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ScienceDirect
Large-scale neural models are needed in order to understand

the biological underpinnings of complex cognitive behavior.

Good methods for constructing such models should provide

for: first, abstraction (analysis across levels of description);

second, integration (incorporation of simpler models to build

more complex ones); third, empirical contact (using and

comparing to a wide variety of neural data); and fourth, account

for the varieties of learning. In this review we evaluate three

prominent recent methods for constructing neural models

using these four criteria. Each of these methods is being

actively developed and demonstrates clear strengths along

some of these criteria.
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Introduction
There is general agreement that the vast majority of

natural behavior is the result of the interactions between

many brain areas, implicating huge numbers of neurons.

Without constructing biologically detailed models that

explore these complex interactions, we are unlikely to be

able to understand how to help a distressed brain [1], or

explain how low-level biological mechanisms give rise to

cognitive behavior [2,3]. In short, without large-scale

models, we cannot test large-scale hypotheses.

To understand biological cognition — that is, the link

between biological mechanisms and cognitive behav-

ior — we need to understand the complex interactions

between individual neurons as well as their integration

into a behaving, cognitive agent. This is a challenging and

long-term goal, but it is nevertheless helpful to consider

contemporary theoretical approaches in this context to

determine promising avenues for research. Addressing

cognitive behaviors in a neural model typically requires a
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large-scale model: one simulating tens of thousands to

several million neurons. This is due to the correlation

between the complexity in a task and its likelihood of

being deemed ‘cognitive.’ Complexity suggests that large

numbers of neural resources, and often many different

brain areas, are required to address the challenge embod-

ied by the task.

Large-scale neural models are ineluctably complex. Con-

sequently, in order for us to successfully understand and

construct them, it is crucial to employ systematic meth-

ods. Ideally, good methods would provide [4,5�]: first,

smoothly moving between levels of detail depending on

questions of interest (Abstraction); second, easy integra-

tion of simpler partial models (Integration); third, genera-

tion of empirical predictions while providing deeper

insight into collected neural and behavioral data (Empiri-
cal contact) and fourth, methods for including adaptation

and learning (Learning). We review recent work at the

interface of biological and behavioral modeling along

these four criteria. Specifically, we focus on methods from

Denève et al., efficiently implementing dynamical sys-

tems in spiking neurons [6��], large-scale neural models

proposed by Markram et al. [7��], and our own work [5�].

Dynamics in spiking networks
Abstraction

Sophie Denève and her collaborators have recently de-

veloped and explored a method for constructing spiking

neuron implementations of dynamical systems [6��,8,9].

These researchers have shown the method can be used to

build robust models of neural integrators, simple arm

controllers, and optimal linear filters (e.g., the Kalman

filter). Consequently, they have defined an effective

means of abstracting from spiking neural networks to

linear dynamical systems.

This method consists of treating subthreshold voltages of

individual cells as tracking the error in the estimate of an

underlying multi-dimensional state variable. When the

error becomes large, a neuron in a given population

representing that state variable emits a spike, updating

the representation of that state. In order to ensure that

neurons are efficient in their representation of such states,

when a given cell spikes, it instantaneously inhibits other

neurons in the population from spiking to account for that

same error. Consequently, these networks can be used to

represent dynamical systems defined over the repre-

sented state variables. In addition, these methods are

unique in providing a clear relation to predictive coding.
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These methods have been noted to have several limita-

tions. Chief amongst these is that they apply only to linear

dynamical systems. However, recent work has suggested

methods for incorporating nonlinearities via dendritic

computation in such networks [10]. It is not clear, how-

ever, if these methods will scale ([11], p. 156). In addition,

the speed of inhibition may not be biologically plausible.

As well, the work has been criticized as applying to simple

point neuron integrate-and-fire models only. However, it

has recently been demonstrated that similar methods can

be applied to sophisticated conductance based neuronal

models [9].

Given that the characterization of function is in terms of a

state space, and that conductance models can be used,

these methods provide multiple levels of abstraction.

However, the methods do not yet provide abstractions

for relating neural-level circuits to sophisticated, cogni-

tive behavior.

Integration

Integration of simpler models should be possible with this

approach because of the employed state space represen-

tations. However, there are not yet clear examples of

performing such an integration. Possible barriers to inte-

gration include assumptions about the nature of inhibi-

tion and excitation included in the methods, which do not

apply to subcortical areas, such as basal ganglia and

cerebellum. For instance, basal ganglia consists largely

of inhibitory projections, while these methods assume

both excitatory and inhibitory interactions are available

between all neurons in the circuit.

