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Abstract

Linguistic communication is a unique characteristic of intelligent behaviour that dis-
tinguishes humans from non-human animals. Natural language is a structured, complex
communication system supported by a variety of cognitive functions, realized by hun-
dreds of millions of neurons in the brain. Artificial neural networks typically used in
natural language processing (NLP) are often designed to focus on benchmark perfor-
mance, where one of the main goals is reaching the state-of-the-art performance on a
set of language tasks. Although the advances in NLP have been tremendous in the
past decade, such networks provide only limited insights into biological mechanisms
underlying linguistic processing in the brain.

In this thesis, we propose an integrative approach to the study of computational mech-
anisms underlying fundamental language processes, spanning biologically plausible
neural networks, and learning of basic communicative abilities through environmentally
grounded behaviour. In doing so, we argue for the usage-based approach to language,
where language is supported by a variety of cognitive functions and learning mecha-
nisms. Thus, we focus on the three following questions: How are basic linguistic units,
such as words, represented in the brain? Which neural mechanisms operate on those
representations in cognitive tasks? How can aspects of such representations, such as
associative similarity and structure, be learned in a usage-based framework?

To answer the first two questions, we build novel, biologically realistic models of
neural function that perform different semantic processing tasks: the Remote Associates
Test (RAT) and the semantic fluency task. Both tasks have been used in experimental and
clinical environments to study organizational principles and retrieval mechanisms from
semantic memory. The models we propose realize the mental lexicon and cognitive re-
trieval processes operating on that lexicon using associative mechanisms in a biologically
plausible manner. We argue that such models are the first and only biologically plausible
models that propose specific mechanisms as well as reproduce a wide range of human
behavioural data on those tasks, further corroborating their plausibility.

To address the last question, we use an interactive, collaborative agent-based reinforce-
ment learning setup in a navigation task where agents learn to communicate to solve the
task. We argue that agents in such a setup learn to jointly coordinate their actions, and
develop a communication protocol that is often optimal for the performance on the task,
while exhibiting some core properties of language, such as representational similarity
structure and compositionality, essential for associative mechanisms underlying cognitive
representations.

v



Acknowledgements

Writing this thesis would have not been possible without the help, support and en-
couragement I received from a number of different people throughout the years. First,
I would like to express my deepest gratitude to my supervisor, Chris Eliasmith. I am
thankful for his support, numerous insightful discussions and for giving me the freedom
to explore and undertake different research directions. Terry Stewart had an integral role
in shaping the direction of my research interests, and I am grateful for his continuous
encouragement and presence in all aspects of my graduate career. I have also tremen-
dously benefited from the great company afforded by the current and former members
of the CNRG lab—thank you all for the fun discussions about the brains and for letting
me frequently pick your brains. I would also like to extend my gratitude to the members
of my examining committee: Jesse Hoey, Kate Larson, Olga Vechtomova and Suzanne
Stevenson, for their thought-provoking questions and for providing invaluable feedback
that helped improve this thesis.

My time at the University of Waterloo would not have been as fulfilling and intellec-
tually rewarding without many other members of its community. I want to thank Jesse
Hoey and Robin Cohen for continuously providing feedback on my research. I consider
myself lucky to have had the opportunity to work with Paul Thagard, and benefit from
his rich knowledge and wisdom on a variety of scientific and non-scientific topics. I am
also thankful to Tobias Schröder, for a research collaboration that helped set me on this
path. I enjoyed working with WICS and thank Jo Atlee for giving me an opportunity to
do so. I am happy to have crossed paths with many wonderful students at the university,
and would like to thank Sean, Jasmine, Sajed, Alan and Ryan for their help with the
workshops, and to Florian, Bohdan and Barbara for their company. I am grateful for the
support I received at the institutional level, in particular, from the David R. Cheriton
School of Computer Science and the Faculty of Math. One of the most memorable experi-
ences during my PhD was my participation in the Telluride Neuromorphic Workshop,
and I thank the organizers for creating such a great community. In Montreal, I want to
thank Eser Aygün and Doina Precup, as well as the rest of the DeepMind team for an
amazing research environment. Benoît provided a much needed perspective on "how to
finish your PhD" which I greatly appreciate.

Finally, thanks to all my friends scattered around the world, who remained close
despite the distance and time zone differences: Ursel, Colleen, Ivana B., Ilaria, Helen,
Thomas, Mihaela, and Pippijn. Thanks to Giles who made sure I kept on running, despite
the rain, snow and all the wonders of Canadian winters. I thank my family for their
support and love, and especially my mom for all her sacrifices and hard work.

vi



Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

2 Background 6
2.1 Theoretical Approaches to the Study of Language . . . . . . . . . . . . . . 7

2.1.1 Language as an Innate Ability . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Usage-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Language in the Brain and Behaviour . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 How do Humans Learn Language? . . . . . . . . . . . . . . . . . . 12
2.2.2 How does the Brain Support Language? . . . . . . . . . . . . . . . . 13

2.3 AI/Computational Approaches to Language . . . . . . . . . . . . . . . . . 17
2.3.1 Semantic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Probabilistic Language Modelling . . . . . . . . . . . . . . . . . . . 19
2.3.3 Vector-based Word Representations . . . . . . . . . . . . . . . . . . 19
2.3.4 Language Modelling Methods in NLP . . . . . . . . . . . . . . . . . 23
2.3.5 Implications for Language Research in NLP and AI . . . . . . . . . 24
2.3.6 Neurally Plausible Modelling Methods . . . . . . . . . . . . . . . . 27
2.3.7 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



3 Semantic Networks 42

3.1 Word Association Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Cognitive Plausibility of DSMs . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Constructing Semantic Networks . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Undirected Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Directed Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Network Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 Network Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Degree Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.3 Hierarchical Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Associative Mechanisms in the Brain: The Remote Associates Test (RAT) 61

4.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Evaluating Different Semantic Spaces . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Matching Human Performance . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 A Cognitive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 A Biologically Constrained Model . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1 Representing Words and Associations with the NEF . . . . . . . . . 82
4.4.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.3 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.4 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.5 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.6 Analyses of Neural Responses . . . . . . . . . . . . . . . . . . . . . 92

4.5 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

viii



5 Associative Mechanisms in the Brain: Semantic Fluency 99
5.1 The Semantic Fluency Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 Biologically Constrained Model . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Word Representations and Association Data . . . . . . . . . . . . . 102
5.2.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Behavioural Basis for the Emergence of Linguistic Structure 113
6.1 Language as a Collaborative Effort . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 The Navigation Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.1 Communication Channel Capacity . . . . . . . . . . . . . . . . . . . 123
6.3.2 Emergent Communication Protocol . . . . . . . . . . . . . . . . . . 127
6.3.3 Multi-sender Agent Setup . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Optimality of the Communication Protocol . . . . . . . . . . . . . . . . . . 137
6.4.1 Solution Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.4.2 Cost Measure to Quantify Optimality . . . . . . . . . . . . . . . . . 139
6.4.3 Best Suboptimal Solution in the Subcapacity Regime . . . . . . . . 141
6.4.4 Optimality Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5 Towards the Emergence of Linguistic Structure . . . . . . . . . . . . . . . . 144
6.5.1 Geometric Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5.2 Structural Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Conclusion 153

References 158

ix



List of Tables

3.1 Top words with the most associations in the USF Norms. . . . . . . . . . . 43
3.2 A graph-theoretic comparison between the USF Norms and synthetic

networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Tests for the power-law degree distributions of synthetic networks. . . . . 54

4.1 Target positions for 117 RAT problems . . . . . . . . . . . . . . . . . . . . . 66
4.2 Model fits and best fitting parameters . . . . . . . . . . . . . . . . . . . . . 68
4.3 Hyperparameter values for the neural network RAT model. . . . . . . . . . 76
4.4 Free parameters of the RAT model. . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Quantitative analysis of RAT model responses. . . . . . . . . . . . . . . . . 90
4.6 Performance on the RAT and search response patterns. . . . . . . . . . . . 93

5.1 Utility calculations for goals and actions in the semantic fluency task. . . . 105
5.2 List of semantic fluency model parameters. . . . . . . . . . . . . . . . . . . 106

6.1 Hyerparameters in the navigation task. . . . . . . . . . . . . . . . . . . . . 120
6.2 Correlations between C and the performance in the subcapacity regime. . 125
6.3 Correlation between the environment structure and the return. . . . . . . 126
6.4 Spearman correlation coefficients for topographic similarity. . . . . . . . . 149

x



List of Figures

2.1 The lateral view of the left brain hemisphere. . . . . . . . . . . . . . . . . . 14
2.2 Word2vec models for learning of vector-based word representations. . . . 22
2.3 NEF tuning curves and decoded functions. . . . . . . . . . . . . . . . . . . 31

3.1 The distribution of degrees and asymmetry ratios in the USF Norms. . . . 45
3.2 Plausible degree distributions for word networks. . . . . . . . . . . . . . . 54
3.3 Degree distributions and model fits for different semantic networks. . . . 56
3.4 Local clustering coefficients for the USF Norms and synthetic networks. . 58

4.1 Correct RAT solutions within the top nmost similar words. . . . . . . . . . 67
4.2 Probabilistic RAT model fits to human data. . . . . . . . . . . . . . . . . . . 69
4.3 Cognitively constrained model of the RAT search process. . . . . . . . . . 73
4.4 RAT model simulation for the RAT problem river, note, account. . . . . . . . 77
4.5 RAT model performance on problems of varying difficulty. . . . . . . . . . 78
4.6 The architecture of the biologically constrained RAT model. . . . . . . . . 84
4.7 Average model RAT test accuracy and correlation with human responses. 89
4.8 Response sequence length distributions for the model and human data. . 91
4.9 Spikes and decoded words from three groups of neurons in the model. . . 94
4.10 Firing rates of individual neurons in the model. . . . . . . . . . . . . . . . 95

5.1 Example responses in the semantic fluency task with the cue word “animal”.100

xi



5.2 The biologically constrained semantic fluency model. . . . . . . . . . . . . 103
5.3 A comparison between model responses and human responses. . . . . . . 107
5.4 An example of six responses including the indices in the analyses. . . . . . 108
5.5 Cluster length distribution comparison. . . . . . . . . . . . . . . . . . . . . 110

6.1 Sender and receiver architectures in the navigaton task. . . . . . . . . . . . 117
6.2 Gridworld environments and example routes in the navigation task. . . . 121
6.3 Training curves for different agent setups. . . . . . . . . . . . . . . . . . . . 122
6.4 Average return for different communication channel capacities. . . . . . . 123
6.5 Sender policies learned in 25 different 1S-1R setups. . . . . . . . . . . . . . 128
6.6 Receiver’s policy for the Empty Room environment with C = 4. . . . . . . . 130
6.7 Sender policies learned in multi-sender setups. . . . . . . . . . . . . . . . . 131
6.8 Sender redundancy and message redundancy for multi-sender setups. . . 135
6.9 Performance drops for scrambled sender’s messages in 5S-1R setups. . . . 136
6.10 Shortest path lengths to each location in all environments. . . . . . . . . . 138
6.11 Path costs of optimal and experimental solutions. . . . . . . . . . . . . . . 143
6.12 Proportion of optimal solutions in multi-sender setups. . . . . . . . . . . . 143
6.13 Graph representations of sender policies. . . . . . . . . . . . . . . . . . . . 145
6.14 Pairwise geometric similarity between message distributions. . . . . . . . 147
6.15 Relation between the distance and the structural similarity. . . . . . . . . . 148

xii



1 |
Introduction

Linguistic communication is a unique characteristic of intelligent behaviour that distin-
guishes humans from non-human animals. A sophisticated communication system in the
form of a language that is acquired, highly structured, and arbitrarily conventionalized
is a quintessential aspect of human cognition. Language is powerful—it enables us to
talk about the past, present and future, transmit knowledge across generations, tell jokes,
make friends and enemies, plan, organize, collaborate, engage in scientific endeavours,
develop and maintain culture, among numerous other things.

The human capacity for language is closely tied to other intelligent behaviours and
cognitive abilities (Tomasello 2009; Elman et al. 1997; Clark 1996). Even though the
thousands of different languages that exist in the world today are remarkably diverse
in terms of their topology and forms (e.g., spoken, written or signed), they all share
some important characteristics. First, natural language is known for its unboundedness, as
there are infinite ways to construct meaningful sentences and expressions from a limited
set of units such as symbols or words. Thus, humans possess the ability to understand
sentences they have never encountered before, and, at the same time, they are also able
to generate new sentences they have never uttered before. This is possible due to the
highly structured nature of language. Meaningless units such as individual letters are
combined together to form larger, meaningful units such as morphemes and words.
Words are further combined into sentences, which are larger meaningful constructions.
This property of language, where the meaning of a whole construction depends on the
meaning of its parts, is known as compositionality (Fodor and Pylyshyn 1988; Frege 1892).
Compositionality is considered to be one of the core properties of language (Bohn et al.
2019; Brighton and Kirby 2006), giving it its expressive power.

Second, language is supported by a wide variety of cognitive processes that start to
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develop in childhood, and continue to be shaped into adulthood (Tomasello 2009). It is
argued that the capacity for language evolved from existing more general cognitive and
motormechanisms. For example, from thosemechanisms related to sequential processing
and motor execution (Kolodny and Edelman 2018), or those involved in combinations
of gesture and facial movements (Hewes 1973; Rizzolatti and Arbib 1998). Since a wide
variety of brain areas and structures are engaged in the processes of language acquisition,
production and understanding (Ullman 2004), language is realized by hundreds of
millions of neurons in the brain. It is therefore reasonable to assume that features of
natural language are shaped by constraints imposed by cognitive processes and biological
systems that support it.

Given the ubiquitous importance of language in a variety of human behaviours, it is
understandable that language has been central to artificial intelligence (AI) research since
its early days (McCarthy et al. 1955; Newell and Simon 1975; Quillian 1967). As we discuss
in Chapter 2, language is recognized as an important trait of intelligent machines, and has
been traditionally seen as a plausible means by which machines can realize a variety of
tasks, or even learn to improve themselves (McCarthy et al. 1955). While AI researchers
have always been focussed on reproducing aspects of intelligent behaviours, early AI
researchers also placed a strong emphasis on cognitive processes and understanding of
mechanisms giving rise to such behaviours (Newell and Simon 1975).

Today, the capacity of AI to use natural language has been predominantly studied
within the field of natural language processing (NLP). Current NLP research is typically
focussed on specific language tasks such as machine translation, question answering,
dialogue generation, named entity recognition, text summarization, or some combination
thereof. Particulars of general language use, acquisition, or underlying cognitive processes
that support language are less commonly studied within NLP. Often, models performing
NLP tasks are trained on vast amounts of textual data, typically with a goal of achieving
state-of-the-art results on benchmark language tasks (Mikolov et al. 2013a; Mikolov et al.
2013b; Peters et al. 2018; Vaswani et al. 2017; Devlin et al. 2018; Lewis et al. 2019; Raffel
et al. 2019; Radford et al. 2019; Brown et al. 2020).

The advances in NLP have been tremendous in the past decade, showing that such
systems are capable of sophisticated language processing, sometimes even exceeding
human performance on selected tasks (Rajpurkar et al. 2018). The success of such models
also extends beyond the field of NLP, as distributed semantic representations produced
by such models have found a wide array of applications in cognitive science. Such
representations have been used tomodel aspects of cognitive processes related to semantic
processing, such as word similarity judgments (Baroni et al. 2014; De Deyne et al. 2016),
semantic priming (Mandera et al. 2017), andword associations (Utsumi 2015; Nematzadeh
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et al. 2017). Moreover, they have also been used to decode meanings of words, sentences
and narratives from recordings of neural activity (Huth et al. 2016; Pereira et al. 2018;
Anderson et al. 2019). In Chapter 3, we compare semantic networks constructed from two
distributed representations commonly used in NLP to those constructed from human
word association data, and show that while these representations are comparable in many
aspects, they also differ in important ways.

Interpreting the workings of state-of-the-art NLP models, as well as understanding
their relationship to linguistic structure, is often challenging (Rogers et al. 2020). While
different techniques have been used to uncover aspects of linguistic structure learned by
those models (Linzen and Baroni 2020), their inner workings and architecture typically
do not resemble cognitive or biological mechanisms underlying linguistic processing. Al-
though aspects of representations learned by such models can be regarded as cognitively
plausible (Günther et al. 2019), the contributions of such models to our understanding of
linguistic processing at the level of neural networks in the brain have been limited.

In this thesis, we propose an approach to the computational study of language un-
derstanding and use that is based on biologically realistic and behaviourally motivated
modelling approaches. Biologically realistic models are typically constrained to the com-
putational mechanisms underlying biological systems. Here, we rely on the methods of
the Neural Engineering Framework (NEF; Eliasmith and Anderson 2003) and the Seman-
tic Pointer Architecture (SPA; Eliasmith 2013) to build biologically constrained models of
semantic processing in the brain. The NEF and SPA have been used to model a diverse set
of neural systems and cognitive functions, such as serial working memory (Choo 2010),
action selection (Stewart et al. 2012), time cells (Voelker and Eliasmith 2018), affective
processing (Kajić et al. 2019), and biologically plausible spatial representations (Komer
et al. 2019; Dumont and Eliasmith 2020). As well, the NEF and SPA have been used to
integrate such models, resulting in the world’s largest functional brain model (Eliasmith
et al. 2012; Choo 2018).

We use these methods to address several tasks investigating aspects of language
function. The tasks we focus on have been used in psycholinguistics, cognitive science
and neuroscience, including clinical and research settings, to study how the brain stores,
organizes and retrieves semantic information. In contrast to commonly used tasks in NLP,
such tasks are characterized by limited amounts of experimental data, often acquired un-
der different experimental conditions. While in some tasks responses can be characterized
as correct or incorrect, in others, they are generated according to task rules and thus no
precise accuracy metric can be derived. Instead, the performance on tasks is evaluated by
comparing model responses with the human data, typically by using a variety of analysis
methods devised to describe properties of the human data. The effort in this modelling
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approach is placed on interpreting the inner workings of the model in the context of
relevant theories such as those in psycholinguistics, cognitive science or neuroscience.
As such, these models can be used to propose specific mechanisms that might be realized
by the brain, as well as to make predictions for experimental conditions for which human
data may not be available. This thesis therefore argues for AI methods that simulate
aspects of intelligent behaviour by constraining models of language comprehension and
use in a way that is consistent with experimental observations of aspects of language
function in the brain and behaviour.

