparse dendrites and ventrally
projecting, ipsilateral axons [4]. CiD interneurons are generally found in the middle and
dorsal regions along the dorso-ventral extent of the spinal cord [4].
The MCoDs are ventrally and laterally positioned compared to the CiD interneurons

and have elaborate dendritic arbors. The MCoD has been found to be active during
swimming but not escape [4].

3. Control theoretic model

We describe the zebra'sh in a horizontal plane as a set of 'nite length rods (ver-
tebrae) connected by muscles whose tensions result in the desired swimming motion.
Analysis of this simple model results in the following Fourier decomposition of the
tensions as a function of time, frequency, !, and lengthwise position, z:

T (z; t; x) = �

(
N∑
n=1

x2n(t) cos(2
nz) + x2n+1(t) sin(2
nz)

)
; (1)

where k = 2
=L and � is a constant whose value is determined by k, the wave am-
plitude, a viscosity coeMcient, and the ratio of vertebrae height and length, also,
x0(t)=−cos(!t); x1(t)=−sin(!t), and x2=cos(!t). The dynamics of these coeMcients
form a simple oscillator. These dynamics can be represented using the dynamics state
equation from standard control theory,

dx
dt

= Ax(t) + Bu(t); (2)
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where x are the amplitudes of the coeMcients in the orthonormal space, A is the oscil-
lator dynamics matrix, and B is the input matrix which controls the start-up behaviour
of the model. Following Eliasmith and Anderson’s model of the lamprey eel, the dy-
namics matrix, A, can be decomposed into a dampening term to remove unwanted,
higher-frequency distortions, Adamp, and a steady-state oscillator matrix, Aosc [2]. We
then de'ne an escape signal, E(t), as either ±1 for left or right stimulation (resulting
in an escape in the opposite direction), and 0 during normal swimming. Thus, the
matrices describing escape and swimming can be written as

Adamp =




−� 0 −�
0 0 0

−� 0 −�


 ; (3)

Aosc =




0 !(1 − E) 0

− 1
2!(1 − E) 0 1

2!(1 − E)
0 −!(1 − E) 0


 ; (4)

B=




1
2 −�E(x1 − 1) − 1

2

0 1 −�Ex2
− 1

2 �E(x3 + 1) 1
2


 : (5)

When an escape bend occurs, the dynamics matrix goes to zero. This is accomplished
by including a nonlinearity in the Aosc matrix, which is controlled by E; i.e., E is 0 for
no escape, and 1 for a leftward escape. An additional matrix, Adamp is added to Aosc

because the representations of x0 and x2 in a neural population cannot be assumed to be
perfect. Any error in either of these two components leads to a rapidly increasing error
in the now non-zero derivatives of x0 and x2 [2]. The damping in Adamp counteracts
this error.
To control start-up, the constant portion of the input matrix B is multiplied by a

step input u(t). This causes the model to display exponential start-up behaviour until
the desired amplitude is reached. Escape behaviour is incorporated by multiplying the
escape signal E by the rate constant v, which controls the speed with which the system
responds to an escape stimulus. The input signal u(t) is the superposition of the escape
signal and the start-up signal, where it is assumed for simplicity that these signals do
not overlap in time.
In sum, the switch between behaviours is described by the model as follows: During

regular swimming, the model zebra'sh swims in steady state determined by Aosc with a
travelling wave whose temporal frequency is controlled by !. When the escape signal
E(t) is active, the normal swimming motion is interrupted, so the amplitudes of Aosc

are forced to zero. However, the B matrix become active during an escape and elicits
the rapid, characteristic C-shaped escape motion. When the escape signal is removed
the amplitudes of Aosc once again dominate and normal swimming is resumed.
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4. Neural model

In order to investigate the interactions between the escape and swimming interneu-
rons, a neural model with two distinct populations of neurons can be constructed that
displays both escape and swimming. Given the previous high-level characterization of
the system dynamics and behaviour, a neurologically plausible representation can be
constructed using the methods described in Eliasmith and Anderson [2].
As a result, we de'ne the encoding and decoding of the coeMcients, x, being rep-

resented in the neural population to be of the form∑
n

�i(t − tn) = Gi[�i〈�̃i(hi(t) ∗ [A′x(t) + B′u(t)])〉m + J biasi ] Encoding;

x̂(t) =
∑
in

�i(t − tn) ∗ �xi (t) Decoding; (6)

where

A′ = �A + I;

B′ = �B; (7)

relates the previous control system to the neural control system. Here, �xi (t) is the
linear population-temporal 'lter, �̃i is the encoding vector, Gi is the leaky integrate
and 're nonlinearity, �i and J bias map the input vector into soma current, � is the
synaptic time constant, and �i(t − tn) are spikes from neurons i emitted at time tn.
In addition, we analogously de'ne a ‘control population’ of neurons that encode the
escape signal E, the frequency ! and the start-up signal u.

We now introduce an intermediate level model between the high-level description
previously presented and the neural model. Such an intermediate level serves two
purposes: The 'rst is to better match the physiology of the larval zebra'sh. The larval
zebra'sh is composed of 30 segments that have individual local tensions which can
then be simulated individually and/or at the neuron level. The second reason is to allow
reductions in computational complexity. Simulating all segments at the level of single
spiking neurons can be computationally expensive.
We represent the local tensions using Gaussian encoding functions along the length

of the 'sh

T (z; t) = �

(
N∑
n=1

am(t)e(−(z−m∗d z))2
)
; (8)

where am(t) is the amplitude of the mth Gaussian segment centred at the point zm=m∗
dz. Note that the nonlinear computations necessary to implement this control structure
are computed in a network of 1200 LIF neurons presumed to reside in the 'sh’s
brainstem. This is the control population that provides signals for frequency, escape,
and start-up behaviours.
From Fig. 1, it can be seen that the MCoD interneurons which encode x have

dense local connectivity. This correlates well with the known neural data indicating
that MCoD cells have elaborate dendritic arbors [4].



P. Dwight Kuo, C. Eliasmith /Neurocomputing 58–60 (2004) 541–547 545

0.08

0.06

0.04

0.02

0

0.02

0.04

0 5 10 15 20 25 30
0

5

10

15

20

25

30

IN

O
U

T

Fig. 1. Connectivity between segments representing MCoD interneurons. The dense interconnections map
well to known physiology.

Fig. 2. Connectivity between the control population and segments representing CiD interneurons. The
long-range projections map well to known physiology.
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Fig. 2 shows the connectivity between the 1200 neurons of the control population
and the 30 segments of the model. It can be seen that the connection weights are fairly
sparse and have longer range projections along the 30 segment lengths of the larval
zebra'sh model. This correlates well with the neurophysiology since the axons of CiD
cells are known to extend to up to 13 segments along the length of the zebra'sh [4].
Simulation of this neural control structure in a hydrodynamical model based on one

created by Mason et al. [3] leads to the correct swimming motions (results not shown).

5. Conclusions

The resulting network both maps well to the previously described physiology and
produces a switch between swimming and escape behaviours as desired. In particular,
MCoD cells are elements of the network encoding x, which have similar, dense con-
nections and project contralaterally. CiD neurons share sparse connectivity, and longer
range projections with neurons in the population encoding E. In addition, the resulting
connectivity for the interactions between the CiD and MCoD cells provide testable
predictions regarding the interaction between these two classes of neurons. Thus, a
biologically plausible mechanism for coordinating the switch between these two kinds
of behaviour is demonstrated by the model.
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