Empirical contact

These networks exhibit several desirable traits [6��]. For

instance, they naturally exhibit Poisson-like firing vari-

ability at the level of individual spike trains. As well, they

are consistent with the observation that many biological

circuits balance the effects of inhibition and excitation. In

addition, they are highly efficient in their use of spikes

and are robust to neuronal death and other perturbations.

They have been shown to efficiently implement behav-

iorally relevant dynamical systems including integrators,

oscillators, and simple arm controllers [6��]. However,

there is also evidence that some networks, like those of

the oculomotor integrator, do not exhibit the kind of spike

train variability expected under this characterization of

neural computation [12].

Learning

Very recently, Bourdoukan and Denève [13] have begun

to explore methods for learning connection weights in

these kinds of networks. They have shown that with

different local learning rules for fast and slow recurrent

connections, it is possible to feedback a global supervised

error signal that can tune the network.
www.sciencedirect.com 
Blue Brain Project
Abstraction

By contrast to Denève’s theoretically driven approach,

recent work from Henry Markram’s lab has focussed on

building large-scale brain models with significant biologi-

cal detail. In short, the approach taken by the Blue Brain

Project [14] and now incorporated into the Human Brain

Project (HBP; [15�]) is to build models from the bottom

up, with the expectation that interesting behavioral fea-

tures will emerge. This work has recently culminated

with the release of a paper with 82 co-authors that

describes a detailed model of a small section of rodent

somatosensory cortex [7��]. This model includes about

31,000 cells and 37 million synapses amongst 207 different

kinds of neurons.

This approach to modeling does not bear any clear rela-

tion to abstractions of neural computation. Consequently,

the model is largely used to replicate low-level experi-

mental data that does bear a clear relation to observable

behavior. While addressing such data is clearly important,

the approach taken does not permit developing a theory

of how neural activity relates to the behavior it controls.

Integration

In the context of this project, integration is largely fo-

cussed on methods for combining individual neuron

models. Connections between neurons were determined

using five rules of connectivity that provide an effective

means of filling in statistically matched anatomical con-

nections between neuron types. This permits the ana-

tomical combination of single cell models, addressing the

integration of simpler neuron models into larger circuits.

However, this kind of integration does not extend to

functional or behaviourally relevant networks, as such

networks have not been built with these methods.

Empirical contact

These methods have very extensive empirical contact

with neural data since a significant amount of the model-

ing effort has gone into inferring parametric information

based on available neural data. There is good evidence

that the rules of connectivity used in the model, along

with other parameter fitting methods, are successful for

generating statistically similar activity in the circuit com-

pared to in vivo recordings. As well, the rules of connec-

tivity were used to generate predictions regarding the

number of connections and number of synapses per

connection, as well as a wide variety of other connectivity

and physiological properties of synapses.

At the circuit level, the model was used to examine the

spatio-temporal patterns that result from simulated tha-

lamic input in combination with variations in calcium

levels. The model demonstrated that different levels of

calcium resulted in synchronous and asynchronous neural

firing in the model, in agreement with experimental
Current Opinion in Behavioral Sciences 2016, 11:14–20
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results. However, it is not clear how these methods will

permit relating such local activity to observable behavior.

Nevertheless, the models provided are currently unsur-

passed in the amount of molecular detail provided com-

pared to other work, providing strong empirical contact

with certain areas of neuroscience.

Learning

While it should be possible to introduce neurally plausi-

ble connection strength adaptation into such a model, it is

not clear how such learning rules would affect the behav-

ior of the circuit. This aspect of neural function is unex-

plored with these methods at present.

The NEF and the SPA
Abstraction

The Neural Engineering Framework (NEF) identifies

three quantitatively specified principles that can be used

to implement nonlinear dynamical systems in a spiking

neural substrate [11]. Specifically, these principles pro-

vide methods for characterizing representation, computa-

tion, and dynamics in such networks. Consequently,

given a hypothesis about what dynamical system a brain

area might be implementing, the NEF can be used to

build a spiking neural network that approximates that

dynamical system. For instance, we might characterize

working memory as a dynamical system that loads in a 2-

dimensional representation during stimulus presentation

and is stable during a delay period [16]. The NEF can

then be used to efficiently build a network that will

approximate those dynamics with spiking neurons, and

allow careful and direct comparison to biological neural

networks thought to underlie the same behavior. These

methods have been used to propose novel models of a

wide variety of neural systems [17–19] as well as to better

understand more general issues about neural function

[20,21].