Over the course of the thesis, we use this brain and behaviour perspective to propose
an integrative approach for studying aspects of language function across different levels
of explanation, consistent with the usage-based view of language that emphasizes the
role of a variety of cognitive functions in language. Using the example of two semantic
memory tasks, Remote Associates Test (RAT; Mednick 1962) in Chapter 4, and semantic
fluency task (Bousfield and Sedgewick 1944; Troyer et al. 1997; Hills et al. 2012a) in
Chapter 5, we examine biologically plausible models of word associations and related
search processes in the brain. We propose models that implement the mental lexicon
storing knowledge about words, relationships between them, as well as semantic search
processes operating on such representations. We demonstrate that our models provide a
good match with human data on those tasks, and examine how changes to the model
parameters affect task performance. Then, in Chapter 6, we address the question of how
aspects of such representations, including basic linguistic structure, can be learned in a
usage-based, collaborative multi-agent reinforcement learning framework.

Thus, the goal of this thesis is twofold. First, it is to propose biologically constrained
computational mechanisms underlying aspects of language function. Proposed mech-
anisms are constrained at the neural level by computations realized with groups of
inter-connected neurons and biologically motivated parameters, and, at the cognitive
level, by cognitive mechanisms proposed by theories of semantic processing in psycholin-
guistics and cognitive science. Such mechanisms are also general, meaning that the same
or similar mechanisms are used in other models of higher cognitive functions imple-
mented using the same computational frameworks. This consistency is important in a
biological sense, since language is processed in different brain regions, some of which
also process non-linguistic information. Second, the goal is to study how aspects of core
linguistic features can be learned in a usage-based computational framework. Language
is typically studied as an end product and, given that established human communities
have little incentive to emerge novel languages (Galantucci 2005), understanding factors
that shape linguistic structure can be challenging. We contribute to the large body of
simulation-based approaches to language in AI by showing that artificial agents in a
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reinforcement learning setup offer a useful testbed for experimenting with conditions
that give rise to interesting linguistic properties.

Since language in humans and artificial agents is a topic of research interest in many
different domains, it is important to stress some of the aspects of language function that
are not addressed in this thesis. First, we do not aim to model the anatomy of language in
the brain. As mentioned previously, language processing is distributed across different
brain areas involved in various language-related tasks, such as perceptual analyses of
the linguistic input, speech, syntax, semantics, reading, comprehension, to name a few.
Instead, we focus on specific aspects of semantic processing related to the mental lexicon
and related processes. Second, we do not address the process of language acquisition,
which, while fundamental to the human capacity for language, would likely require
a comprehensive, functional model of the brain of a developing child. The aspects of
linguistic emergence that we address with agent-based simulations in Chapter 6 can be
considered a step in the direction of understanding learning processes, some of which
may play an important role in language acquisition. Finally, because our research aims to
understand the relationship between the brain and linguistic behaviours, we do not focus
on benchmark tasks in NLP. Rather, we strive to understand how cognitive and biological
constraints affect language comprehension and use, and hope that such efforts contribute
to the creation of AI systems with communicative abilities that consider human linguistic
capacity.
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2 |
Background

Understanding and reproducing human linguistic abilities has been central to different
research domains that investigate aspects of this unique trait. On the one hand, researchers
want to understand the nature of language, its characteristics, as well as principles and
mechanisms that guide language learning and production. On the other hand, there are
ongoing efforts in artificial intelligence to develop systems that are able to understand
human language, often without the need to establish a relationship between such artificial
systems and biological systems underlying natural language. For those interested in
human language as a natural phenomenon, several distinct but overlapping methods
are used. The study of language form, meaning and context is the primary goal in
linguistics, while language acquisition and development is typically studied in the context
of psycholinguistics. Taking a more mechanistic perspective, cognitive neuroscience is
concerned with the relationship between the brain and the linguistic ability.

In contrast to seeking answers to questions on the human capacity for language,
artificial intelligence, and natural language processing (NLP)more specifically, investigate
how to replicate aspects of human linguistic performance without much reference to the
linguistic or cognitive aspects studied by linguists, psychologists and neuroscientists. In
this thesis, we argue for an approach to the study of language that spans explanations
across scientific domains, by integrating neuroscientific observations at the level of brain
functions, up to the linguistic behaviour consistent with aspects of human communication.
In this chapter, we outline benefits of such an approach and its significance for language
research in artificial intelligence.

We provide a survey of theoretical contributions and findings in language research,
starting from those in linguistics and philosophy, and continuing with psycholinguistics
and neuroscience. The final section on computational approaches to language highlights
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various methods used for language modelling, some of which are mentioned for their
historical value, while others are included as powerful state-of-the-art modellingmethods
on specific language tasks at the time of writing. Finally, the section concludes with a
detailed explanation of methods that are used in the remainder of this thesis to explore
the relationship between biologically realistic neural networks and fundamental language
processes, alongwith a comparison of thesemethodswith others used in natural language
modelling.

2.1 Theoretical Approaches to the Study of Language

One of the basic learning principles in humans and other animals is conditioning, where
certain behaviours are acquired as a result of reinforcement of such behaviours through
some feedback signal. In particular, one of the influential proposals of how humans
acquire a wide variety of intelligent behaviours, including language, was that of operant
conditioning pioneered by Skinner (1957). Operant conditioning is a form of associative
learning where desired behaviours are reinforced with positive feedback signals. The gist
of this idea can be illustrated with the following example: if we want to teach a child to
use the words “Yes, please”, then we wait for the child to utter the words as we ask them
whether they would want their meal or a toy. Skinner postulated that such reinforced
learning underlies the development of human language capacity.

While such reinforcing mechanisms explain many behaviours, and may account for
some linguistic behaviours, the theory was generally considered inadequate as an expla-
nation of language learning. In particular, the nativist approach to language advocated
by Noam Chomsky (Chomsky 1965; Chomsky 2007) postulated that children cannot
learn the complexity of linguistic structure just from associative mechanisms and sensory
experience. He argued for an innate language faculty that somehow supports syntax
learning. However, evidence largely originating from developmental and neuroscientific
studies, that accumulated since such first proposals, supports an alternative view of
language function. According to such a view, although language is unique to humans, it
relies on mechanisms that are important for a wide variety of cognitive skills, including
those necessary for social interactions. Such view of language, where language is situated
in the context of cognition as well as social interactions and the environment is known as
the usage-based view of language. After all, humans are social species and the normal
developmental trajectory requires children’s learning to be supported by their caregivers.
While the usage-based view of language does not entirely rule out the possibility that
some aspects of language function are innate, it rejects Chomsky’s ideas on innateness by
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demonstrating that language function is acquired and developed jointly with a range of
more general socio-cognitive skills, effectively bypassing the need for innateness.

2.1.1 Language as an Innate Ability

The nativist approach to language assumes an innate language faculty underlying lin-
guistic competence, with a genetically determined component for universal grammar
(UG). Thus, according to the nativist theory, the function of human language structure is
separated from language acquisition, which is treated as a “parameter setting” (Chomsky
2007). This theory, pioneered by Chomsky in 1960s, postulates the innateness of UG
based on the idea of language universals (i.e., features of language that are common
among languages of the world) and the poverty of the stimulus argument. Poverty of
stimulus describes children’s linguistic learning experience, where children are able to
acquire language despite finite exposure to linguistic data during their development.
Therefore, proponents of nativism argue that an innate propensity for grammar learning
must exist that allows children to become competent language users with so little data
and no formal instruction. This innate wiring, hypothesized to have some form of neural
correlates, Chomsky labelled as Language Acquisition Device (LAD) that “sets limits on
the attainable languages” (Chomsky 2007). Then, according to Chomsky, experience
determines the features of a specific language. He argues for the distinction between
competence, which is the theoretical, idealized ability to generate grammatically correct
linguistic output, and from performance, which characterizes actual, ordinary language
use with all of its imperfections.

However, these views on UG and dedicated LADwere challenged on several grounds.
The Chomskian theory of what constitutes language universals has seen multiple revi-
sions, where in each revision some genetically determined grammar universals were
excluded. This typically occurred as more data became available on languages beyond
the Indo-European language group as well as data on sign languages. For instance, Evans
and Levinson (2009) challenge the existence of universals such as major lexical categories
(such as adjectives and adverbs) as well as major phrasal categories (such as a noun phrase
or a verb phrase), providing examples of less known languages that do not conform to
such syntactic patterns. Currently, the theory postulates only one universal “tool” present
among all languages by stating that recursion is “the only uniquely human component of
the faculty of language” (Hauser et al. 2002). However, Evans and Levinson (2009) point
out that “many languages show distinct limits on recursion in this sense, or even lack it
altogether.” It is worth noting that the debate on language universals remains ongoing,
with proponents on both sides of the “nature versus nurture” spectrum. This does not
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mean that all researchers reject the existence of such universals; instead, they question
the need for such universals to be genetically determined, and some, consider them as
tendencies and statistical regularities observed in the languages of the world, rather than
fixed rules.

The poverty of the stimulus rationale is rejected bymany researchers in developmental
psychology, linguistics and cognitive science, who argue that the case for the nativist ap-
proach is poor in light of evidence from developmental and neuroscientific observations.
In particular, they state that children have at their disposal powerful learning mecha-
nisms, such as categorization and statistical learning, integrated with other cognitive
and social-cognitive skills, that allow them to acquire complex linguistic expressions
and constructions (Tomasello 2009; Evans and Levinson 2009). This view of language
emphasizes the contextualized andmalleable nature of language development, both from
the phylogenetic and ontogenetic perspective.

Thus, empirical evidence for the poverty of the stimulus argument and universal
grammar supported by the genetically defined LAD, has been weak, and different lines
of evidence have been provided in favour of developmental explanations.1 Consequently,
these ideas were rejected by many researchers in favour of usage-based view of language
that explains human capacity for language in the context of learning of more general
cognitive and social domains. According to such views, there is no need for a “pre-
programmed” faculty for language structure, as children acquire it jointly with other
skills. Furthermore, proponents of this view do not distinguish between the competence
and performance, as they find no empirical evidence to substantiate such a distinction.

2.1.2 Usage-based Approaches

In contrast to nativist views of language that aim to explain linguistic ability in terms of
an innate predisposition for universal grammar, usage-based approaches highlight the
role of context, environment, socio-cultural factors and cognition in language use and
development. In usage-based views of language, linguistic skill is closely tied to other
cognitive skills, and the acquisition of language skills is a stage of ontogeny related to
the development of other skills. Historically, language use and its relevance for meaning,
or semantics, has been studied within pragmatics, the theory of language use within
philosophy. Rather than focusing on formal, idealized view of language as a set of fixed
rules, pragmatics studies ways in which the context contributes to the meaning.

1For a detailed discussion on this topic see Elman et al. (1997, Chatper 7, p. 371–391)
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One of the most notable proponents of the view that meaning is derived from language
use was the philosopher Ludwig Wittgenstein (1953), who emphasized the contextual
versatility of language in his later works, perhaps best summarized by the following
metaphor:

“Language is a labyrinth of paths. You approach from one side and know
your way about; you approach the same place from another side and no longer
know your way about.”

Ludwig Wittgenstein (1953, §203., p. 88e)

Wittgenstein claimed that a word’s meaning is determined by its use in a language. A
similar view had been earlier championed by Frege (1884), who postulated that a word
has a meaning only in the context of a sentence. Wittgenstein explicated usage-based
nature of language through language games, different models of discourse that emphasize
aspects of language use. He uses numerous examples of such games to argue that the
study of word meaning or sentence meaning without characterizing their contexts is
futile.

Language as a coordination problem was first proposed by Lewis (1969), where a
solution to such a problem is convention. According to Lewis, conventions are behavioural
regularities in action that serve interests of those involved. They thus persist in the society
because they are solutions to a recurrent coordination problem. He points to a diverse
nature of such coordination problems. For example, a situation where two individuals
greet each other is a form of coordination since they perform actions (e.g., bowing or
shaking hands) in accordancewith conventions of their culture. To Lewis (1969), language
is also a coordination problem as linguistic units are given conventional meanings in
their use. Conventions are tied to a community and culture, and are acquired by being a
part of that community.

Clark (1996) argues for the study of language use as a form of joint, coordinated action
relying on individual as well as social processes. He points out that words and sentences
are types of signals, and when abstracted away from the context of usage, describing
them is a mere description of conventions for their use in speech communities. While
such conventions provide important aspects of context as established by the community,
they do not provide a comprehensive view of meaning resulting from language use.
Instead, utterances used in conversations, discourse, books, and ordinary language more
generally contribute to providing the context beyond conventions. For example, Grice
(1975) distinguishes between naturalmeaning and non-naturalmeaning. Natural meaning
arises from natural events, and, roughly speaking, can be understood as a statement
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of a fact or an observation. As an example of natural meaning, Grice (1975) uses the
sentence “Those spots mean (meant) measles”, where measles is a naturally occurring
event manifested through a patient’s skin reaction. In contrast, if a doctor waves his hand
through a window to indicate to parents that their child has measles, this is a signal
that has been agreed upon by interlocutors in a specific situation and is thus considered
non-natural—it only carries meaning for those involved. Ordinary language use often
relies on such non-natural meanings, and Grice (1975) further elaborates a type of non-
natural meaning that is speaker’s meaning. The study of speaker’s meaning is a basis for
“intention-based semantics” where the meaning of an utternace, according to Grice, has
two components: that of what is being said, and that of what is being implicated. For
example, if I am considering visiting a newly opened restaurant and I ask a friend of
mine who has eaten there to tell me about the experience, and they respond with “It
was alright, the service was friendly,” I might assume mediocre food quality. Therefore,
by avoiding to mention food, my friend might be implying that they did not enjoy it.
This kind of statement is what Grice called a conversational implicature, characterized by
typically being non-conventional and requiring the listener to infer the meaning.

Further, Clark (1996) emphasises one other important aspect of language use, that
of common ground or common knowledge. An important component thereof, he argues,
is self-awareness, or the awareness of information that each individual participating in
a communicative exchange has. Although Clark himself does not refer to it in such a
way, this ability is related to theory of mind (Premack and Woodruff 1978), the ability of
individuals to attribute mental states to others and understand them in relation to their
own.

Consistent with usage-based views of language is an approach to linguistic theorizing
called cognitive linguistics. Cognitive linguistics views language as a non-autonomous
cognitive faculty, where knowledge of language emerges from language use (Croft and
Cruse 2004). This approach has been particularly favored by some artificial intelligence
researchers who have investigated how artificial agents can learn syntax, grammars
and lexicons (Cangelosi and Parisi 2012; Steels 2004). Often, to study the emergence of
linguistic competence, they turn to cognitive science and developmental psychology to
simulate constraints and environmental pressures that language users or learners (e.g.,
infants and young children) face during the language acquisition processes. Cognitive
linguists aim to understand linguistic competence in terms of different cognitive functions
and their underlying neural mechanisms (Gallese and Lakoff 2005), thus attempting to
link different levels of explanation, ranging from cognitive processing in the brain, to
behaviour and culture. In the next section, we provide an overview of cognitive, develop-
mental and neuroscientific bases of language that are important for the understanding of
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environmental constraints and conditions faced by language learners.

2.2 Language in the Brain and Behaviour

2.2.1 How do Humans Learn Language?

Usage-based linguistics extends pragmatics to the broader context of language use that
includes language acquisition and development. In contrast to generative linguistics
that portrays linguistic competence as an innate ability, usage-based language theories
consider the joint development of language and other cognitive and socio-cognitive
skills. Such views are supported by neuroscientific evidence, showing that language is
enabled by general-purpose brain mechanisms both in children acquiring their native
language and adults learning an additional language (Hamrick et al. 2018; Ullman 2004).
Moreover, the theory is aligned with evolutionary views on language postulating that
human capacity for language evolved by “‘hijacking’ of existing cognitive mechanisms
related to sequential processing and motor execution” (Kolodny and Edelman 2018).

According to Tomasello (2009), two important general purpose skills are intention-
reading and categorization (also referred to as pattern-finding). Intention-reading relies
on the development of theory ofmind, which allows humans to recognize and understand
the mental states of others, as well as comparison of such states to theirs. In the context of
language, having a theory of mind underlies the development of a joint attentional frame
necessary for communication, which is the ability to share attention with others and refer
to specific objects, events, and the environment. In infants, this ability typically develops
between 9 and 12 months of age. It is assumed that such skills underlie abstraction
processes such as analogy and more complex communicative processes. Pattern-finding
skills are important for detecting similarities in conceptual categories, sensory-motor
schemas, or behavioural sequences. Such skills emerge early in human development,
some of them even prelinguistically, and are generally believed to be evolutionarily old
and shared in some form by all primates (Tomasello 2009).

According to the usage-based view, intention-reading and categorization underlie the
process of grammaticalization—the development of structured linguistic constructions.
In children, this process occurs gradually, first starting with the contextualized word
learning, and then proceeding with more complex, grammatical patterns of word usage.
Between 12 and 16 months of age, the process is slow and prone to errors. Usually, during
this period children learn two to three novel words per week (Fenson et al. 1994). Word

12



learning at this stage is facilitated by interactions with a parent or a caregiver, who directs
the attention of a child to an action, object or an event, and provides an associated label.
This kind of learning is known as learning by ostension, as explicit naming and pointing
play a crucial role when conveying the meaning of a word.

The second year of life is characterized by a more rapid learning phase in which chil-
dren learn eight or nine words per week (Bloom 1976). During this period, the accelerated
word learning capacity leads to a vocabulary expansion, a phenomenon also known as
the vocabulary burst. It is assumed that the emergence of grammar and combinatorial
speech plays an important role in the acceleration of the learning rate (Anisfeld et al.
1998). At this stage, however, most words are learned from sentential context introduced
through conversations, and, later in life, through reading (Gleitman 1990; Goodman et al.
1998). This represents a shift in utilized learning mechanisms, as up to that stage most
of word learning happened by ostension. The context in which a word occurs provides
important syntactic and semantic cues that help to convey the meaning of the word. As
learning mechanisms become more developed, the word learning process becomes less
dependent on external supervision or guidance. The rate of learning slows down towards
the end of the preschool period, when children learn one novel word per week (Fenson
et al. 1994). Therefore, grammaticalization and resulting language competence are a
result of psychological and socio-communicative processes, highly dependent on learning
mechanisms that develop through interaction with the environment and others.

