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Abstract

Hyperopt-sklearn is a new software project that provides automatic algorithm configuration
of the Scikit-learn machine learning library. Following Auto-Weka, we take the view that
the choice of classifier and even the choice of pre-processing module can be taken together
to represent a single large hyperparameter optimization problem. We use Hyperopt to define
a search space that encompasses many standard components (e.g. SVM, RF, KNN, PCA,
TFIDF) and common patterns of composing them together. We demonstrate, using search
algorithms in Hyperopt and standard benchmarking data sets (MNIST, 20-Newsgroups,
Convex Shapes), that searching this space is practical and effective. In particular, we
improve on best-known scores for the model space for both MNIST and Convex Shapes.

1. Introduction

The size of data sets and the speed of computers have increased to the point where it is often
easier to fit complex functions to data using statistical estimation techniques than it is to
design them by hand. The fitting of such functions (training machine learning algorithms)
remains a relatively arcane art, typically mastered in the course of a graduate degree and
years of experience. Recently however, techniques for automatic algorithm configuration
based on Regression Trees (Hutter et al., 2011), Gaussian Processes (Mockus et al., 1978;
Snoek et al., 2012), and density-estimation techniques (Bergstra et al., 2011) have emerged
as viable alternatives to hand-tuning by domain specialists.

Hyperparameter optimization in machine learning systems was first applied to neural
networks and convnets, where the number of parameters can be overwhelming: for example
Bergstra et al. (2011) tuned Deep Belief Networks with up to 32 hyperparameters, and
Bergstra et al. (2013a) showed that similar methods could be useful even in a convnet
model with 238 hyperparameters. Relative to DBNs and convnets, algorithms such as
RBF-SVMs and Random Forests (RFs) have a small-enough number of hyperparameters
that manual tuning and grid or random search provides satisfactory results.

Taking a step back though, there is often no particular reason to use either an RBF-SVM
or an RF when they are both computationally viable. A model-agnostic practitioner may
simply prefer to go with the one that provides greater accuracy. In this light, the choice of
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classifier can be seen as hyperparameter alongside the C-value in the SVM and the max-
tree-depth of the RF'. Indeed the choice and configuration of pre-processing components may
likewise be seen as part of the model selection / hyperparameter optimization problem. The
Auto-Weka project (Thornton et al., 2013) was the first to show that an entire library of
machine learning approaches (Weka (Hall et al., 2009)) can be searched within the scope
of a single run of hyperparameter tuning. However, Weka is a GPL-licensed Java library,
and was not written with scalability in mind. These factors limit the utility of Auto-Weka.
Scikit-learn (Pedregosa et al., 2011) is another library of machine learning algorithms that
is written in Python with many modules in C for greater speed, and is BSD-licensed. Scikit-
learn is widely used in the scientific Python community and supports many machine learning
application areas.

With this paper we introduce Hyperopt-Sklearn — a project that brings the benefits of
automatic algorithm configuration to users of Python and scikit-learn.! Hyperopt-Sklearn
uses Hyperopt (Bergstra et al., 2013b) to describe a search space over possible configurations
of Scikit-Learn components, including pre-processing and classification modules. Section 2
describes our configuration space of 7 classifiers and 4 preprocessing modules that encom-
passes a strong set of classification systems for dense and sparse feature classification (of
images and text). Section 3 presents experimental evidence that search over this space is vi-
able, meaningful, and effective. Section 4 presents a discussion of the results, and directions
for future work.

2. Searching Scikit-learn with Hyperopt

The configuration space we experiment on below includes six preprocessing algorithms and
seven classification algorithms. The full search space is illustrated in Figure 1. The prepro-
cessing algorithms were (by class name, followed by n. hyperparameters + n. unused hy-
perparameters): PCA(2), StandardScaler(2), MinMaxScaler(1), Normalizer(1), None, and
TF-IDF(0+9). The first four preprocessing algorithms were for dense features. PCA per-
formed whitening or non-whitening principle components analysis. The StandardScaler,
MinMaxScaler, and Normalizer did various feature-wise affine transforms to map numeric
input features onto values near 0 and with roughly unit variance. The TF-IDF pre-processing
module performed feature extraction from text data. The classification algorithms were
(by class name (used + unused hyperparameters)): SVC(23), KNN(4+5), RandomForest(8),
ExtraTrees(8), SGD(8+4), and MultinomialNB(2). The SVC module is a fork of LibSVM,
and our wrapper has 23 hyperparameters because we treated each possible kernel as a dif-
ferent classifier, with its own set of hyperparameters: Linear(4), RBF(5), Polynomial(7),
and Sigmoid(6).