The NEF answers questions about how neural systems

might compute, but it does not address the issue of what,
specifically, is computed by biological brains. We have

recently addressed this second question by proposing a

general neural architecture that includes specific func-

tional hypotheses. We call this proposal the Semantic

Pointer Architecture (SPA; [5�]). The SPA identifies a

generic means of characterizing neural representations,

‘semantic pointers,’ that are used to capture central

features of perceptual, motor, and cognitive representa-

tion. Briefly, semantic pointers are neural representations

of information compressed via lossy operators. The spe-

cific operator hypothesized to be used in a neural system

can vary: for example, an image specific statistical opera-

tor in visual systems, a dimensionality reduced path

planner in motor systems, or a compressive binding

operator for representing cognitive structure. These

representations are called ‘pointers’ because they are
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efficient, low-dimensional (because compressed) repre-

sentations of what they point to (i.e., the uncompressed

information from which they were generated). They are

‘semantic’ because the contents of the pointer (unlike a

typical computer  pointer) are determined by the con-

tents of what they point to. The SPA uses semantic

pointers to explain, among other things, perceptual cat-

egorization, motor control, working and long-term mem-

ory, as well as conceptual binding and structure

representation. Furthermore, the SPA includes an ac-

count of cognitive control that relies on basal ganglia and

thalamic interactions with cortex for understanding ac-

tion selection.

The NEF/SPA approach describes brain circuits at vari-

ous levels of cognitive and neural detail. The neural

simulation environment Nengo incorporates these meth-

ods, allowing the simulation of different parts of the same

model at different levels of detail, including: direct solu-

tion of the dynamical system; rate neurons; or as any of

many spiking point neuron models [22,23]. Tripp [24]

proposed the use of surrogate population models to

accelerate large-scale neural system modeling in Nengo,

adding a level of simulation abstraction between neurons

and the direct dynamical system solution.

Furthermore, Nengo was recently used in tandem with

the NEURON simulator [25] to replace simple point

neurons in the Spaun model (Figure 1; see next section)

with complex conductance models [26], of the type used

in the HBP models. These neurons allowed the simula-

tion of the addition of the drug TTX to frontal cortex to

examine the cognitive effects of this molecular interven-

tion. Consequently, this one model flexibly incorporates a

variety of levels of detail in a single simulation. This

approach thus unifies simulation across levels of abstrac-

tion, from the molecular to the cognitive.

Integration

To demonstrate the SPA in detail, we proposed a mech-

anistic, functional model of the brain that uses 2.5 million

spiking neurons, has about eight billion synaptic connec-

tions, and performs eight different tasks (see Figure 1;

[5�,27�]). We refer to this large-scale neural model as the

Semantic Pointer Architecture Unified Network (Spaun).

Spaun includes 20 anatomical areas with matched physi-

ological properties for cells in those areas, four types of

neurotransmitters (GABA, AMPA, NMDA, and Dopa-

mine), and includes only known anatomical connections

and structure. Spaun is the result of combining a variety of

simpler past models that account for focussed behavioral

results (e.g., working memory, motor control, action se-

lection). Given the large number of connections in Spaun,

it is a demonstration of the importance of recurrent

communication throughout a large-scale network for

accomplishing a variety of cognitive and non-cognitive

tasks.
www.sciencedirect.com
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Figure 1
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Semantic Pointer Architecture Unified Network (Spaun). (a) The neuroanatomical architecture of Spaun. Abbreviations: V1/V2/V4 (primary/

secondary/extrastriate visual cortex), AIT/IT (anterior/inferotemporal cortex), DLPFC/VLPFC/OFC (dorso-lateral/ventro-lateral/orbito-frontal cortex),

PPC (posterior parietal cortex), M1 (primary motor cortex), SMA (supplementary motor area), PM (premotor cortex), v/Str (ventral/striatum), STN

(subthalamic nucleus), GPe/i (globus pallidus externus/internus), SNc/r (substantia nigra pars compacta/reticulata), VTA (ventral tegmental area).

(b) Replacement of leaky integrate-and-fire neurons with compartmental conductance neurons in the OFC. This replacement was used to simulate

the effects of TTX on cognitive behavior. (c) Input to the model is through images shown to a simulated eye. Behavioral output of the model is in

the form of moving a simulated arm with muscles.

Modified from Eliasmith [5�].
What makes Spaun unique among large-scale brain mod-

els is its functional abilities. Spaun receives input from

the environment through a single eye and manipulates

the environment by moving a physically modeled arm.