2.2.2 How does the Brain Support Language?

In contrast to some other functions such as vision, memory or motor control, there are
only limited insights to be gained from studying animal communication and animal
brain function in explaining human capacity for language. In addition, many aspects
of language function, such as language production and perception, depend on many
different brain areas such as motor cortex and subcortical structures involved in motor
movement and timing, presenting challenges in comprehensively mapping the anatomy
of language.

Over the past few decades, the advances in cognitive neuroscience and psycholinguis-
tics accelerated our understanding of brain networks that support and realize language.
Language processing systems in the brain have have been identified using neuroimaging
studies, as well through observations of individuals with language deficits. In the fol-
lowing section, we provide a brief overview of what is known about the anatomy of the
brain and neural networks supporting the language function.

13



Figure 2.1: An illustration of the lateral view of the left brain hemisphere. Broca’s area,
Wernicke’s area, auditory cortex and auditory association areas are involved in language
processing. Image credit.

Neural networks involved in language production and comprehension are primarily
located in the left hemishphere of the brain, surrounding the Sylvian fissure. A few such
networks and regions, such as the Broca’s area, Wernicke’s area and surrounding auditory
processing areas are highlighted in Figure 2.1. Broca’s area is implicated in speech
production, grammar and syntax, and patients with lesions in that area have difficulties
with spontaneous speech, or with processing of grammatically non-trivial sentences.
Such patients still retain some ability to comprehend spoken or written language, in
contrast to patients with impaired Wernicke’s area, who have difficulties understanding
language. Their language might appear fluent compared to patients with damages to
Broca’s area, but what they say is nonsensical. While the left hemisphere does most of
language processing, the right hemisphere is also known to be involved in some aspects, in
particular in processing the rhythm of language (Ross and Mesulam 1979), or processing
of semantically distant meaning such as metaphors (Schmidt and Seger 2009).
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However, this characterization of the neural underpinnings of language in the brain
does not answer some critical questions regarding language. For instance, how does the
brain represent 50,000words, which is approximately the size of the vocabulary of a native
English speaker?2 Moreover, how does it organize and derive meaning from a variety of
linguistic inputs, such as spoken, written or signed language? To store information about
the words and concepts, the brain is thought to use what is called the mental lexicon, a
store of learned information about words and their meaning (Gazzaniga et al. 2014). The
mental lexicon is a part of the semantic memory system, a form of a long-term memory
that stores learned objective knowledge such as facts, and the general knowledge about
the world (Tulving 1983).

Priming experiments and computational studies indicate that the mental lexicon is
organized in a principled way so as to facilitate the access to words during language
comprehension and production (Collins and Loftus 1975; Gazzaniga et al. 2014). One such
principle is the organization based on the frequency of the words, and it postulates that
words that are used more frequently in language are accessed more quickly compared
to words with lower usage frequency. Another important organizational principle is
semantic (or featural) similarity, stating that words with similar meanings need to be
organized together in the brain to facilitate access to related items. Such principles
implicate the importance of structured representation of meaning in the brain that are
realized with networks of millions of interconnected neurons.

The topic of what computational principles and mechanisms underlie such structured
representation still remains intensively studied. It has been proposed that concept orga-
nization follows categorical groupings, such as modality specific groupings (Warrington
1975); or semantic groupings, such as concrete versus abstract words (Breedin et al. 1994;
Warrington 1981), animate versus inanimate entities (Warrington 1975; Caramazza and
Shelton 1998), and so on. Support for such categorical views of memory organization is
provided by neurophysiology studies investigating high-level concept organization, such
as object recognition, in non-human primates. Groups of neurons in the inferotemporal
(IT) cortex, the final area to process visual inputs in the ventral stream, show responses
to abstract stimuli such as faces or hands (Quiroga 2012). The IT cortex has numerous
projections to the medial temporal lobe (MTL), which contains structures such as the
hippocampus, the amygdala and the entorhinal cortex. Those structures have been impli-
cated in the formation and storage of new declarative memories, as shown in the case of
the patient H.M. (Scoville and Milner 1957) who had parts of those brain areas surgically
removed as epilepsy treatment. Following the treatment, he was unable to form new

2See Brysbaert et al. (2016) and Goulden et al. (1990) for a detailed discussion on the variability and
challenges involved in estimating the vocabulary size.
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semantic knowledge, although some memory functions such as short-term memories
and stores for words were not affected. The ability of individual neurons within MTL to
selectively respond to high-level stimuli, such as faces, objects or places, supports their
purported function in semantic memory (Quiroga 2012).

Recent advances in neuroimaging allow recording a vast amount of brain activity
data, and in combination with statistical and machine learning techniques that handle
processing of such amounts of data, enable a better understanding of the relationship
between the representation of semantic concepts and neural activity. Huth et al. (2016)
comprehensively mapped semantic selectivity in the brain by identifying areas that reli-
ably represent various linguistic categories. To record the neural data, they used fMRI
imaging while human subjects were listening to hours of narrative stories. Using multi-
voxel statistical pattern analysis they isolated semantic dimensions and categories that are
consistent among neural recordings of individuals. This consistency is discussed as rele-
vant insofar as it might suggest the plausible role of anatomy or cortical cytoarchitecture
in constraining of semantic representations. They identified 12 distinct categories, such
as tactile, visual, numeric, locational and temporal, to name a few. This is consistent with
other studies (see Binder et al. (2016) for an extensive review) confirming that semantic
representations are intrinsically related to basic functions such as perception, and action,
but also to other types of social and cognitive experiences.

Such studies provide evidence in support of the distributed representation of concep-
tual knowledge (Rissman and Wagner 2012; Tyler and Moss 2001), where the activity of
many neurons jointly contributes to a representation of a concept. Single neurons can still
exhibit preference for certain input stimuli, as demonstrated by single-neuron recordings
in MTL, where neurons respond selectively to higher-level semantic concepts (Quiroga
2012). However, as stated by Binder et al. (2016), knowing that such cells exist provides
”no account of the means by which external or internal stimuli lead to their activation”,
nor does it offer any mechanistic account of how concepts are organized in the brain.

While the existing body ofwork paves a path to our understanding ofwhere in the brain
the semantic information is processed, it provides only limited insights as to how networks
of neurons engage to process such information. Specifically, how are biological properties
of neurons leveraged in representing and organizing information to produce different
linguistic behaviours remains an open challenge. One effective approach to address such
a challenge is with computational models of brain function that are constrained with
what is known about biological systems. In particular, more realistic brain models are
seen as a good candidate to address the “need to identify the relevant features of brains,
and then find a level of modeling which continues to make contact with the anatomy
and physiology, but which can also make contact with behaviour” (Elman et al. 1997,
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Chapter 7, p. 395). It should be noted that while many computational models do not
impose biological constraints, they still provide valuable information and hypotheses on
how words are represented and manipulated in a distributed fashion. In the next section,
we provide an overview of different computational methods concerned with different
aspects of language, together with an outline of their significance and contributions to
our understanding of the computational mechanisms of language.

2.3 AI/Computational Approaches to Language

Russell and Norvig (2002) quote many different, yet related definitions of artificial intelli-
gence (AI), pointing out that many of them are centered around human intelligence and
rationality. In general, such definitions are concerned with concepts such as reasoning,
thought processes and behaviour in machines and artificial agents. Each of these are
examples of complex functions, and according to one specific definition AI, can be seen
more generally as the “simulated cognitive processes [...], artificial in the sense that they
are artifacts, human creations—and intelligent in that the computers perform complex
functions” (Gazzaniga et al. 2014). Thus, in AI, computational methods are used to
simulate or reproduce aspects of human behaviour and/or processes underlying such
behaviours. This tight bond between human cognition and behaviour was particularly
present in the founding days of AI research, as exemplified by the research proposal for
the historical conference on artificial intelligence held at Dartmouth College in 1956:

“An attempt will be made to find how to make machines use language, form
abstractions and concepts, solve kinds of problems reserved for humans, and
improve themselves.”

McCarthy et al. (1955)

Thus, the understanding of human language for the purpose of simulating it in ma-
chines was one of the central tenets of AI from its beginnings. Computational methods
to do so are by no means limited to computer science, as this interest was, and con-
tinues to be shared among researchers in different fields. Computational models used
to understand and simulate these aspects of cognition and behaviour come in a wide
variety of flavours, due to the multifaceted nature of natural language as well as different
research questions. In this section, we provide an overview of different approaches to
computational modelling used to simulate neural, cognitive and behavioural aspects of
language processing.
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2.3.1 Semantic Networks

More than 50 years ago, Quillian (1967) proposed that word networks are of essential
importance as models of long-term memory for artificial intelligence, suggesting that
“further advances in reproducing human performance with a computer critically depend
on giving such programsmemories which can effectively provide themwith a ‘knowledge
of the world.”’ Semantic networks have come a long way since then as powerful, yet
simple computational models for the representation of meaning. A semantic network is
typically implemented as a graph, with the set of nodes representing concepts, such as
words, and a set of edges, representing a semantic relationship between those concepts.
Some of the computational appeals of such networks are the relative ease of construction,
as well as the variety of graph algorithms that can be used to study network properties
and simulate different semantic processes.

Using semantic networks to model the mental lexicon, Collins and Loftus (1975)
show that, in combination with a proposed spreading activation algorithm, such models
account for a variety of behavioural effects observed in various experiments pertaining to
semantics, including sentence verification, categorization, and word production, among
others. Such models have also been used to support the argument that conceptual
knowledge is structured in a hierarchical fashion, as semantic networks implementing
such hierarchy were used to reproduce experimental reaction times in different word
priming tasks.

Although semantic networks are one of the earliest computational proposals for the
structure of semantic knowledge, they continue to be an important model for the study
of human language (Steyvers and Tenenbaum 2005; Miller 1995; Cancho and Solé 2001;
Dorogovtsev and Mendes 2001). Semantic networks capturing the scale of a human
mental lexicon have been used to analyze the structure and the organization of the
human semantic memory (Steyvers and Tenenbaum 2005; Morais et al. 2013; De Deyne
et al. 2016). One of the most popular lexical databases used as a semantic network in
natural language processing, computational linguistics, and in modelling of semantic
knowledge more generally is WordNet (Miller 1995). Words in WordNet are grouped
in so called synsets that contain synonymous nouns, verbs, adjectives or adverbs. Over
110,000 synsets are connected by conceptual-semantic and lexical relations such as a
is-a relationship (e.g., A chair is a piece of furniture) or has-a relationship (e.g., A chair has
four legs.). WordNet has been used in different natural language processing tasks such
as word-sense disambiguation, text classification, text summarization and information
retrieval.
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2.3.2 Probabilistic Language Modelling

Probabilistic approaches based on techniques of Bayesian statistics have been used to
model various aspects of cognition and linguistic function that deal with the uncer-
tain, incomplete and inherently noisy nature of sensory information. The focus of such
models is on computational principles of inference and learning under probabilistically
constrained conditions. Specifically, in the context of language, Bayesian frameworks
formalize problems pertaining to language understanding and use as inference from
limited amounts of data. Central to that formulation is the Bayes’ theorem

P (h|d) =
P (d|h)P (h)

P (d)
, (2.1)

where h represents a hypothesis (e.g., such as a set of model parameters) and d represents
data (e.g., observations provided to the model). Thus, prior knowledge is modelled as a
distribution over hypotheses, with P (h) expressing the degree of belief that a specific
hypothesis h is correct. The likelihood term P (d|h) expresses how likely is the data d to
be observed, assuming the correctness of h. While this formulation is quite simple, it is
at the heart of more sophisticated methods such as hierarchical Bayesian modelling and
probabilistic graphical models.

Such methods have been effectively used to model different features of linguistic
ability, such as word learning (Xu and Tenenbaum 2007; Fazly et al. 2010), valid syntactic
expressions and structure acquisition (Chater and Manning 2006; Alishahi and Stevenson
2008), and different semantic and syntactic classes (Griffiths et al. 2005; Barak et al. 2014).
Typically, such models do not intend to capture mechanisms or processes underlying
some cognitive ability; rather, they focus on computations for explaining the data given
a set of assumptions and constraints. As such, assumptions on priors that need to be
incorporated constitute an important modelling decision.

2.3.3 Vector-based Word Representations

While semantic networks continue to be a popular tool for the modelling and the analysis
of semantic processes, they have been limited in their capacity to capture a multitude
of semantic relations that exist between words in natural language. If we assume that
word meanings are derived from their usage, we can characterize features associated
with those words to understand their relationship with other words. For example, the
word cat might be associated with other words such as fur, tail, pet, four-legged, animal,
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to name a few. Therefore, we would expect that cat shares many features with some
other words such as lion, but fewer features with others, such as ambulance or banana. A
simple representation that captures a set of features is a n-dimensional vector, where each
dimension can either be 0 or 1 to denote whether that feature is present or not. Using the
features: fur, tail, pet, four-legged, animal; the word cat can be represented with a vector
[1, 1, 1, 1, 1], while lion would be represented as [1, 1, 0, 1, 1]. To conclude that cat and
lion are similar words, we can compute the similarity between them as the dot product
between the two vectors, and observe that it is higher than the dot product between
either cat or lion and other words which would have more zeros in their feature vector.
While this toy example has been simplified for clarity, it suffices to demonstrate a few
challenges with such a binary, vector-based representation. One of the challenges is that
of non-binary attributes: while some features can be described with yes/no values, others
might be better described with continuous values (e.g., a cat breed that doesn’t have
much fur might be better described with a value such as 0.4 or 0.1). Furthermore, what
features and how many of them should be used? What continuous feature value best
describes a word? Finally, the annotation of such features can be an arduous manual task
which can easily render the annotation of large corpora of text infeasible.

Distributional semantic models (DSMs) are a class of semantic models that addresses
those concerns. Instead of manually annotating dimensions of vectors, such vectors are
learned or computed from large linguistic corpora based on word occurrences in the
text. Such vector-based word representations capture statistical regularities observed
in natural, written language. At the heart of such methods is the decomposition of a
high-dimensional matrixA ∈ Rn×m into smaller matrices, that can be used to reconstruct
the original matrix with a varying degree of approximation. The matrixA is called co-
occurrence matrix, and it is created by counting word occurrences in a set ofm documents
(also referred to as texts, or contents). Thus, each row inA denotes one of the nwords,
and each column one of them documents, with a singleAij entry counting how many
times the word in i-th row occurs in the j-th document. A common matrix factorization
method used for dimensionality reduction is the singular value decomposition (SVD).
SVD decomposes the matrixA as

A = U ΣV >, (2.2)

where the columns ofU ∈ Rn×n are orthonormal eigenvectors ofAA> and thusU>U = I ,
and the columns of V > ∈ Rm×m are orthonormal eigenvectors ofA>Awith V >V = I .
Σ ∈ Rn×m is a diagonal matrix with non-zero square roots of eigenvalues of U or V ,
ordered by the magnitude. In this decomposition, the rows of U represent words, and
the columns of U are linearly independent components (vector dimensions or features,
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as discussed above). In practice, a reduced form of the U matrix is used, where only the
first k columns, corresponding to the dimensions with the k highest singular values are
kept. The choice of k is equivalent to the number of features discussed in the example
above, and it is selected empirically with respect to the performance on the task where
such representations are used.3 The similarity between two words can be computed by
taking a dot product or cosine similarity measure between their vector representations in
Ũ ∈ Rn×k.

DSMs using this approach have been known as count-based models, with Latent
Semantic Analysis (LSA; Deerwester et al. 1990) being among the first ones to use SVD to
model word meanings in different natural language tasks. While LSA is widely used in
NLP and information retrieval, it was introduced to model aspects of human knowledge
induction. DSMs continue to be used to model aspects of semantic memory (Steyvers et al.
2004a), and their relationship to semantic networks has been extensively studied (Steyvers
and Tenenbaum 2005; Utsumi 2015).

In NLP, one of the most widely used count-based models is GloVe (Pennington et al.
2014), where vectors are computed by minimizing the loss based on the logarithm of the
reconstructed word-word co-occurrence matrix. The loss function is

L(θ) =
V∑

i=1,j=1

f(Xij)(wi
>w̃j + bi + b̃j − logXij)

2, (2.3)

where Xij is the count of how many times the word i appears in the context of the word
j in the corpus, wi and w̃j are learned word vectors, bi and b̃j are bias parameters and f
is a weighting function that weights co-occurrences.

Another popular and related class of semantic models are predictive models that use
localized word co-occurrences to learn word vectors. Word2vec (Mikolov et al. 2013a;
Mikolov et al. 2013b) is a popular predictive model that computes vectors from a large
corpus of text by maximizing the probability of the target word, which can either be a
single word or a set of context words. It consists of two different neural network models:
Continuous Bag-of-Words (CBOW) and Skip-gram (SG), both of which are shown in
Figure 2.2. To learn vector representations, the CBOW model learns to maximize the
probability of a missing word occurring in a given context. For example, to train CBOW
on the sentence “The cat chases the dog”, we iterate over each word in the sentence and
use that word as the target (output), while the remaining words would be used as the
context (input). For this specific sentence, a few such input/output pairs would be “cat

3In practice, values between 300 and 1,024 are used.
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Figure 2.2: Word2vec models for learning of vector representations of words from
text (Mikolov et al. 2013b). Left: Continuous Bag-of-Words semantic model. Right:
Skip-gram semantic model. Figures adapted from Rong (2014).

chases the dog“/“The“, “The chases the dog“/“cat“ etc. Each context word, as well as
the target, is a one-hot vector encoding. The essence of this algorithm is the weight matrix
W ∈ Rn×d connecting the input layer to the linear hidden layer with d units. Since each
input is one-hot encoded (with a single 1 and n− 1 zeros), only those rows of that matrix
will be updated during training that correspond to the words in the input. For a single
word, there will be one row that is selected with one-hot encoding and those dweights
are the elements of the word embedding that are extracted after the training over the
whole corpus is completed. In practice, due to the large vocabulary and corpus sizes,
different techniques, such as noise-contrastive estimation (Gutmann and Hyvärinen 2010;
Mnih and Teh 2012) and negative sampling (Mikolov et al. 2013a), are used to reduce the
number of necessary computations.