In total, our parameterization had 65 hyperparameters: 6 for preprocessing and 53 for
classification. The search space includes 15 boolean variables, 14 categorical, 17 discrete,
and 19 real-valued variables. Although the total number of hyperparameters is large, the
number of active hyperparameters describing any one model is much smaller: a model
consisting of PCA and a RandomForest for example, would have only 12 active hyperpa-
rameters (1 for the choice of preprocessing, 2 internal to PCA, 1 for the choice of classifier
and 8 internal to the RF). Hyperopt description language allows us to differentiate between

1. Project hosted at http://hyperopt.github.com/hyperopt-sklearn
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Figure 1: Hyeropt-sklearn’s full search space (“Any Classifier”) consists of a (preprocessing,
classsifier) pair. There are 6 possible preprocessing modules and 6 possible classi-
fiers. Choosing a model within this configuration space means choosing paths in
an ancestral sampling process. The highlighted green edges and nodes represent
a (PCA, K-Nearest Neighbor) model. The number of active hyperparameters
in a model is the sum of parenthetical numbers in the selected boxes. For the
PCA+KNN combination, 7 hyperparameters are activated.

conditional hyperparameters (which must always be assigned) and non-conditional hyper-
parameters (which may remain unassigned when they would be unused). We make use of
this mechanism extensively so that Hyperopt’s search algorithms do not waste time learn-
ing by trial and error that e.g. RF hyperparameters have no effect on SVM performance.
Even internally within classifiers, there are instances of conditional parameters: KNN has
conditional parameters depending on the distance metric, and LinearSVC has 3 binary pa-
rameters (“loss”, “penalty”, and “dual”) that admit only 4 valid joint assignments. We also
included a blacklist of (preprocessing, classifier) pairs that did not work together, e.g. PCA
and MinMaxScaler were incompatible with MultinomialNB, TF-IDF could only be used
for text data, and the tree-based classifiers were not compatible with the sparse features
produced by the TF-IDF preprocessor. Allowing for a 10-way discretization of real-valued
hyperparameters, and taking these conditional hyperparameters into account, a grid search
of our search space would still require an infeasible number of evalutions (on the order of
10'2).

Following Scikit-learn’s convention, hyperopt-sklearn provides an Estimator class with a
fit method and a predict method. The fit method of this class performs hyperparameter
optimization, and after it has completed, the predict method applies the best model to
test data. Hyperopt makes it possible to parallelize the model search over a cluster, with
communication handled via a MongoDB instance. Each evaluation during optimization
performs training on a large fraction of the training set, estimates test set accuracy on a
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Table 1: Hyperopt-sklearn scores (bold) relative to selections from literature on the three data
sets used in our experiments. On MNIST, hyperopt-sklearn is one of the best-
scoring methods that does not use image-specific domain knowledge (these scores and
others may be found at http://yann.lecun.com/exdb/mnist/). On 20 Newsgroups,
hyperopt-sklearn is competitive with similar approaches from the literature (scores
taken from Guan et al. (2009)). On Convex Shapes, hyperopt-sklearn outperforms pre-
vious automatic algorithm configuration approaches (Eggensperger et al., 2013) and
manual tuning (Larochelle et al., 2007).

MNIST 20 Newsgroups Convex Shapes
Approach Accuracy Approach F-Score Approach Accuracy
Committee of convnets 99.8% CFC 0.928 hyperopt-sklearn 88.7%
hyperopt-sklearn 98.7% hyperopt-sklearn 0.856 hp-dbnet 84.6%
libSVM grid search 98.6% SVMTorch 0.848 dbn-3 81.4%
Boosted trees 98.5% LibSVM 0.843

In the 20 Newsgroups dataset, the score reported for hyperopt-sklearn is the weighted-average F'1 score provided
by sklearn. The other approaches shown here use the macro-average F1 score.

validation set, and returns that validation set score to the optimizer. At the end of search,
the best configuration is retrained on the whole data set to produce the classifier that
handles subsequent predict calls.