Spaun uses these interfaces to perform activities, ranging

from perceptual-motor tasks (recreating the appearance

of a perceived digit) to reinforcement learning (RL) (in a

gambling task) to language-like inductive reasoning

(completing abstract patterns in observed sequences

of digits). It can perform the tasks in any order, they

are all executed by the same model, and there are no

changes to the model between tasks. To watch the model

perform these tasks, see http://nengo.ca/build-a-brain/

spaunvideos.
www.sciencedirect.com 
Empirical contact

NEF models have made a variety of successful predic-

tions. For instance, an NEF model of path integration

[28] has been credited with predicting both grid cells [29]

and that path integration is independent of head direc-

tion, as confirmed by Maurer et al. [30].

Similarly SPA models have received broad empirical

support. For instance, we have compared the perfor-

mance of Spaun to human and animal data at several

levels of detail [25]. Along many metrics the two align;

for example, the model and the brain share; first, dynam-

ics of firing rate changes in striatum during a gambling

task; second, error rates as a function of position when
Current Opinion in Behavioral Sciences 2016, 11:14–20
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reporting digits in a memorized list; third, coefficient of

variation of inter-spike intervals; fourth, reaction time

mean and variance as a function of sequence length in a

counting task; fifth, accuracy rates of recognizing unfa-

miliar handwritten digits; and sixth, success rates when

solving induction tasks similar to those found on the

Raven’s Progressive Matrices, among other measures.

More recently, we have developed a variety of models using

the SPA that demonstrate cognitive abilities not captured

by Spaun. For instance, we have demonstrated the encod-

ing and decoding of the 114,000 concepts and their relations

in the WordNet database [31]. We have shown an SPA

model that matches human performance on the Raven’s

Progressive Matrices (RPM) intelligence test, and demon-

strated its ability to capture aging effects through biological

manipulation [32,33]. More abstractly, we have described

how the SPA naturally unifies the three most prevalent

theories of conceptual representation [34�]. We have also

shown simple models of language parsing [35,36], instruc-

tion following [37], and the N-back task [38]. In addition,

models have been built using the SPA to explain a variety of

other psychological-level phenomena, such as priming [39],

emotion [40,41], and consciousness [42].

Learning

Because the NEF often employs a non-biological opti-

mization method for network synthesis, it has been criti-

cized as not accounting for learning [43]. However, much

of our recent work has been focussed on neural adaptation

in various guises. This includes simple RL in Spaun, RL

models in more sophisticated semi-Markov1 environ-

ments [44], and the first biologically plausible spiking

model of hierarchical RL [45] (Rasmussen and Eliasmith,

submitted for publication). We have also described a

learning rule that is able to account for STDP effects

as well as learn high-dimensional, nonlinear functions,

including those posited by the SPA [22,23,46]. We have

demonstrated a means of learning auto-associative and

hetero-associative memories in a spiking network [47],

and provided an account of motor control that reproduces

a wide variety of adaptive motor behavior [48]. In short,

the NEF/SPA has been used to produce examples of self-

organized, error-driven, and RL using biologically plau-

sible rules in spiking networks. We find the most effective

method of constructing large-scale models is to combine

the efficient non-biological methods with less efficient

biologically plausible learning in order to address which-

ever kinds of adaptation are of interest in a given model.

Conclusion
Building large-scale models of biological cognition is in its

infancy. We have reviewed some of methods worth
1 Unlike a standard Markov process, the probability of there being a

change in the state for a semi-Markov process depends on how much

time has elapsed since the last state change.
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considering in addressing this challenge. We would argue

that the NEF and SPA currently have a broader demon-

strated scope than current alternatives, both in terms of

scaling from biological detail to cognitive behavior, and in

terms of capturing crucial neural mechanisms, such as

those behind working memory, action selection, motor

control and learning, among others.

One common challenge for any large-scale modeling

effort is accessing significant computational resources.

The HBP modelers have put significant effort into de-

veloping a supercomputer infrastructure to simulate their

model. Similarly, we have developed a Nengo component

to compile NEF/SPA models to that same kind of infra-

structure. In some sense, Nengo solves the basic technical

problems involved with flexibly running many different

kinds of models concurrently. This ability in Nengo is

generic. However, as we have designed this software tool,

we have also incorporated our theories regarding neural

computation (NEF) and neural organization to generate

cognitive function (SPA) that leverage the ability of the

software to flexibly integrate multiple models.

More interestingly, researchers have been developing

specialized, efficient ‘neuromorphic’ hardware to run

brain-like algorithms in real-time [49–51]. Nengo is able

to target this hardware as well [52,53�] opening up the

possibility of testing large-scale brain models in real-

world environments — perhaps the most challenging test

of our ability to replicate the robust flexibility of biological

brains.
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