The SG model is in some sense complementary to CBOW, as the target word is pre-
sented as the input and the context is predicted at the output of the network. The loss
that is being minimized in the SG model is

L(θ) = − log σ(w̃>j wi)−
k∑
l=1

Ec∼P (w̃)

[
log σ(−w̃>c wi)

]
. (2.4)
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The first term ensures that the target vector wi is similar to the context word w̃j by
maximizing the dot product between them, while the sum in the second term is negative
sampling, a technique that samples k context words from the distribution P (w̃) and
minimizes the negative inner product between those context words and the target (i.e.,
makes their vectors more dissimilar). Due to the way the models are set up (e.g., linear
activation function in the hidden layer), linear regularities are preserved in the training
and give rise to interesting semantic properties when algebraic operations are applied to
such vectors (Mikolov et al. 2013a). For example, to solve for X in the analogy problem
“Paris is to France as Berlin is to X?” one can add together learned vectors for Paris, France
and subtract the vector for Berlin, and the resulting vector will be very similar to the
vector for Germany. The ability to preserve those semantic relationships extracted from
co-occurrence data has been one of the main reasons behind the success of such models
in different NLP applications, and language research more generally.

2.3.4 Language Modelling Methods in NLP

One issue with embedding models such as GloVe or word2vec is that they derive only
one embedding for a single word. As such, they cannot easily account for homonyms,4
different word senses, or the fact that some words have different syntactic functions. Such
nuances, essential to language understanding, have been captured by many different
and more complex neural language models developed over the last decade that derive
context-dependent embeddings. Such embeddings are typically pre-trained in an unsu-
pervised fashion on the language modelling task (e.g., next word prediction) and then
fine tuned in downstream tasks such as named entity recognition, question answering,
text summarization, machine translation and others. The models in this category can
be divided into two classes depending on their architecture: recurrent neural networks
(RNN) and a special class of large feedforward networks known as transformers.

Chronologically, and in the context of language modelling, RNNs first demonstrated
impressive performance on sequence to sequence modelling tasks, such as machine
translation, where the sentence in a source language is encoded into a single vector
representation, and then decoded in the target language (Sutskever et al. 2014; Bahdanau
et al. 2014). Some challenges associated with such models such as vanishing or exploding
gradients (Bengio et al. 1994) were successfully addressed by different interventions

4Homonyms are either homographs, words with the same spelling but different meanings such as the
word row, or homophones, words with the different spelling and same pronunciation such as the words
here and hear.
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during training, such as gradient clipping (Pascanu et al. 2013) and by using of more
complex neural network units such as LSTMs (Hochreiter and Schmidhuber 1997) or
GRUs (Chung et al. 2014). However, one of the challenges with such models was their
inherent sequential nature that made their training difficult to parallelize. Consequently
they could not effectively leverage optimized hardware, such as GPUs, that optimize
abundant matrix computations in training of neural networks.

By adopting some of the important concepts pioneered by RNNs such as encoder-
decoder configuration, attention mechanisms, layered and bi-directional structure, and
casting them in large, feedforward networks, transformer-basedmodels addressed thema-
jor issuewith parallelization. The first transformer-basedmodelwas presented inVaswani
et al. (2017), where the authors show that such an architecture outperforms existing mod-
els on a machine translation benchmark. Years since then have seen a proliferation of
such transformer-based models, including ELMo (Peters et al. 2018), BERT (Devlin et al.
2018), BART (Lewis et al. 2019), T5 (Raffel et al. 2019), GPT-2 (Radford et al. 2019) and
GPT-3 (Brown et al. 2020).

At the time of writing, such models continue to set state-of-the-art results on many
NLP tasks, and even outperform humans on some of them.5 This immense success of
transformers in NLP has been deemed as the “ImageNet moment of NLP” (Ruder 2018)
referring to the success of convolutional neural networks in computer vision (Krizhevsky
et al. 2012). However, this success comes at financial and environmental costs due to
immense requirements on computational resources. Such models often require large
datasets, and, more importantly, hardware powerhouses that for the training of a single
transformer model on GPUs emit as much CO2 as 17 American citizens during their
entire lifetimes (Strubell et al. 2019). Another issue with this line of research is the lack of
accessibility to the required hardware, which is not always available commercially to all
researchers, or is prohibitively expensive.

2.3.5 Implications for Language Research in NLP and AI

Given the strong performance record of neural language models in NLP, it is perhaps
appropriate to wonder about the relationship between such models and human language
abilities. After all, language is a distinguishing feature of our species and the fact that
these models outperform humans on some tasks is remarkable. While the past few

5The leaderboard at https://rajpurkar.github.io/SQuAD-explorer/ shows ranked performance for
over 50 NLP models on the reading comprehension dataset SQuAD (Rajpurkar et al. 2018), where the best
performing NLP model as of April 27, 2020 on average outperforms humans by 4 percentage points.
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years have seen benchmark tasks grow both in numbers and diversity, demonstrating
that these models are capable of sophisticated language processing, they still lack the
ability to exhibit a gamut of linguistic skills seen in humans. For example, although such
models excel at specific problems, they still cannot engage in spontaneous, meaningful
discourse, something that a mature infant can do when interacting with other people
and the environment.

Nonetheless, the current state of research in NLP prompts many interesting questions
relevant for linguists, cognitive scientists, as well as researchers in natural and artificial
intelligence more generally. How do computations carried out by such models compare
to word manipulations in natural language? How do those neural networks compare to
neural networks in the brain that underlie human capacity for language?

Since NLP models are not intended to comprehensively model language processing
in the brain or behaviour, their connection to various aspects of linguistic processing
is not immediately apparent. Often, given the size of such models, it can be a major
challenge to interpret their workings, understand why they perform as well as they
do, and characterize them in the context of the relationship to the structure of human
language. Recent efforts in interpretability have examined syntactic abilities of such
models by devising novel methods to study the resulting word embeddings, and their
relationship to linguistic structure.6 By designing computational probes to uncover such
relationships, they show that contextualized word embeddings are indeed capable of
capturing morphological (Belinkov et al. 2017), and syntactic tree structure of English
language (Hewitt and Manning 2019). In some way, this is to be expected, knowing that
these large models are trained on data that is inherently structured, and that a model that
generalizes well should exploit that structure. Nonetheless, these findings are important
as they help in settling the debate on whether connectionist models can represent and
learn symbolic structure (Fodor and Pylyshyn 1988; Jackendoff 2002) by demonstrating
that deep neural models are able to capture the essence of symbolic representations, even
if it is not always obvious how they do so.

While uncovering such structure is an important step for understanding the principles
captured by these models, the relationship between those principles and the model
architecture remains elusive for the majority of models used in NLP. It is only in the
post-hoc analysis of trained models and by probing their behaviours, as if those were
some naturally occurring phenomena, that we begin to understand what these models
learn and why. This approach contrasts with that of neural network modelling for the

6See Linzen and Baroni (2020) for an overview of studies that investigate syntactic abilities of deep
learning models and the relationship to aspects of linguistic theories.
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purpose of explaining neural or cognitive functions, where models are motivated by
cognitive or neural theories. Such models are fit, or designed, in such a way so as to
approximate much smaller amounts of experimentally controlled human data, while
being congruent with theories postulating the processes that generated such data. Often,
such models are said to be cognitively or neurally plausible, as they aim to be consistent
with relevant theories while explaining the observed behavioural data. Consistency with
cognitive theories, or adhering to biological details of neural networks is rarely a goal
for most widely used language models in NLP. However, some NLP models display a
greater degree of consistency with cognitive theories than others (Günther et al. 2019),
even though this is typically found in the analysis of their performance after they have
been built and trained.

Rather than relying on vast amounts of training data and large architectures in order
to set state-of-the-art results on a specific set of tasks, biologically or cognitively realistic
models are computational theories of how we currently think the brain or cognition
works. Such modelling efforts often consist of aggregating human data from different
experimental conditions that are relevant for the study of a specific neural or cognitive
function, or behaviour. Such data can be performative (e.g., task accuracy), behavioural
(e.g., response times) or physiological (e.g., EEG or fMRI signal), or it may involve any
other experimentally relevant measure recorded while human subjects were performing
the task.

Then, the model (e.g., a neural network) is designed to address the process that
generated such data, while elaborating the relationship between the neural network
architecture and its outputs. For example, a network might be used to model human per-
formance on a free association task, a task used to study the organization and properties
of human semantic networks. In the task, participants are asked to list as many words as
possible that are related to a given cue word, under some task constraints. A network
performing this task might, for example, contain a component that controls the speed
of production of words, and altering parameters of that component would account for
individual differences among human subjects, such as those that produce more words
and those that produce fewer words within the given time limit.

There are several benefits of such models that are motivated by cognitive or neural
theories. First, they can be used to make predictions for which human data may not be
available, but the manipulation or the adjustment of the model components can simulate
such conditions. Second, such models can be constrained to make them hypotheses of
computational mechanisms underlying some function or behaviour. Such constrained
models implement hypothesized local neural or cognitive mechanisms in an attempt to
explain processes that produce experimentally observable responses from the controlled
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input stimuli. As well, their predictions can be tested in biological systems and used
to guide decision making on potential treatments or interventions in case of neural
dysfunction. This is not possible with models commonly used in NLP as they are not
designed to be neuroanatomically or neurophysiologically accurate. Model constraints
can vary in quality and quantity, and finding the appropriate level, as well as the kind of
constraints to impose on themodels is an important modelling decision. For example, one
type of constraint might refer to the plausibility of the model in terms of how accurately
its components map to their neural or cognitive counterparts in the brain or behaviour.
Another type of constraint might refer to computational resources, such as the number
of neurons used to simulate the function of a certain brain region. The following section
introduces such modelling efforts in a greater detail, focusing on methods in AI that are
used to simulate aspects of intelligent behaviour, and are used in this research to build
neural and behavioural models of language comprehension and use.

2.3.6 Neurally Plausible Modelling Methods

Researchers building neural and cognitive models in order to study and characterize as-
pects of intelligent behaviour typically adopt one of a few different modelling approaches,
such as the symbolic, connectionist, probabilistic, or dynamicist approach, or a combina-
tion thereof. Some have argued about the difficulty, or even impossibility of combining
such different approaches (Fodor and Pylyshyn 1988; Jackendoff 2002). Eliasmith (2013)
shows that these are not mutually exclusive. In order to explain a sophisticated ability
realized in the brain and manifested in the behaviour, such as language, we consider the
possibility that it might be even necessary to combine them.

The symbolic approach is of a particular historical relevance due to its roots in
early AI research in 1950s, and as such is often described as “good old fashioned AI”.
For proponents of this approach, computation is viewed as a formal manipulation of
atomic symbols, thus emphasizing the role of first-order logic as a method for modelling
cognition and understanding of human cognition (Newell and Simon 1975). Nowa-
days, ACT-R (Anderson et al. 1997) is one of the most prominent examples of a cognitive
architecture relying on such symbolic and sub-symbolic processing principles, and it
is used to model human response patterns in a variety of cognitive and behavioural
tasks. Logic formalism is particularly appealing in modelling of language due to the
inherent symbolic nature of language, and it lies at the heart of formal languages widely
studied in computer science, mathematics and linguistics. It is then perhaps unsur-
prising that Chomsky, who pioneered numerous contributions in the theory of formal
languages (Chomsky 1957) frames natural languages as formal languages through his
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proposal of Universal Grammar as discussed in Section 2.1. One important question
arising from symbolic approaches is that of symbol grounding, which asks how symbols
become connected to their perceptual experiences and actions. More informally—where
do symbols come from? This question remains a topic of ongoing research, and the
attempts to address it emphasize the relevance of interaction and the environment in
process of grounding symbols to perceptual experiences.

The connectionist approach also emerged in 1950s, although it becamewidely adopted
only a few decades later for reasons outlined below. It emerged as means to deal with
the continuity of inputs by learning from statistical regularities in the data. Instead of
specifying rules by hand, as is often done with the symbolic systems, such networks are
able to learn rules from the data, which led to their description as pattern recognition algo-
rithms. The perceptron model was one of the first proposals of such a rudimentary neural
network inspired by functional aspects of biological neurons (Rosenblatt 1958). Initially,
such neural networks gained only limited attention due to their inability to be scaled up to
functional multi-layer architectures. Further extensions and modifications that addressed
this issue, such as the multi-layer perceptron (nowadays referred to as feedforward neural
networks) and a spectrum of learning algorithms, such as backpropagation (Rumelhart
et al. 1986), contributed to the popularity of neural networks in modelling of cognition
and human learning. Their computational power as universal function approximatorsmade
them particularly popular in the early era of language modelling that opposed the view
of language as an innate faculty (Elman et al. 1997).

In Section 2.3.4 we have discussed a few different types of neural networks used in
natural language processing. Such networks typically rely on neuron units that are not
much different from the neural unit of the perceptron. In contrast, biologically realistic
neural networks aim to capture a broader spectrum of functional neural behaviours, such
as spiking activity resulting from voltage changes in neural membrane potentials. The
next section on neurally plausible modelling introduces methods that marry ideas of
classic connectionist neural networks with the symbolic approach, while respecting many
constraints imposed by biological systems. Those methods are used in this thesis to build
biologically realistic models of language processes in the brain.

For the purpose of this thesis, we will distinguish between the neural level and the
cognitive level of a model description. Typically those levels will refer to the same system,
yet they allow us to describe the system using a different degree of functional granularity.
This is a pragmatic division that helps us focus on different aspects of the system, and
is not meant to be conflated with the levels of analysis proposed by Marr (1982). At the
neural level, we study neurobiological computations andmechanisms that are constrained
by parameters and functions known to be performed by biological neurons. At this level,
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the modelling efforts are focused on populations of connected neurons, also referred to
as neural ensembles. For example, an ensemble of neurons might represent a concept such
as word that is encoded by the activity of a group of neurons. The constraints imposed
on such models, such as neural firing rates or voltage potentials at the membrane, aim to
be consistent with the neuroscientific evidence. At the cognitive level, we focus on larger
networks of such ensembles where networks perform some cognitively realistic function,
such as a task-constrained semantic search in themental lexicon. The orchestrated activity
of such networks is to some extent constrained by processes and mechanisms described
in psycholinguistics and cognitive psychology. We denote that our use of the expression
cognitive levelmight be rather unconventional, as cognitive models, as used in cognitive
sciences, are typically agnostic to the details of a neural implementation. Our focus is on
cognitive functions that are realizable in biologically plausible neural networks as we
aim to explain aspects of language function across the brain and behaviour, and thus
require cognitive models to satisfy constraints imposed by neural computations.

The Neural Engineering Framework

The Neural Engineering Framework (NEF; Eliasmith and Anderson 2003) is a computa-
tional theory and a set of methods for the construction of biologically constrained neural
networks. It specifies how a wide variety of computations underlying cognitive processes
and behaviour can be realized by simulating the activity of biological neurons. The NEF
is used to model a diverse set of neural systems such as those controlling eye position,
directed arm movements, and lamprey locomotion (Eliasmith and Anderson 2003), and
in conjunction with Semantic Pointer Architecture (SPA; Eliasmith 2013) is used to model
aspects of higher cognitive functions. In this section we introduce core ideas behind
NEF methods that are important for understanding the models of semantic processes
presented in Chapter 4 and Chapter 5.

We first describe how a group of neurons encodes a vector-valued stimulus x in
the NEF. While such vectors can represent different input stimuli (or internal mental
representations thereof) such as an image or a sound, in the context of most models
presented in this work such vectors will be used to represent words. Biological neurons
show preference for certain stimuli, that is, they respond more strongly to some inputs
than to others. For example, neurons in the striate cortex show selective responses to
vertical bars of different orientations (Hubel and Wiesel 1968) and neurons known as
place cells in the hippocampus selectively exhibit specific firing patterns when an animal
is present in a particular location in an environment (Moser et al. 2008). This stimulus
preference can be expressed by assigning a preferred direction vector ei to each neuron i.

29



The inner product e>i x expresses how strongly a neuron will respond to a given stimulus;
it increases as the stimulus vector aligns with the preferred direction. This value can
be thought of as being proportional to the amount of current flowing into a neuron,
expressed as

ai(t) = ai
(
x(t)

)
= Gi

[
αie

>
i x(t) + Jbias

i

]
, (2.5)

which gives the neuron activity ai(t) at time t for a time-dependent stimulus x(t). Here
we convert the inner product into an input current to a neuron by means of a gain factor
αi and a bias current Jbias

i , used to capture observed neural responses also known as
neural tuning curves. The spiking activity ai of a neuron is given by applying a neuron
non-linearity Gi to the input current.

While a wide variety of neuron non-linearities can be used with the NEF, here we use
the leaky integrate-and-fire (LIF) neuron model, which captures important properties
related to neuronal excitability observed in biological neurons (Koch 2004, Chapter 14).
The incoming currents are accumulated as membrane voltage until a firing threshold is
reached. At that point, the neuron emits a spike and the membrane voltage is reset to
its resting value for a refractory period during which the neuron is unable to produce
spikes. Without incoming currents, the membrane voltage will slowly decay to a resting
potential due to leak currents. The left panel of Figure 2.3 shows an example of how
individual neurons in a set of seven LIF neurons respond to inputs in the range x ∈ [0, 1].
In this specific example, all neurons were assigned preferred directions of 1, as indicated
by the increasing firing rate with increase of x. This captures the effect where stronger
environmental stimuli (larger values of x) elicit stronger neural responses.

Given the firing activity in a group of neurons, how do we reconstruct the represented
value x? With LIF neurons, ai(t) is a spike train, i.e., ai(t) is 0 at all times t that no
spike occurred and peaks at the spike times. In biological neurons, each spike causes a
post-synaptic current, which in the NEF is typically modeled as an exponential filter7 of
the form

h(t) =
1

τ
exp(−t/τ). (2.6)

This function can be combined with a linear decoding to provide a weighted linear filter
that estimates the original vector x. That is:

x̂(t) =
∑
i

ai(t) ∗
[
dih(t)

]
, (2.7)

7Other types of linear filters are also possible, see Voelker and Eliasmith (2018) for more details.
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A: Neuron tuning curves
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B: Decoding from population response
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Figure 2.3: Left: Randomly generated tuning curves for seven neurons. Right: Linear
combination of these to decode the represented value x (top right) or decode a function,
here x2 (bottom right). The dashed gray line is the ideal output and the black solid line
the decoded value from all seven neurons. Reproduced from Kajić et al. (2017b, Figure 1).
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where ∗ indicates convolution and the weights di are obtained by a global least-squares
optimization of the error

E =
∑
k

‖xk − x̂k‖2 (2.8)

of the reconstructed stimulus across k sample points and all neurons in the group. The
decoding process for the simple identity function f(x) = x is shown in the top right
panel of Figure 2.3. The decoding weights scale the tuning curves (left panel) and the
represented value is estimated with a sum over the scaled tuning curves.