3. Experiments

We conducted experiments on three data sets to establish that hyperopt-sklearn can find
accurate models on a range of data sets in a reasonable amount of time. Results were
collected on three data sets: MNIST, 20-Newsgroups, and Convex Shapes. MNIST is a well-
known data set of 70K 28 x 28 greyscale images of hand-drawn digits (LeCun et al., 1998).
20-Newsgroups is a 20-way classification data set of 20K newsgroup messages (Mitchell
(1996), we did not remove the headers for our experiments). Convex Shapes is a binary
classification task of distinguishing pictures of convex white-colored regions in small (32 x 32)
black-and-white images (Larochelle et al., 2007).

To establish that searching the full space is effective, we performed optimization runs
of up to 300 function evaluations searching either the entire space, or else subspaces that
corresponded to specific classifier types. We used three optimization algorithms in Hyper-
opt: random search, annealing, and TPE. Figure 2 shows that the performance of the model
found from throughout the entire search space was not statistically inferior to the best model
pulled from each classifier subspace; there was no penalty for keeping all options open dur-
ing search. Table 1 lists the test set scores of the best models found by cross-validation,
as well as some points of reference from previous work. Hyperopt-sklearn’s scores are rel-
atively good on each data set, indicating that with hyperopt-sklearn’s parameterization,
Hyperopt’s optimization algorithms are competitive with human experts.
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Figure 2: For each data set, searching the full configuration space (“Any Classifier”) deliv-
ered performance approximately on par with a search that was restricted to the

best classifier type. (Best viewed in color.)
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Figure 3: Left: Using Hyperopt’s Anneal search algorithm, increasing the number of func-
tion evaluations from 150 to 2400 lead to a modest improvement in accuracy on 20
Newsgroups and MNIST, and a more dramatic improvement on Convex Shapes.
We capped evaluations to 5 minutes each so 300 evaluations took between 12 and
24 hours of wall time. Right: TPE makes gradual progress on 20 Newsgroups
over 300 iterations and gives no indication of convergence.

4. Discussion and Future Work

Hyperopt-sklearn provides many opportunities for future work. Certainly, there are more
classifiers and preprocessing modules that could be included in the search space, and there
are more ways to combine even the existing components. In expanding the search space,
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Figure 4: Looking at the best models from all optimization runs performed on the full search
space (using different initial conditions, and different optimization algorithms) we
see that different data sets are handled best by different classifiers. SVC was the
only classifier ever chosen as the best model for Convex Shapes, and was often
found to be best on MNIST and 20 Newsgroups.

care must be taken to ensure that the benefits of new models outweigh the greater difficulty
of searching a larger space.

We have shown here that Hyperopt’s random search, annealing search, and TPE al-
gorithms make Hyperopt-sklearn viable, but the slow convergence in e.g. Figure 3 sug-
gests that other optimization algorithms might be more call-efficient. The development of
Bayesian optimization algorithms is an active research area, and we look forward to looking
at how other search algorithms interact with hyperopt-sklearn’s search spaces.

Computational wall time spent on search is of great practical importance, and hyperopt-
sklearn currently spends a significant amount of time evaluating points that are un-promising.
Techniques for recognizing bad performers early could speed up search enormously. Relat-
edly, hyperopt-sklearn currently lacks support for K-fold cross-validation. In that setting,
it will be crucial to follow SMAC in the use of racing algorithms to skip un-necessary folds.

Another direction for future work is the extention of the techniques presented here in
terms of classification to other types of machine learning problems (e.g. regression, density
estimation, and ranking), and other types of input modalities (e.g. large images, sound,
timeseries, preferences).

5. Conclusions

We have introduced Hyperopt-sklearn, a Python package for automatic algorithm configu-
ration of standard machine learning algorithms provided by Scikit-Learn. Hyperopt-sklearn
provides a unified view of 6 possible preprocessing modules and 6 possible classifiers, yet
with the help of Hyperopt’s optimization functions it is able to both rival and surpass
human experts in algorithm configuration. We hope that it provides practitioners with
a useful tool for the development of machine learning systems, and automatic machine
learning researchers with benchmarks for future work in algorithm configuration.
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