However, in most cases, we want to decode transformations of the input x, rather than
the input itself, and transmit this information between groups of neurons. For example,
in the bottom right panel of Figure 2.3 seven tuning curves are shown that are weighted
by decoders found for the function f(x) = x2, x > 0. In more general case, decoders
are found for any function f(x) by minimizing the error function using least-squares
optimization

Ef =
∑
k

∥∥∥fk(x)− f̂k(x)
∥∥∥2 . (2.9)

The synaptic connection weights that perform this transformation f(x) can be com-
puted from the decoding weights di of the pre-synaptic neurons that reconstruct an
estimate of the represented value f̂k(x). In addition, the input current to a post-synaptic
neuron j depends on its preferred direction ej and gain αj . Because the quantities di, ej ,
and αj do not change over time8, they can be multiplied together to provide standard
neural network connection weights as follows

Wji = αje
>
j di (2.10)

whereWji comprise the synaptic weight matrix W . This is the optimal synaptic connec-
tion weight matrix for transmitting information from one neural group to another (Elia-
smith and Anderson 2003).

To summarize, the NEF allows us to state how a time-varying, vector-valued stimulus
is encoded in spiking neural populations, how the value represented in a neural popula-
tion can be decoded, and how to connect neural populations to compute functions using
those represented values. All connection weights are determined in an offline optimiza-
tion without the need for an online learning process, although online algorithms can also

8This assumes no synaptic weight changes, e.g. through learning, are happening. These could also be
handled in a biologically realistic manner by the NEF (Bekolay et al. 2013), but are out of the scope of this
work.
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be used. The tendency to rely on offline optimization is one feature that distinguishes
NEF from online optimization methods commonly used in machine learning.

The Semantic Pointer Architecture

The Semantic Pointer Architecture (SPA; Eliasmith 2013) builds on top of the NEF to pro-
vide methods for realizing higher-level cognitive functions, such as memory, semantics,
syntax, decision making and learning. While the NEF provides computational building
blocks that are combined together to achieve desired computations in biological neurons,
the SPA combines such blocks into larger networks, or modules, that perform more
complex functions. The function, organization and structure of such SPA modules is to a
large extent motivated by evidence from neuroscience, psychology, or both, as means to
preserve neural and psychological plausibility.

The SPA is used to model aspects of higher cognition such as serial working mem-
ory (Choo 2010), action selection (Stewart et al. 2012), lexical knowledge (Crawford et al.
2015), affective processing (Kajić et al. 2019), spatial representation (Komer et al. 2019;
Dumont and Eliasmith 2020) and is the basis for the construction of Spaun, the first
detailed brain model capable of human-like performance on a variety of cognitive and
sensorimotor tasks (Eliasmith et al. 2012).

At the heart of SPAmethods is themanipulation of vectors in high-dimensional spaces,
which, in the context of the SPA are referred to as semantic pointers. Vectors used as
semantic pointers are, on some occasions, Holographic Reduced Representations (HRRs;
Plate 1995), meaning that they satisfy certain mathematical constraints. For example,
one of the constraints is that the elements of such vectors are drawn from a normal
distribution with a zero mean and variance 1/n, where n is the dimensionality of the
vector. Such constraints, together with corresponding mathematical operations such
as the circular convolution, its inverse, and the addition operation, allow aggregating
multiple semantic pointers into a new semantic pointer with the same dimensionality
as its constituents. Circular convolution is used as a binding method operating on two
vectors of the same dimensionality to generate a third vector.9 It is commonly used to
bind roles to fillers in order to create structured representations. For example, in order to
represent the sentence “We love oranges” with semantic pointers, we can define three
role vectors named: subject, verb, object, as well as three filler vectors we, love, oranges. The
sentence is then represented as a single semantic pointer by combining the vectors in

9Other semantic pointer bindingmethods also exist, for example Vector-Derived Transformation Binding
as proposed in Gosmann and Eliasmith (2019).
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the following way: subject ~ we+ verb ~ love+ object ~ oranges, where ~ denotes the
circular convolution. By means of operations defined on HRRs it is possible to retrieve
individual vectors from the sentence represented in this way, akin to answering the
question “Who loves oranges?” or “What do we love?”.

Semantic pointers are therefore compressed representations, achieved by combining
initial vectors in a structured way depending on the task. By combining vectors using
convolutions and additions to create new vectors, the resulting vectors will be more
similar to each other if they share similar constituents, which can be also seen as features.
Thus, the meaning of the resulting vector can be interpreted as being derived from the
meaning of its parts (hence the adjective semantic). Since the resulting vector can be used
to uncover its constituents, it is analogous to the concept of a “pointer” in computer
science, a memory address that refers to some (typically much larger) content, instead of
being the content itself. In contrast to HRRs, all relevant operations are implemented in
neurons using the NEF methods.

Asmentioned previously, the SPA has been used tomodel various aspects of biological
cognition, and for the models in this thesis, two SPA modules are of particular relevance:
associativememory and the basal ganglia. Associativememory is a long-term, declarative
memory system supporting associative learning, or learning of relationships between
unrelated items or events. While it is not localized to a specific structure in the brain,
the MTL area discussed in Section 2.2.2 is implicated in associative learning. More
details on different associative learning mechanisms are provided in the next section on
reinforcement learning, while here we briefly introduce the associative memory module
in the SPA. Associative memory in the SPA is used to encode and recall semantic pointers.
It can be used in different ways, for example to recall the “clean” version of a noisy
semantic pointer (Stewart et al. 2009). But, it can also be used to recall a different semantic
pointer that is associated with the input semantic pointer. Such input-output mappings
can be learned in a biologically plausible manner (Voelker et al. 2014), or can be directly
computed from the data by estimating encoders if all of the inputs and outputs are
known, as discussed in the NEF section. In the SPA, the associative memory module
can be used in conjunction with a winner-take-all (WTA) mechanism, so that if there
are multiple vectors associated with the input, only one with the strongest association
will appear at the output. Associative memories are one of the major building blocks in
different models of cognitive functions in the SPA since they provide a reconstructive
mechanism to deal with the noisy representation resulting from spiking neurons and the
lossy circular convolution operator.

The other SPA module relevant for this work is the module simulating aspects of
the function of the basal ganglia. The basal ganglia are subcortical structures in the
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brain with a function implicated in different cognitive processes and behaviours, such as
the action selection process, decision making, goal-oriented behaviour, motor learning,
and speech production, to name a few. The basal ganglia take inputs from a variety of
brain regions, most notably from the cortex that represents different brain states. Such
representations are then used to direct the behaviour via other cortical and subcortical
structures. The SPA basal ganglia module (Stewart et al. 2012) implements computational
mechanisms proposed by Gurney et al. (2001b) and Gurney et al. (2001a) in a spiking
dynamical system. As such, it respects the anatomical and functional division of different
nuclei in the basal ganglia, while operating on semantic pointers as time-varying state
representations. In contrast to the associative memory, it provides a more powerful and
stable WTA mechanism used in action selection.

2.3.7 Reinforcement Learning

Reinforcement learning (RL) is a framework for behavioural learning within AI in which
artificial agents learn to achieve goals by interacting with the environment. Typically, such
agents learn various aspects of human or animal behaviours, such as game playing (Silver
et al. 2017; Mnih et al. 2015) or motor control (Kohl and Stone 2004; Levine et al. 2016;
Lillicrap et al. 2015). Remarkable methodological advances in the field over the past
decade demonstrated that agents trained in a such way can outperform humans in highly
complex games, as well as develop tactical playing by “inventing” novel moves and
strategies (Silver et al. 2017).

While such agents are typically not endowed with language capabilities, primarily
due to the nature of commonly used non-linguistic tasks, the past few years have seen
a greater integration of language in RL frameworks. Such integration is particularly
prominent in multi-agent setups where agent cooperation is required to achieve a mutual
goal (Mordatch and Abbeel 2018; Lazaridou et al. 2018; Kottur et al. 2017). There are
a few different directions of interest for studying language in RL. For example, RL can
be used to study parsing of linguistic information, which can be essential to the task
performance such as in instruction following (Hermann et al. 2017; Bahdanau et al.
2018), or RL can be used to introduce structure in agent behaviours by means of task
descriptions (Andreas et al. 2017; Narasimhan et al. 2018). The domain of emergent
communication in RL investigates the emergence of artificial languages in RL settings,
where agents need to communicate in order to achieve a task. In such setups, agents
are often segregated into listeners and speakers and need to coordinate their linguistic
and non-linguistic actions in an environment for the purpose of achieving a common
goal (Lazaridou et al. 2018; Li and Bowling 2019). Such setups offer an experimental
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testbed for realizing various language games akin to those discussed byWittgenstein (1953)
in order to study characteristics of emergent languages, their relationship to natural
language, and the influence of communication on agent behaviours.

Such emergent views of language are a form of active language learning, since agents
interact with the environment and influence the learning process by controlling be-
haviours that are beneficial to learning. This grounded interaction stands in contrast to
static, text-based methods presented in Section 2.3.3, where language representations
are learned by processing written language from large text corpora. In Chapter 6 we
show that a simple grounded interaction scenario can be used to learn communicative
signals that exhibit important linguistic features, some of which are reminiscent of some
features of vector-based representations. We also argue that this approach to language
learning is more psychologically plausible compared to learning without any interaction,
and discuss our experiments in the context of natural language characteristics. In the
remainder of this section we introduce some fundamental concepts and methods in RL
relevant for that research.

Reinforcement Learning Fundamentals

Informally, RL is concerned with methods for finding optimal behaviours in a setup
consisting of an agent and the environment the agent is situated in. An agent is a decision-
making algorithm that bases its choices or actions on the state of the environment, with the
goal of finding actions that lead to maximizing rewards in a given task. The environment
consists of a set of states and it specifies transitions between the states. After an agent
performs an action in the environment, it enters a new state and observes a reward, usually
represented with a scalar value. Each action-selection event is referred to as a step and a
sequence of steps is known as an episode or a trial. An episode can terminate after a fixed
number of steps, or it can be controlled in some other way by the environment.

An agent’s decision-making is guided by a policy determining which actions to take
in any given state. A policy often incorporates some form of trial-and-error behaviour,
balancing the decision making between exploitation, where actions are taken with respect
to their known utility, and exploration, where occasionally a non-optimal action is selected.
In contrast to some other learning methods commonly used in machine learning, such as
supervised learning, in a RL framework the environment does not tell the learner what
to do. In other words, the environment does not provide the agent with the “target”,
instead, it is the task of a learner to discover what actions maximize the cumulative
reward, referred to as the return.
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Formally, much of RL is concerned with methods for solving problems expressed as
a finite Markov decision processes (MDP) by finding the optimal policy π. An MDP is
defined as 4-tuple (S,A, P,R), where S is the set of states in the environment, A is the
set of actions, P is the probability transition function P : S × A × S → [0, 1] defining
the environment dynamics, and R is the reward function R : S × A× S → R, mapping
choices on to rewards. A policy π is then a function π : S × A→ [0, 1] that specifies the
probability of selecting an action in a state.10 An action selected at time step t is denoted
as at, while the state an agent is in at time t is st, ∀t ∈ {1, ..., T}where T is the length of
an episode.

A value function V (s) or an action-value function Q(s, a), s ∈ S, a ∈ A is often used to
determine an optimal policy. Such functions express the utility of each state or state-action
pair, which is then used when estimating how useful an action is for achieving the goal.
The value function for a state s when following the policy π for deciding on subsequent
actions is defined as

Vπ(s) :=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γVπ(s′)

]
. (2.11)

In Equation 2.11, π(a|s) is the probability of selecting action a in a state s, and the probabil-
ity of each such action is multiplied with the probability of ending in the next state s′ and
receiving the reward r, weighted by the sum of the reward r and expected future reward
γ Vπ(s′). This equation is known as the Bellman equation in dynamic programming, that
expresses value of the current state in terms of values of possible future states. Here,
it averages over probabilities of all possible actions a ∈ A, state transitions s′ ∈ S and
rewards r ∈ R. The discount factor γ is a parameter in the range [0, 1] used to model the
relevance of rewards at different points in time; values closer to 0 bias the agent to collect
more immediate rewards, while those closer to 1 consider more distant rewards.

An optimal policy π∗ is better than or equal to all other policies π, if and only if
Vπ∗(s) ≥ Vπ(s),∀s ∈ S (Sutton and Barto 2018). An optimal policy π∗ will always select
an action that maximizes the expected return for that state, and such a policy will assign
a non-zero probability to all such actions. Value functions computed with an optimal
policy are denoted as V ∗(st) and they can be found by solving the recursive formulation
of the set of equations, one for each state. Similarly, the action-value function,

Q(s, a) :=
∑
s′,r

p(s′, r|s, a)
[
r′ + γ

∑
a′

π(a′|s′)Q(s′, a′)
]
, (2.12)

10A policy can also be deterministic, in which case it maps to specific actions instead of probabilities.
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can also be used to find an optimal policy by finding actions that maximize action-values.
An approach to RL where the agent directly learns the model of the environment

defined by the probability transition function P and the reward function R is known as
model-based RL. In many cases, such knowledge might not be available, or it might be
prohibitively expensive to compute. Another cost arises from the need to sweep through
the set of states at each time point to update V (s) or Q(s, a), which means that finding
the optimal policy is polynomial in the number of states and actions (Sutton and Barto
2018). For these reasons, many problems are more easily solved with model-free methods,
such as the TD learning discussed later.

Psychological and Neural Basis of Reinforcement Learning

Selective reinforcement of the relationship between an action and the response elicited
by such an action as a method of behavioural learning has its roots in psychological
studies investigating animal learning, where it is known as classical or operant condition-
ing. Research in classical conditioning has been pioneered by Ivan Pavlov, who studied
behavioural conditioning patterns in dogs (Pavlov 1927).

While dogs spontaneously produce saliva when presented with food, Pavlov’s exper-
iments have shown that they can learn to salivate in response to other stimuli, which,
under normal conditions would not influence saliva production (e.g., the sound of a
metronome). Food is regarded as the unconditioned stimulus (US), as the animal will
reflexively respond to such stimulus. After multiple trials of co-presenting the US with
the sound, regarded as the conditioned stimulus (CS), an animal starts to exhibit the
response when presented with the CS only, in the absence of the US. Thus, in classical
conditioning, innate reflexes are associated with novel stimuli to elicit a response.

One of themost prominentmodels in this domain is theRescorla-Wagner rule (Rescorla
andWagner 1972), formalizing the associative relationship between different components
of a compound CS with the response. For example, a compound CS might consist of
two stimuli, such as a sound and a light. For a single stimulus x ∈ X , where X is a set
of stimuli forming the compound CS, the association strength of that stimulus in trial t
is defined as ptx. For simplicity, and without loss of generality, we can treat the associa-
tion strength as a probability of conditioned response given the conditioned stimulus x.
According to the Rescorla-Wagner rule, the associative strength in the next trial, t+ 1, is

pt+1
x = ptx + ∆ptx (2.13)

∆ptx = αxβ(λ− ptT ), (2.14)
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where ptT is the total associative strength defined as ptT =
∑

x∈X p
t
x, λ is the maximum

association strength, αx and β are parameters. In Chapter 14 of their book, Sutton and
Barto (2018) cast the difference λ− pTx as the prediction error, after considering λ as the
magnitude of a reward signal. This prediction error, seen as difference between expected
and the experienced reward, is the main driver of behavioural learning and an important
concept in the study of learning both in natural and artificial systems.

The significance of the Rescorla-Wagner rule lies in its ability to account for various
aspects of experimentally observed behavioural learning patterns, such as blocking and
extinction. Blocking is observed when a new, additional stimulus to a CS is added, and
yet the association strength of that stimulus remains low due to other stimuli reaching the
maximum λ. Thus the new stimulus is being blocked by the existing CS due its inability
to evoke a response. The phenomenon of extinction occurs when the associative strength
of a CS is reduced sufficiently as to not prompt the response anymore, as a result of
removing the US during training.

In operant or instrumental conditioning, animal behaviour affects the learning process
as it is able perform different actions in response to stimuli. Such choice might be a
simple action such as pressing a lever, a key, or navigating to a specific location in an
environment. Each such action can be associated with a positive, negative or neutral
reinforcement signal, and the existence of negative reinforcement incentivizes the animal
to avoid performing actions that lead to it. In contrast, an animal might learn to perform
an action in order to receive positive reinforcement for a given state of the environment.
Operant conditioning in animals has been first characterized by Thorndike (1898), and
made well known by Skinner (1938), who studied behaviours of rats and pigeons, with
positive reinforcement signals being food pellets or droplets of liquid, and negative
signals being electric shocks or other forms of interventions inducing physical discomfort.
In RL, operant conditioning is modelled with multi-armed bandit models, where an agent
has to learn a policy in an environment that consists of a single state and several possible
actions in that state.

Despite their relative computational simplicity, models based on Pavlovian condi-
tioning and the Rescorla-Wagner rule play an important role in psychology, as well as
in neuroscience and artificial intelligence, among other fields.11 For example, midbrain
dopamine neurons have been shown to signal changes or errors in the predictions of
future rewarding events (Schultz et al. 1997), implicating an important role of such signals
to higher order cognitive functions (Hazy et al. 2010). In computer science, the prediction

11See Neftci and Averbeck (2019) for an extensive review of the contributions of RL methods in AI to
neuroscience and vice versa.
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error is a basis for a variety of error-driven learning algorithms including the delta rule,
omnipresent in machine learning, and temporal difference (TD) learning (Sutton and
Barto 1987), one of the most fundamental methods in reinforcement learning.

Temporal-Difference (TD) Learning

Temporal-Difference (TD) learning (Sutton and Barto 1987) is a bootstrapping technique
for online learning in reinforcement learning. While different TD learning algorithms
exist, all of them have two main things in common. First, and in contrast to Monte Carlo
methods, TD algorithms are applied at every time step to update estimated values in
value functions (or action-value functions), without having to wait for an episode to
terminate. Second, in order to update the value, the immediate reward is used as well as
the estimate of the future rewards. As noted before, the gist of the idea of TD learning is
in using the prediction error to improve the estimates of value or action-value functions.

In its most simple form, the difference used to update the value function with TD
learning is

∆V (st) = η
[ TD error︷ ︸︸ ︷
rt + γ V (st+1)︸ ︷︷ ︸

TD target

−V (st)
]
. (2.15)

The expression in brackets, rt + γ V (st+1)−V (st), is known as the TD error, consisting
of the TD target rt + γ V (st+1) and the estimate of the value function for the current state
V (st). Informally, with the insights obtained by previously experiencing the environment,
the agent has a better estimate of how valuable a state is for achieving the goal. This is
because the current estimate is adjusted by the difference between “Howmuch did I think
I would get?” (corresponding to V (st)) and “Howmuch did I really get?” (corresponding
to the TD target).

An important model-free, off-policy TD learning method is the Q-learning algo-
rithm (Watkins and Dayan 1992). It estimates action-value functions, using a formalism
similar to Equation 2.15:

∆Q(st, at) = η
[
rt + γ max

a
Q(st+1, a)−Q(st, at)

]
(2.16)

Q(st, at)← Q(st, at) + ∆Q(st, at). (2.17)

Q-learning is a model-free method as it does not to attempt to estimate state-transition
function, and it is off-policy as the choice of next action when estimating the Q-value is
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greedy, instead of the current behavioural policy the agent is using. One of the appeals
of the Q-learning algorithm is that irrespective of the policy, it provides optimal policy
convergence guarantees with minimal requirements (Sutton and Barto 2018). For an
agent, such Q-values can be stored and update using a tabular representation. However,
this becomes computationally infeasible with large number of states and actions, in which
case it is implemented with function approximation, often via a neural network.
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3 |
Semantic Networks

Choosing how to represent semantic knowledge poses an important decision in many
models of cognitive phenomena, as well as in various natural language applications.
In cognitive modelling, such representations are used to model and study conceptual
knowledge such as semantic memory and accompanying cognitive processes. In machine
learning, suchmodels are often used to convert one-hot representation ofwords into dense
vectors that can be conveniently represented with different neural network architectures
and are used in various applications such asmachine translation, machine comprehension
and question answering, among others.

However, not all such word representations reflect properties observed in human
inter-concept semantic relations. One of the most popular datasets used to model human
semantic memory and related processes is the University of South Florida Free Associa-
tion Norms (Nelson et al. 2004, USF Norms). Because it is a psychologically plausible
representation of human semantic relations, the USF Norms have been successfully used
to reproduce human-level performance on tasks such as verbal semantic search (Abbott
et al. 2015; Kajić et al. 2017a), recognition memory and recall (Steyvers et al. 2004a) and
many others.

A semantic network is implicitly captured by datasets like the USF Norms. Such a
network can be explicitly represented by allowing each node to be a word, with weighted
links representing the strength of association between words. A few examples of words
and their associations from the USF Norms are shown in Table 3.1. These associations
are gathered from human free recall experiments. The properties of semantic networks
built from the USF Norms have been described and compared to semantic networks
built from various distributional semantic models (Steyvers and Tenenbaum 2005). It
has been shown that semantic networks built from the USF Norms exhibit small-world
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Word Degree Associations (strength)
food 340 eat (0.41), drink (0.05), hunger (0.04)
money 320 cash (0.21), spend (0.10), green (0.06)
water 294 drink (0.17), cool (0.08), wet (0.07)
good 281 bad (0.76), great (0.04), evil (0.02)
school 263 work (0.13), college (0.11), bus (0.07)
house 238 home (0.58), apartment (0.06), family (0.03)
bad 215 good (0.75), boy (0.05), dog (0.02)
work 203 hard (0.14), play (0.12), job (0.10)
love 199 hate (0.46), kiss (0.06), like (0.04)
car 198 auto (0.13), drive (0.12), truck (0.11)

Table 3.1: Top ten words with the highest number of word associations in the USF Norms
database.

characteristics. That means, although a single node in such a network connects to only
a few other nodes, the path between any two nodes in the networks is rather short,
as quantified by the number of links between the two nodes. Aggregated, as well as
individual USF networks have been shown to have degree distributions that are well
approximated with a power-law (Steyvers and Tenenbaum 2005), or truncated power-law
distributions (Morais et al. 2013). In practical terms, this means that there are just a few
densely connected nodes that have links to many other words in the semantic network,
while the majority of nodes is sparsely connected.

In this chapter, we investigate the presence of such network characteristics in semantic
networks constructed from two widely used semantic models, word2vec and GloVe intro-
duced in Section 2.3.3. Here, we evaluate the plausibility of those models by comparing
them to the networks created from the human association norms.

3.1 Word Association Norms

TheUniversity of South Florida Free AssociationNorms (Nelson et al. 2004) were collected
in a series of free association experiments conducted with more than 6,000 participants
over the course of a few decades. In the experiments, participants were presented with a
cue word and asked to write down the first word they thought of as a response to the
cue. In this way, a distribution of responses for each cue word was created by norming
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the frequency of a response with the number of participants performing the task. Each
such cue-target pair is referred to as a word association pair. There are 5,018 words in the
database, amounting to 63,619 non-zero weighted word association pairs. Nouns account
for 76% of entries in the database, adjectives for 13%, verbs for 7% and the remaining
entries are other parts of speech.

The top 10 words with most associations, as well as corresponding three strongest
word associates are listed in Table 3.1. The degree of a node is the number of outgoing
and ingoing links, that is, it counts both the number of words that were given in response
to that word as a cue, as well as the number of words where that word was given as a
response to some other cue. Looking at the list of such words, it is not surprising that
words with the most connections are those that are related to many daily activities or
behaviours. Arguably, some of these words and their associations reflect the experiences
of the experiment demographics—undergraduate students—which might explain why
the word school ranks highly in fifth place. While some words have dominant association
strengths, such as that between good and bad, the association hierarchy is more flat
for others (e.g., car and the associates auto, drive, truck). The histogram showing the
distribution of degrees for all words in the database is shown in the left panel of Figure 3.1,
where we can see see that only a few words have more than 200 different associations,
while on average, each word has 25 associates.

Even though the USF Norms are relatively small compared to the size of the vocab-
ulary of an average English speaker, and are certainly not representative of the human
population at large, they continue to be a valuable resource in the study of the organi-
zation of human semantic memory, as well as in modelling various aspects of linguistic
behaviours. In particular, they are considered to capture aspects of word meanings
acquired through perception and interaction with the environment, and as such reflect
relationships between words as used in ordinary language. This is in contrast to relation-
ships occurring solely in written text, where some associations might be implicit in their
usage. For example, the second and third strongest associate of the word banana in the
norms are apple and yellow. In word2vec, the vector for word apple is only the 23rd most
similar word to banana, as measured by the cosine similarity, while yellow does not even
appear in the list of top 100 words most similar to banana. Thus, the sort of relationships
that are “common knowledge”, such as that bananas are typically yellow might be often
omitted from typical discourse used to train vector-based models studied here. Instead,
additional processing is needed to infer such relationships from those models.

This type of associative asymmetry, together with other geometrical constraints im-
posed by vector-space models, are argued to underlie the difficulty DSMs have in captur-
ing human association data (Hayashi 2016; Nematzadeh et al. 2017). The norms display a
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Figure 3.1: The distribution of degrees and asymmetry ratios in the USF Norms.

high degree of asymmetry: 73.64% of word association pairs are not reciprocal, meaning
that if a word pair (w1, w2) has a non-zero weight, the word pair (w2, w1) has a zero associ-
ation strength (i.e., is not present in the database). Some examples of such non-reciprocal
word pairs are (check, bounce), (ivy, school) and (wine, glass). Second, the asymmetry is also
reflected in the magnitude of association strengths between the word pairs. Most people
think of the word stop when prompted with the word halt, yet, the reverse is not true. As
per Nematzadeh et al. (2017), it is possible to quantify the extent of asymmetry between
two words by taking the ratio

asym(w1, w2) =
p(w1, w2)

p(w2, w1)
, (3.1)

where p(w1, w2) stands for the normed association strength between the two words. The
right panel in Figure 3.1 shows the distribution of asymmetry ratios on a log-linear scale for
all reciprocal word association pairs (26.36% of the total number ofword association pairs).
While the majority of reciprocal word pairs have a symmetric relationship (median = 1,
average = 2.57), about 30% of them have the asymmetric relationship where the strength
of association in one direction is at least twice as large in the other direction.

3.2 Cognitive Plausibility of DSMs

Alongside human word association norms, distributional semantic models (DSMs) such
as word2vec (Mikolov et al. 2013a; Mikolov et al. 2013b) and GloVe (Pennington et al.
2014) have been widely used as models of human semantic memory, even though they
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were originally developed in the context of natural language processing applications. For
example, they achieve strong performance on a variety of tasks such as word similarity
judgements (Baroni et al. 2014; De Deyne et al. 2016), synonym detection (Bullinaria
and Levy 2012), and semantic relatedness (Mandera et al. 2017). Different arguments
have been put forward to argue for plausibility of such models as models of human
semantic memory. Plausibility refers to cognitive plausibility or psychological plausibility,1
although this definition is still context dependent and might be used differently among
different researchers. Generally, it refers to the consistency of such models with theories
of semantic cognitive processes related to language learning, understanding and use.
In the following, we discuss a few common characterizations of cognitive plausibility
of such models, and propose an additional characterization of plausibility based on the
comparison of DSMs to word association norms.

Mandera et al. (2017) argue for psychological plausibility of word2vec and other
predictive models by stating that “the models are trained using a similar technique as
the Rescorla-Wagner learning rule”, where the “similar technique” referred to are the
backpropagation and stochastic gradient descent (SGD) algorithms. The Rescorla-Wagner
rule was discussed in Section 2.3.7 on reinforcement learning, and it explains important
aspects of learning behaviours in humans and animals. However, calling predictive DSMs
psychologically plausible because the Rescorla-Wagner rule is mathematically equivalent
to the delta rule at the heart of backpropagation and SGD is not a strong argument, when
considering other models. Any supervised machine learning problem where the goal is
to find the target or learn a label relies on an error-driven learning rule. As such, the delta
rule and its generalization, backpropagation, are one of the most widely used learning
rules in all of machine learning, and, according to this criterion of plausibility, almost
any contemporary NLP algorithm would be deemed psychologically plausible.

Another important condition underlying the success of DSMs is the vast amount of
data required for learning of such high quality vectors. Word2vec vectors are typically
trained on billions of words (Mikolov et al. 2013b), often in a few passes. In contrast,
language acquisition in children is characterized by comparably smaller vocabularies.
Another important difference is the nature of learning, where instead of providing large
amounts of labelled data, children learn by interacting with the environment and relying
on feedback signals, rather than always being provided with the “correct” answer. Thus,
in this respect, such models are not representative of human word learning. A review of
plausibility of DSMs as cognitive theories of semantic memory can be found in Günther
et al. (2019), where the authors argue that such models capture interesting features

1Although cognitive plausibility can be seen as a more specific aspect of psychological plausibility, for
the present purpose we will use those two terms interchangeably.
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beyond pure co-occurrence data, such as polysemy, compositionality, and some aspects
of grounded or embodied cognition theories.

Here, we propose an approach that can be used to characterize plausibility of vector-
based models. In particular, we focus on the ability of such models to express the multi-
tude of relationships found among words in the associations norms. Similarly to DSMs,
word norms have also been used in a wide variety of linguistic tasks such as semantic
search (Abbott et al. 2015; Kajić et al. 2017a), recognition memory and recall (Steyvers et al.
2004a), or predicting semantic similarity (De Deyne et al. 2016). As such, even though
they are an order of magnitude smaller in terms of the vocabulary size, they condense
semantic relationships important for various linguistic tasks, sometimes even performing
better than DSMs.

Instead of using DSMs to directly model distributions of word associations for each
word, we adopt a network analysis approach based on comparisons of semantic network
properties. The structure of semantic networks constructed from word associations has
been extensively characterized, and such structure has been shown to support efficient
search in large-scale networks (Steyvers and Tenenbaum 2005; Utsumi 2015). Here, we
argue that another useful view on psychological plausibility can be provided by studying
such large-scale networks. To this extent, we assess the plausibility of word2vec and
GloVe semantic models. We examine the structure of semantic networks constructed from
the models, and compare them to that of the human word association norms (Nelson
et al. 2004). This study examines which properties of semantic networks are comparable
to those of human association networks, and points out differences where such models
might be an inadequate representation of human semantic knowledge.

3.3 Constructing Semantic Networks

To construct the semantic networks, we use pre-trained GloVe and word2vec vectors that
are made available online for public use by their authors. GloVe vectors were trained
using the Common Crawl dataset containing approximately 840 billion word tokens.
Word2vec vectors were trained using the Skip-gram model on the Google News dataset
containing about 100 billion words. All vectors used here contain 300 dimensions. The
USF Norms (Nelson et al. 2004) are used to model the human association network. Here,
the size of vocabularies of the word2vec and GloVe datasets is reduced to that of the USF
Norms to enable comparable analyses.

We generate undirected and directed semantic networks from word2vec and GloVe
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semantic models, and use a series of graph-theoretic analyses to compare them to corre-
sponding networks constructed from the USF Norms. A node in a network represents a
word, and an edge between two nodes represents some relationship between two words.
We will refer to all networks constructed from word2vec and GloVe models as synthetic
semantic networks, to differentiate them from the empirically derived USF network.

3.3.1 Undirected Networks

Given the word association matrix A, where Aij represents the association strength
between the word wi and the word wj in the USF Norms database, the undirected graph
or network USF undirected is defined as G = {EUSF , NUSF}. The edges EUSF are defined
as

EUSF =
{
{i, j} | Aij + Aji > 0

}
, (3.2)

and the set of nodes as
NUSF =

{
i | wi ∈ WUSF

}
, (3.3)

whereWUSF is the set of all words, and i and j are unique numeric indices assigned to
each word. Thus, an edge is placed between two nodes i and j, if wj was produced in the
experiment as a response to the cue word wi, or vise versa. We note that this definition of
the graph disregards the association strengths between the two words, it only considers
the existence of the association in either direction.

For each DSM we construct a corresponding GDSM = {EDSM , NDSM}, where the set
of nodes NDSM = NUSF , since the set of words in all models is the same. The set of edges
for undirected networks constructed from DSMs is

EDSM =
{
{i, j} | Sij > τ

}
, (3.4)

where S is a similarity matrix and τ is a similarity threshold, both unique to each DSM
and the specific method used to construct the network. We use two different methods
to construct such undirected networks. The first method computes the cosine angle
between all vectors and stores those similarities in the matrix S. Thus, Sij is the semantic
similarity between the word wi and the word wj . This method creates two undirected
networks which we simply refer to as glove and word2vec. The second method applies
Luce’s Choice Axiom (Luce 1959):

P (i, j) =
Sij∑τ
k=1 Sik

(3.5)
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to convert similarity values in S to probabilities P . The threshold values τ have been
determined separately for each DSM and eachmethod by sweeping over a range of values.
A single τ was selected such that it generates a network with the average node degree 〈k〉
closest to that of the USF undirected network. This method approximates the process of
free associations, and according to Jones et al. (2018) it is the most representative way
of comparing DSMs to free association data. Two networks generated by this method
are referred to as glove-luce and word2vec-luce. To summarize, the five undirected net-
works generated by the above methods are USF undirected, glove, word2vec, glove-luce and
word2vec-luce.

3.3.2 Directed Networks

The directed association network USF directed is defined as Gd = {Ed
USF , N

d
USF}, where

the set of edges is
Ed
USF =

{
{i, j} | Aij > 0

}
, (3.6)

and the set of nodes is the same as in the undirected networks. Thus, the major differ-
ence compared to undirected networks is that this network distinguishes between the
directionality of the association.

Three different methods are used to construct directed networks from DSMs: the k-nn
method (Steyvers and Tenenbaum 2005), the cs-method (Utsumi 2015) and Luce’s Choice
Axiom. The k-nn method produces a network with the same out-degree distribution
as the out-degree distribution of the USF directed network by connecting each node in
the network to the k other nodes. Those k nodes are the most similar words to the word
represented by that node, k corresponds to the number of outgoing links for that word in
USF directed. The two directed networks constructed with these methods are glove-knn
and word2vec-knn.

In the cs-method, the following formula is used to determine the smallest neighbour-
hood size k for each word wi: ∑

j∈V N
i
Sij∑

j′ 6=i Sij′
> R, (3.7)

where V N
i is the set of indices of k most similar words in the neighbourhood of the word

wi with k = |V N
i |. The threshold R is determined in such a way that the resulting average

node degree 〈k〉 of the network is the same as that in the directed association network. For
GloVe, we used R = 38 and for word2vec R = 76, and we refer to the resulting networks
as glove-cs and word2vec-cs.
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Luce’s Choice Axiom is also applied as for the undirected networks, and it yields
networks that have 〈k〉 as close as possible to that of theUSF directed network. Appropriate
thresholds τ are found by exploring a range of values for each DSM. This method yields
two more networks: glove-luce-dir and word2vec-luce-dir. Thus, in total there are six
directed networks created from DSMs: glove-knn, word2vec-knn, glove-cs, word2vec-cs,
glove-luce-dir and word2vec-luce-dir.

3.4 Network Analyses

3.4.1 Network Statistics

Human word association networks exhibit a few interesting structural principles such as
the scale-free property and small-world characteristics (Morais et al. 2013; Steyvers et al.
2004a; Utsumi 2015). The scale-free property is an important feature of many complex
systems whereby some nodes, called hubs, have a large number of connections to other
nodes, while others have only a few connections (Barabási and Bonabeau 2003). This
property is discussed in a greater detail in the next section on degree distributions. Small-
world networks are characterized by sparse connectivity, small average shortest path
lengths (ASPLs) relative to their size, and high average clustering coefficients. In the
context of semantic networks, such small-world structure is important for the efficient
search and retrieval of items frommemory. The following analyses are inspired by similar
research (Morais et al. 2013; Steyvers et al. 2004a) that investigated properties of other
semantic networks.

For a network with n nodes, the average shortest path length L is computed as

L =
1

n(n− 1)

∑
i,j∈G

d(i, j), (3.8)

where i and j are two different nodes, and d(i, j) is the shortest distance between the two
nodes measured as the number of edges between them. The diameter D of a network is
the longest shortest distance between any two nodes in the network.

Another measure typically considered in the context of small-world networks is the
average clustering coefficient C. The average clustering coefficients of such networks are
higher than the clustering coefficients of random networks2 of the same size that have the

2We use random networks generated with the commonly used Erdős-Rényi model (Erdös and Rényi
1959).
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L 〈k〉 C Ck D m Lrnd Crnd s

USF undirected 3.04 22.0 0.186 100.00 5 55,236 3.03 0.004 0.44
glove 4.61 22.1 0.373 98.88 12 51,244 2.99 0.005 0.48
glove-luce 3.72 23.0 0.260 100.00 7 57,300 2.99 0.005 0.46
word2vec 4.24 21.3 0.325 99.84 12 52,317 3.04 0.004 0.44
word2vec-luce 3.66 22.8 0.248 100.00 6 56,809 2.99 0.005 0.46
USF directed 4.26 12.7 0.187 96.51 10 63,619 3.62 0.005 0.25
glove-cs 5.06 12.3 0.266 97.21 12 61,470 3.65 0.005 0.25
glove-knn 5.03 12.7 0.259 97.91 13 63,262 3.62 0.005 0.25
glove-luce-dir 5.38 12.3 0.272 97.27 21 61,374 3.63 0.005 0.25
word2vec-cs 4.81 12.5 0.237 99.28 11 62,328 3.64 0.005 0.25
word2vec-knn 4.77 12.7 0.232 99.32 12 63,165 3.64 0.005 0.26
word2vec-luce-dir 4.92 12.3 0.260 98.91 13 60,984 3.67 0.005 0.25

Table 3.2: Graph-theoretic statistics of networks derived from the USF Norms, word2vec
and GloVe vectors. The results for undirected networks are shown in the upper panel of
the table, and of directed networks in the lower panel. Abbreviations: L = the average
shortest path length, k = the average node degree, C = the average clustering coefficient,
Ck = connectivity, the number of nodes in the largest connected component (expressed
in %), D = the network diameter,m = the number of edges, Lrnd = the average shortest
path of a random network, Crnd = the average clustering coefficient of a random network,
s = network sparsity (expressed in %).

same probability of a connection between any two nodes. It is computed as the average
of individual clustering coefficients ci of all nodes as

C =
1

n

∑
i∈G

ci =
1

n

∑
i∈G

2ti
ki(ki − 1)

, (3.9)

where ti is the number of triangles in the neighborhood of the node i. A triangle is a
connectivity pattern where a node i is connected to two other nodes h and j, and at the
same time the nodes h and j are also connected. The denominator in the equation above
is the total number of all possible connections in a neighborhood of a node with the
degree ki: ki(ki − 1)/2.

To test whether networks constructed fromword2vec and GloVe models exhibit small-
world characteristics, we compare them to those of the USF Norms according to different
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measures of network topology. The sparsity s of a network is computed by dividing the
average node degree 〈k〉 with the total number of edges in the network. Other measures
such as the clustering coefficient C, the average shortest path length L and the diameter
D are computed in the largest connected component of each network.

The results are shown in Table 3.2. We were able to replicate results for the two USF
networks reported previously (Steyvers et al. 2004a; Utsumi 2015). Due to the methods
used to construct the networks, all synthetic networks have sparsity that is comparable
to the sparsity of the human association network. Their average shortest path lengths
are consistently higher, but still comparable to those of the human association networks.
However, in undirected networks, the diameter of some synthetic networks is more than
twice the length as that of the USF network, meaning that the distance between the two
farthest words is longer in the synthetic networks than it is in the association network.
Interestingly, this is not the case for undirected networks created with the process model,
where we observe comparable diameters. Although synthetic networks on average have
fewer edges and fewer nodes, they are more modular compared to the corresponding
USF networks, as indicated by higher clustering coefficients. This effect is slightly more
pronounced for undirected versions of synthetic networks that were not created with
a method using Luce’s choice axiom. Based on these observations, we conclude that
synthetic networks exhibit small-world characteristics reminiscent of word association
networks.

3.4.2 Degree Distributions

Degree distributions are studied to understand the structure of the network, as well as
the connectivity patterns of nodes in the network. Such distributions for the USF Norms
are well characterized, and we examine the extent to which networks built from GloVe
and word2vec display such characteristics. To obtain the distribution of degrees in a
network, we count the number of nodes with k degrees, where k ranges from one to kmax.
The kmax value denotes the highest node degree and it is different for each network as
a result of different methods used to create the networks. Following the approach in
related literature (Steyvers et al. 2004a; Utsumi 2015; Morais et al. 2013), we focus on
the distribution of in-degrees in all analyses. According to De Deyne and Storms (2008),
using the out-degree distribution introduces a bias since that distribution depends on
the task characteristics, such as the number of associations per cue word. The degree
distribution of the directed association network is known to follow a truncated power-law
distribution P (k) ∼ e−λkk−α , or, in some cases, a pure power law P (k) ∼ k−α (Utsumi
2015; Morais et al. 2013). The power law predicts that most nodes in the network have
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a few connections, while a small number of nodes, regarded as hubs, have a rich local
neighborhood, which is a typical scale-free property.

To fit degree distributions to different models and to evaluate the plausibility of fits
we follow the methods of Clauset et al. (2009). In line with those methods, we first test
the plausibility of a power-law behaviour using the goodness-of-fit test, followed by
the loglikelihood-ratio (LR) test that examines whether other heavy-tailed distributions
provide a better fit. To fit and evaluate different models, we use the Python powerlaw
package (Alstott et al. 2014).

First, we fit the empirical degree distribution to a power-law model using the max-
imum likelihood estimation (MLE) for the parameter α in the exponent. The fit is per-
formed for values of k > kmin, where kmin was determined such that the Kolmogorov-
Smirnov (KS) distance between the empirical distribution and the model distribution for
values greater than kmin is minimized. The plausibility of a power-law behaviour is then
evaluated by sampling thousands of distributions using the model with the α parameter.
For each sampled distribution the KS distance is measured between the distribution and
the model. Then, the KS distance is also measured between the model and the empirical
distribution. The resulting p-value is a fraction of sampled distributions that have a
greater KS distance than the empirical distribution. Large p-values denote that sampled
distributions are more distant than the empirical distribution, in which case the model is
regarded as a plausible fit to the empirical data.3

The LR-test is a comparative test that evaluates which of the two distributions is
more likely to generate samples from the empirical data based on maximum likelihood
functions of each distribution. The resulting R value is positive if the first distribution
is more likely, and negative if the second distribution is more likely. If R = 0 both
distributions are equally likely. The alternative heavy-tailed distributions we tested are:
truncated power law, (discretized) lognormal and exponential. The distributions used
in the tests are shown for a toy example of k ∈ [1...10] in Figure 3.2 on different scales to
highlight the difference in their tails that are less apparent using the linear scale.

All test results are summarized in Table 3.3. According to the performed goodness-of-
fit test for the power-law distribution, it is an unlikely description of degree distributions
for any network, since all of the power-law models generating data with the fitted param-
eter produced distributions that are closer to the model distribution than the empirical
distribution, as evidenced by p = 0.00 in all cases.

3This usage of p-value as a fraction has the opposite interpretation of the one used for statistical
significance testing, where p values larger than some significance threshold suggest that null hypothesis
cannot be rejected in favor of the alternative hypothesis.
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Figure 3.2: Plausible degree distributions for word networks shown using different scales.

Table 3.3: Goodness-of-fit test for the power law distribution and loglikelihood ratio tests
evaluating plausibility of the power-law versus other heavy-tailed distributions. The
results of undirected networks are presented in the upper panel. Abbreviations: KS =
Kolmogorov-Smirnov statistic, LR = loglikelihood ratio.

Power Law Power Law vs.
Truncated Power Law

Power Law vs.
Lognormal

Power Law vs.
Exponential

KS p LR p LR p LR p

USF undirected 0.014 0.00 -1.80 0.02 -0.91 0.37 7.46 0.00
glove 0.035 0.00 -7.29 0.00 -5.03 0.00 7.82 0.00
glove-luce 0.026 0.00 -1.20 0.08 -1.08 0.28 -0.30 0.76
word2vec 0.064 0.00 -7.72 0.00 -5.31 0.00 -5.89 0.00
word2vec-luce 0.031 0.00 -0.97 0.05 -1.03 0.30 -0.26 0.80
USF directed 0.055 0.00 -2.54 0.00 -2.36 0.02 0.27 0.79
glove-cs 0.016 0.00 -1.14 0.17 -0.67 0.50 3.52 0.00
glove-knn 0.020 0.00 -1.05 0.16 -0.82 0.41 1.08 0.28
glove-luce-dir 0.047 0.00 -3.99 0.00 -2.79 0.01 -3.47 0.00
word2vec-cs 0.032 0.00 -0.57 0.40 -0.51 0.61 0.29 0.77
word2vec-knn 0.028 0.00 -0.13 0.82 -0.12 0.90 0.69 0.49
word2vec-luce-dir 0.027 0.00 -0.21 0.81 -0.13 0.89 0.73 0.47
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As per the loglikelihood-ratio test, the truncated power-law is a better description of
degree distributions for two out of four undirected networks (p < 0.05), namely those
that were not generated with the process model. However, alternative heavy-tailed
distributions such as the lognormal could not be ruled out for glove and word2vec. The
tests for other undirected networks provided no insights into the plausibility of other
distributions.

For directed networks, we find that the truncated power law, rather than a pure power
law, is a better description for the distribution of degrees for the direct USF network,
which is consistent with previous research (Morais et al. 2013; Utsumi 2015). However,
our results indicate that the lognormal distribution is also a plausible model for the
USF network, as it is not possible to distinguish between the lognormal and truncated
power law distributions (R = −0.43, p = 0.67, not shown in the table). We also ob-
served high p-values (p ≥ 0.15) for all log-likelihood ratio tests performed with degree
distributions of all synthetic directed networks, yielding inconclusive results. The only
exception is glove-luce-dir, where the test could not distinguish between the truncated
power-law (λ = −3.99, p < 0.01), lognormal (λ = −2.79, p < 0.05) or exponential distri-
bution (λ = −3.47, p < 0.01),

Given that many of the test results were inconclusive, we further plot model fits to
empirical degree distributions on a semi-log scale in Figure 3.3 to qualitatively investigate
the relationships between fitted models and the empirical data. Degree distributions
are expressed as complementary cumulative distribution functions (CCDFs), and fits for
the power law, truncated power law, lognormal, and exponential models with best MLE
parameters are shown. While the distribution of degrees of USF networks is bounded
from above by the power-law distribution and from below by the exponential distribu-
tion, this is only somewhat the case for the glove networks and less so for the word2vec
networks, indicating differences between degree distributions of human and synthetic
word networks. We also note that among directed networks, synthetic networks have
fewer nodes with high degrees compared to the word association network. For example,
none of the synthetic networks has a node with k > 150, and the highest degrees in some
networks (kmax) are an order of magnitude lower than those of the association networks.
Thus, it is likely that the lack of data points in this regime containing highly connected
nodes contributes to the poor fits and inconclusive LR test outcomes, since it is precisely
those heavy tails that distinguish such distributions.
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Figure 3.3: Complementary cumulative distributions and model fits for the USF Norms,
glove and word2vec networks.
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3.4.3 Hierarchical Topology

Human association networks have hierarchical organization, resulting from high modu-
larity as measured by the dense connectivity between groups of nodes (Utsumi 2015).
Such groups are also known as clusters, and they are highly interconnected so that they
form only a few connections to nodes that are not part of the group. The presence of
such clusters indicates that there are features shared among nodes in the network (e.g.,
semantic relatedness).

While the average clustering coefficients are reported in Table 3.2, to investigate the
presence of hierarchical structure, we consider the relationship between every node degree
k and the local clustering coefficients ci, computed using Equation 3.9. In networks that
exhibit hierarchical organization, the local clustering coefficient is dependent on the node
degree and has been observed to follow a scaling law of the form C(k) ∼ k−γ (Ravasz
and Barabási 2003). While many hierarchical networks have been observed to have γ = 1,
hierarchical structure has also been observed in networks with γ < 1. Directed USF
network has been shown to follow that scaling law with γ = 0.75 (Utsumi 2015).

To explore the relationship between the local clustering coefficients and node degrees
in synthetic word networks we implement the methods from Utsumi (2015). First, we
compute local clustering coefficients ci for all nodes in the largest connected component in
each network. We then compute the average clustering coefficient for each neighborhood
size k and connect those values to form a line. Finally, we use linear regression in
the logarithmic space to determine the slope of the regression line and the correlation
coefficient.

The results are shown in Figure 3.4. For undirected versions of synthetic networks,
we find small positive slopes and weak to moderate correlation for all networks. This
indicates that the clustering tendency increases for nodes with high degrees, which
is the pattern opposite of that observed with association norms. However, we found
strong negative correlations between the local clustering coefficient and the node degree
for some directed networks. Specifically, for glove-cs, glove-knn and word2vec-knn. The
network with the highest scaling exponent is glove-knn with γ = 0.49, which is still lower
than the corresponding coefficient for associations γ = 0.75. Thus, while the clustering
pattern is not as prominent as that of human associations, it is present in some of the
directed networks.
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Figure 3.4: Local clustering coefficients ci as a function of node degree k. Dots represent
local clustering coefficients of each individual node. The line connects ci averages of
nodes with the same degree k. γ = scaling law exponent, r = the correlation coefficient
between ci and k.
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3.5 Discussion

In this chapter, we applied a set of network-theoretic analyses to word2vec and GloVe,
two widely used distributional semantic models. To this end we constructed semantic
networks from suchmodels using differentmethods proposed in related research (Utsumi
2015; Steyvers and Tenenbaum 2005), and compared such networks to those of human
word associations (Nelson et al. 2004). We argued that such analyses can be used to
complement existing definitions of psychological plausibility of such models (Günther
et al. 2019; Mandera et al. 2017).

We found that all networks exhibit the small-world property, characterized by short
path lengths and high clustering coefficients. These results are consistent with previous
studies that demonstrated small-world structure in other kinds of DSMs (Steyvers and
Tenenbaum 2005; Utsumi 2015). Degree distribution analyses based on a goodness-of-fit
test revealed that the power law is not a plausible model in any of the networks. This
finding may not be surprising considering that some semantic networks created from
word associations have distributions that can be well described with alternative heavy-
tailed distributions, such as the truncated power law (Morais et al. 2013; Utsumi 2015).
The degree distribution of synthetic undirected networks tested here is also explained
best by the truncated power-law model.

Truncated power-law behaviour could not be reliably inferred for any of the directed
word2vec and glove networks. Analyzing the tails of distributions in Figure 3.3 provides
some insight as to why it is difficult to obtain a clear fit in those cases. Directed networks
have only a few nodes with a high number of connections. For example, there are only
four nodes with k > 80 for glove-knn, less than ten nodes with k > 55 for both word2vec
networks, and for networks generated with Luce’s choice axiom there are five or less
nodes with k > 50 in both cases. This is in stark contrast to human word networks, where
there are more than 260 words with k ≥ 60. In addition, inspecting those “hub” nodes
for each synthetic network reveals that those are different kinds of words, compared to
those listed in Table 3.1. More specifically, words with the most connections to other
words in association networks reflect activities and behaviours typical of daily life, such
as those related to eating, socializing and working. For synthetic networks we found
that those words are more specific. For example, for some glove networks the words
with most connections were salad, sauce and butter, and many of the top 10 words were
often ingredients or food-related words. However, the word food appeared only at the
232nd place in the list of words with highest degrees for that network. We speculate
that this trend, where more specific food words have more connections to other words

59



than general words, may be due to the training data used. GloVe is trained on data
crawled from the Web and as such might be biased towards usage of such food words
in the written context (e.g., food blogs and recipes). Thus, given that those heavy-tails
look different for synthetic networks and word associations, we postulate that tests we
conducted to understand which model explains such distributions did not have enough
data to reliably discriminate between different distributions.

We finally analyzed the level of hierarchical structure in synthetic networks and com-
pared it to that of word associations. Overall, we found that synthetic networks on average
have much higher clustering coefficients. Some directed networks, more specifically those
constructed with the k-nn method, exhibit a moderate level of hierarchical organization
that is reminiscent of clustering observed in the human association network. We also qual-
itatively observe highly-connected nodes in the directed glove-cs and glove-knn networks
with fluctuating clustering coefficients, a trend especially prominent in word association
networks in Figure 3.4. Although such hubs are semantically different for synthetic
networks and word associations, as established with the analysis of words contained in
the distribution tails, they share an interesting property—some hubs with higher degrees
are “embedded” in clusters, thus connecting to all words in their neighbourhoods (e.g.,
words such as hurt, music and eat). Other hubs are acting as intermediaries in the network
by connecting different groups of the word network, where words in those groups might
not have as many connections (e.g., money, water and car).

Overall, these results indicate that different semantic networks constructed from
word2vec and GloVe models are capable of capturing some aspects of human association
networks. For example, such similarities were evident in general network statistics such
as the shortest paths and clustering tendencies. The glove-knn network exhibits clustering
properties that are most similar to those of the word association norms. However, for
the majority of synthetic datasets there are clear differences with the empirical networks.
These differences were most apparent for words represented in the long tails in degree
distributions. We note that these differences should be considered when using DSMs for
research in human semantic memory as, depending on the specific semantic task, some of
DSMsmight provide a poormatch for cognitive representations or processes. For example,
while some such models might be plausible when using them in tasks that require
listing of specific word categories (e.g., semantic fluency task) due to their hierarchical
structure, theymight onlyweakly capture the relevance of semantic relationships between
words commonly used in ordinary language. To conclude, while DSMs offer invaluable
and convenient resources for researchers interested in modelling human cognition, it
is important to understand their structure, limitations, and the implications thereof for
modelling of psychologically plausible semantic processes.
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4 |
AssociativeMechanisms in theBrain: The
Remote Associates Test (RAT)

In the previous chapter, we compared semantic networks created from different sources
of semantic data, and showed that networks derived from distributed semantic models,
such as word2vec (Mikolov et al. 2013a; Mikolov et al. 2013b) and GloVe (Pennington et al.
2014), differ from human word associations (Nelson et al. 2004) in important ways. Given
the significance of associative word relationships in language acquisition as well as in a
variety of linguistic behavioursmore generally, in this chapter we investigate a biologically
plausible model of word associations in the brain. To this end, we use different sources
of semantic data to model associative relationships in a biologically constrained neural
network and evaluate them on a specific semantic memory task known as the Remote
Associates Test (RAT).

The RAT was proposed in the context of research on creative thinking and insight
problem solving (Mednick 1962), and has been used to study the organization and
retrieval processes in semantic memory (Davelaar 2015; Kenett et al. 2014; Smith et al.
2013; Gupta et al. 2012). The test consists of word triplets, and the task is to find a fourth
word that relates to all three words in a triplet. While cognitive strategies used in the
RAT have been exhaustively characterized, little is known about the neurocomputational
basis underlying semantic search in the RAT. In this chapter, we present a set of analyses
and models that propose biologically constrained computational mechanisms that solve
the RAT in a human-like way. That is, the model achieves similar accuracy on the test,
and it produces responses that exhibit semantic similarity characteristics similar to those
of human responses.

Section 4.1 explains the task in a greater detail and discusses the related work in
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this domain with a focus on existing computational models. In Section 4.2, we evaluate
different sources of association and word co-occurrence data and examine their perfor-
mance on the test assuming the insight test condition. These preliminary analyses do not
attempt to characterize neural or cognitive mechanisms underlying RAT solving. Instead,
they are used as a stepping stone for investigation of association data used in the models
presented in later sections. Aspects of that section are adapted from Kajić et al. (2016).
Based on those evaluations, in Section 4.3, we present a cognitive neural network model
that simulates the semantic search process in the RAT. We show that the parameters of
the model can be adjusted in such a way as to interpret the model performance as differ-
entiating between RAT problems of varying difficulty. The section is adapted from Kajić
andWennekers (2015). Finally, an extension of the model implemented with the methods
of the NEF (Eliasmith and Anderson 2003) is presented in Section 4.4, based on Kajić et al.
(2017b). We argue that the resulting model is biologically plausible, as it incorporates
neurally and cognitively constrained mechanisms of the semantic search process in the
RAT, while providing a robust match with the human data.

4.1 Background and Related Work

Creating word associations is an important skill for the development of many cognitive
abilities. For example, language acquisition is highly dependent on the ability to create
associations (Elman et al. 1997; Rogers and McClelland 2004), as they are a central
means of expanding both vocabulary and syntax (Brown and Berko 1960; Hills 2013).
As well, associations allow infants to learn about previously unseen objects or concepts
in terms of semantic similarities and semantic distinctions (Mandler and McDonough
1993). Empirically derived word associations have been successfully used to model a
variety of semantic memory tasks (Steyvers et al. 2004a; Abbott et al. 2015; De Deyne et al.
2016; Kajić et al. 2017a), substantiating the importance of associative relationships for
different linguistic behaviours. Because associations play such a crucial role in language
and human cognition more generally, it is important to understand how the brain might
represent, store, and deploy them.

In order to do so, we investigate a biologically and cognitively motivated representa-
tion of word associations and accompanying processes that operate on such representa-
tions on the example of the Remote Associates Test (RAT). The RAT was developed in
the 1960s by Mednick (1962) to measure an individual’s ability to think of words that are
remotely associated with a given word or a set of words. Since then, it has been widely
used in creativity research, postulating that such remote associations require thinking of
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word relationships that are novel or unusual, two characteristics of creative ideas (Boden
2003). The RAT consists of a list of problem items where each item contains three cue
words, and the task is to find a solution word that is related to all three cues. The test
is administered with a time limit that can range anywhere from just a few seconds up
to a few minutes. It is argued that an individual’s creative ability correlates with their
performance on the test, as highly creative individuals are better at finding solutions to
those RAT problems that require them to relate familiar words in a novel way. In other
words, such individuals are portrayed as being better at “thinking outside the box.”

An example of a RAT problem is the following triplet of cue words: fish, mine, rush.
The task is to find a word, also referred to as the target, that is related to all three cues. In
this case, thinking about common associations of each of the cue words, such as water,
coal, or hour, meaningfully matches with individual cue words, but none of them is a
good match with all three cues. Instead, gold, a less frequent associate of each of the
words, is the correct solution as it can be meaningfully combined with all three of them.
The associative relationship between the cues and the solution in the RAT can vary: it can
be a compound word such that each cue and the solution form a new word (e.g., firefly);
it can be semantically related (e.g., water and ice); or it can form an expression (e.g., mind
games). Mednick (1962) proposed that creative individuals are more likely to think of
unstereotypical words that are solutions in the RAT. He attributed this to their flat
associative hierarchy, in which the probability of coming up with an association is not
very different for typical and atypical associations. In contrast, individuals scoring lower
on the RAT would produce stereotypical associates with higher probability than atypical
associates, which he described as a steep associative hierarchy.

Performance on the test is expressed as the number of correctly solved items within
a fixed time limit. Longer time limits (e.g., one or two minutes) correlate with higher
solution rates (Bowden and Jung-Beeman 2003a), and it has been argued that when
people are given more time to solve a problem they tend to use analytical solving skills
that rely on a deliberate search process. In doing so, people think of words and test
them individually against the cue words, a conscious act characterized by incremental
awareness of a solution (Smith and Kounios 1996). In contrast, shorter solving times are
thought of as invoking sudden and involuntary insight solutions characterized by the
“Aha!” moment of reinterpreting a stimulus, situation or an event (Kounious and Beeman
2014).

The RAT has also been used in semantic memory research to study and characterize
responses people give when attempting to solve a problem. Although each individual
cue word elicits associations, the solution is found in the search space constrained by
all three cues. Analyses of responses people give when solving a RAT problem have
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shown that such a search process exhibits particular characteristics that differentiate it
from other memory search processes (Raaijmakers and Shiffrin 1981; Hills et al. 2012b).
Specifically, the RAT search process retrieves words that are strongly related to one of the
three problem cues, shows occasional switching between the cues (Davelaar 2015; Smith
et al. 2013), and it involves a local search strategy (Smith et al. 2013; Smith and Vul 2015).

Performance on the RAT has been characterized by numerous experimental, theoret-
ical, and computational studies (Gupta et al. 2012; Kenett et al. 2014; Klein and Badia
2015; Olteteanu and Falomir 2015). The proposal by Mednick (1962) on flat associative
hierarchies of high-scoring individuals has been supported experimentally by showing
that individuals who score higher on the RAT tend to avoid high-frequency answers
on both incorrect and correct trials (Gupta et al. 2012; Kenett et al. 2014). The proper-
ties of individual subjects’ semantic networks correlates with their performance on the
RAT (Kenett et al. 2014; Monaghan et al. 2014). Specifically, individuals who score high on
a battery of creativity tests have semantic networks with small-world properties (Kenett
et al. 2014). The connectivity in such networks is sparse, as they are characterized by
short average path lengths between words, and strong local clustering. Even though
every node in the network is only sparsely connected, it takes just a few associations to
reach any other node in the network. This kind of topology facilitates solution-finding in
the RAT because quick, efficient searches can cover much of the semantic network. High
scores on the test have been achieved with corpus-based approaches relying on large
co-occurrence statistics (Toivonen et al. 2013; Klein and Badia 2015).

However, fewer studies have investigated models which exhaustively match perfor-
mance on the RAT with the human performance (Bourgin et al. 2014; Gupta et al. 2012).
More specifically, instead of comparing the accuracy on the test, a more detailed evalua-
tion of the model with respect to human performance can be achieved by considering
the difficulty of RAT problems, and the responses people give when solving a problem.
Thus, a model that matches the human data more robustly should be able to account for
differences in difficulty among different test items. We address that gap in this chapter,
by presenting a biologically plausible model of the RAT solving that robustly matches
human performance on the test, while incorporating aspects of neural and cognitive
computational constraints.

4.2 Evaluating Different Semantic Spaces

Following our conclusions in Chapter 3 on the importance of understanding the datasets
for cognitive modelling, we first examine the relationship between different associa-
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tion and co-occurrence datasets and their performance on the RAT. In particular, we
examine associative relationships in different semantic datasets in the context of human
performance on the RAT. We use different methods to derive representations from such
semantic spaces, and evaluate those representations to understand how they affect the
test performance. These evaluations are not intended to address aspects of cognitive
or biological mechanisms underlying RAT solving. Rather, they are used as a way of
investigating how well remote associations, which are important for good performance
on the test, are being captured by different semantic datasets. Insights obtained from
these investigations are used to inform the design of cognitively and biologically plausible
models presented later in this chapter.

Two different datasets are used to construct differentword representations that are sub-
sequently evaluated on the RAT. The first dataset contains Free Association Norms (FAN;
Nelson et al. 2004). We collect the FAN association strengths in an asymmetric associa-
tion matrix, FAN asym, with rows representing cues, columns representing targets, and
individual entries representing normed frequency responses used in the free association
experiment as described in Section 3.1. As previously discussed, one distinguishing
feature of this dataset is the association asymmetry. For example, given the cue left, 94%
of subjects respond with right, however, given the cue right, 41% of subjects respond with
left and 39% of subjects respond with wrong. In addition to the asymmetric matrix, the
symmetric matrix, FAN sym, is defined as

FAN sym =
1

2

(
FAN asym + FAN>asym

)
. (4.1)

The second dataset we derive associative information from is the Google BooksNgram
Viewer dataset (version 2 from July 2012; Michel et al. 2011). An n-gram is a sequence
of nwords, and this dataset provides occurrence frequencies of n-grams across over 5
million books published up to 2008. The set of words used in this study is restricted to
the words in the association norms, and n-gram frequencies used are those from 2008.
For every combination of two words w1 and w2, the corresponding entry in the matrix
NGasym was set to the sum of occurrences of the 2-gram (w1, w2) and the 1-gram w1w2

in the corpus. An 2-gram is a tuple of two words, such as (peep, hole), while 1-gram is
a single word such as peephole. Each row of the matrix was then normalized to sum to
one. The symmetric matrix, NG sym, is computed in a way similar to the computation of
the FAN symmatrix with Equation 4.1. In the rest of the analysis, we use NG sym, which
includes the backward strength between word co-occurrences. This is necessary to solve
the problems where only the second part of the compound word is given as one of the
three cues (e.g., board for blackboard). Even though the NG matrices give co-occurrence
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Table 4.1: Target positions for 117 RAT problems. Reproduced from Kajić et al. (2016,
Table 1).

Within top
Association matrix 1 2 3 5 10
FAN asym 5 12 16 31 49
FAN sym 4 5 6 14 36
NG sym 11 15 16 22 35

counts, we will use the terms association matrix and association strength as they are used in
the same manner as the FAN association matrix.

Given such matrices, there are two common ways of representing word associations.
First, we can directly use the association matrix, where we represent a word as a localist,
one-hot encoded vector. Then, to perform the association we multiply the word by the
association matrix. This will “extract” the row of the matrix corresponding to that word
and the resulting vector will represent the word associates. Alternatively, we can embed
the associates in a vector space using one of the methods described in Section 2.3.3. That
is, instead of representing the full association matrix, we compress that matrix into a
lower-dimensional space. In certain cases this approach can adjust the similarity space
between the words to uncover latent structure among the associations, such as with
LSA (Deerwester et al. 1990). Like LSA, we use singular value decomposition (SVD)
to take the 5,018-dimensional localist word representation, and compress it into an D-
dimensional distributed representation, where D is varied between 128 and 4,096.

To determine which representational approach gives the best performance on the task,
we use the problem set from Bowden and Jung-Beeman (2003a). Out of 144 RAT problems,
we used the 117 problems for which the cues and the target exist in the vocabulary of
free association norms. We take the sum of the vectors representing each cue word, and
multiply it by the association matrix. The resulting vector is compared to the vectors for
all of the possible response words. In the ideal case, the correct solution word would
be the most similar to this output value. However, we also determined if the solution
word was in the top 2, 3, 5, and 10 most similar words with recounting,1 as reported in
Table 4.1.

The results indicate that the solution appears as the top-ranked word more often for
1Each subsequent top count entry includes words from the previous entry. For example, all words in

the top 1 entry are also counted in the top 2 entry.

66



12
8

38
0

76
8

20
48

40
96

sy
m

.
as

ym
.

Dimensions

0

10

20

30

40

50

Ta
rg

et
s 

w
ith

in
 to

p 
n

Free Association Norms (FAN)

12
8

38
0

76
8

20
48

40
96

sy
m

.

Dimensions

0

10

20

30

40

50
Google Books n-grams

Top 1 Top 2 Top 3 Top 5 Top 10

Figure 4.1: The number of correct solutions within the top nmost similar words over 117
problems. The isolated points at the end of the x-axis in both graphs represent the original
symmetric and (for FAN) asymmetric matrices. All other data points are computed by
applying the SVD to the matrices. Left: The results with representations based on
free association norms. Right: The results based on Google n-gram data. Reproduced
from Kajić et al. (2016, Figure 1).

Google n-grams (NG sym) than for association norms (11 solutions in the first position
versus 5 and 4 solutions for symmetric and asymmetricmatrices). However, when relaxing
the condition and allowing the solution word to appear among the top 5 or 10 words,
we see the FAN asym association matrix outperforming NG sym. Figure 4.1 also includes
the results from applying SVD to the association matrices. Contrary to the expectation,
SVD does not improve the performance on the RAT, except in a few circumstances.
First, there is no dimension of vectors derived form SVD that produces representations
performing better than the asymmetric matrix in the case of FAN. However, SVD-derived
representations with dimensionality 512 or higher for NG symappear to perform better
than either FAN asymor theNG symmatrix in most cases (with some exceptions, for example,
for solutions within top 10 and top 5 FAN asymachieves the best score overall). Thus, in the
majority of the cases, the statistical n-gram data performs better than the free association
norms. However, these analyses only indicate increased performance on the task, not
whether the n-gram approach performs similarly to people on this task. To address this
question, we compare the two approaches with human performance.
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Table 4.2: Model fits and best fitting parameters. Reproduced from Kajić et al. (2016,
Table 2).

Association matrix α1 α2 α3 β r2

FAN asym 1.0 2.06 1.20 1.13 0.58
FAN sym 1.0 2.50 1.63 2.86 0.58
NG sym 1.0 13.45 1.25 3.55 0.30
NG768

sym 1.0 11.88 1.00 8.23 0.22

4.2.1 Matching Human Performance

Instead of examining the best performance on the RAT, we now explore which method
yields the results most similar to human results. That is, we investigate which method is
better in solving problems that humans find easy, and worse in solving problems humans
find hard. To do so, we predict a probability of producing the correct solution within
a 2 second time limit. We use the same set of problems as in the previous section, and
match to the percentage of people solving each problem from Bowden and Jung-Beeman
(2003a). Let s(w, v) be the associative strength from word w to v. Given the three cues ck
with k = 1, 2, 3 each word wi in the vocabulary is activated according to

a(wi) =
3∑

k=1

αk · s(ck, wi), (4.2)

where αk are free parameters intended to model the effect that subjects might differently
prioritize the problem cues. We set a(ck) = 0 for the cues to prevent them from appearing
high in the results. Moreover, we fix α1 = 1.0, as a scaling of all αk with a constant
will produce the same predictions. Given that ws is the solution word, we calculate the
predicted probability for producing the correct answer as

P = β · a(ws)∑
i a(wi)

(4.3)

with β being another free parameter. Note, that we are not calculating the probability of
each individual word being given as answer, but the probability of producing the correct
versus the wrong response. Because of that, β is not fixed to one, but should be chosen
such that P ≤ 1. We did curve fits to the data from Bowden and Jung-Beeman (2003a) by
minimizing the root mean square error between the proportion of participants solving
the problem within the time limit and our predicted solving probability. For the curve
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Figure 4.2: Model fits to human data (blue line with shaded 95 % confidence interval).
Human data are percentages of participants solving a RAT problem in 2 s and they have
been sorted in descending order, so that problems solved by more participants have lower
problem indices. Every green circle represents the probability of producing the correct
solution to a RAT problem predicted by the model. Reproduced from Kajić et al. (2016,
Figure 2).

fits we used the association strengths from the original FAN asym, FAN sym, and NG sym

matrices. In addition, we used the 768-dimensional NG768
sym matrix, which showed good

performance in Figure 4.1.
The fitted parameter values are given in Table 4.2. Representations derived from

free norms yield a better fit on this data set (r2 = 0.58) compared to the n-gram data
(r2 = 0.30). There was no difference between the asymmetric and symmetric FAN
matrices. Interestingly, the second cue is consistently assigned a higher weight. We
speculate that this is caused by this cue appearing in the center of the screen with
the other cues above and below. For n-gram fits, the parameters α2 and β are large in
comparison to those of free norms, but because of the low r2-value, these values cannot be
seen as meaningful. For visual inspection, we plotted the model fits using free association
norms and Google n-grams in Figure 4.2. Further error analysis revealed that the Google
n-grams underestimate the solution probabilities of easy items (more than 32% solved by
humans) while at the same time predicting a non-zero probability for items unsolved
by humans. While none of the models provides a perfect match with the human data,
judging by the relatively high number of data points outside of confidence intervals in
each plot in the figure, we note that the FAN dataset provides a better match with the
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easier problems. We attribute this to the fact that easier RAT problems are characterized
by stronger associative strengths between the cue words and the target, which are well
captured with the FAN. All solutions in the set of RAT problems used here are based
on compound words, which, on the other hand, might explain why the n-gram dataset
shows a better match with the harder RAT problems.

Taken together, our results indicate that the insight process of RAT solving is likely
more reliant on association data as produced in the unconstrained free association task,
rather than the co-occurrence information. These kinds of associations are likely to be
based on additional semantic information that is either not available to, or is less present
in, purely statistical approaches.

4.2.2 Discussion

We performed a computational analysis of two different sources of word association data
to describe how well they predict the human performance on the RAT. While statistical
language data like n-grams achieve the highest solution rates on this task, consistent with
some of the previous work (Klein and Badia 2015; Toivonen et al. 2013), a more accurate
prediction of the human performance on the RAT is obtained with the free association
norms.

First, we discovered structural differences between n-grams and association norms
by applying dimension reduction with SVD. Previous studies have shown that the di-
mensionality reduction on association norms can be used to accurately predict human
responses on certain episodic memory tasks, such as recognition memory and cued
word recall (Steyvers et al. 2004b). Interestingly, our analysis provides evidence that
dimensionality reduction does not improve performance on the RAT. Moreover, it im-
pairs the performance when the solution word is among the ten most similar words to
the cue words. This indicates that for some RAT problems the important associations
are contained in links that are not present in a low-dimensional representation. This is
reminiscent of the finding that direct association strengths are the best predictor of intru-
sion rates in free recall (Steyvers et al. 2004b). The dimensionality reduction on n-grams
revealed a considerable amount of redundant information: the original 5,018 dimensional
word vectors can be reduced to at least 768 dimensions without large differences in the
results. Moreover, SVD can even lead to improvement when looking at targets that appear
within the three most similar words to the cues. Second, the modelling analysis showed
that n-gram data, yielding the best scores on the RAT, is a worse predictor of human
performance. The FAN data model was a better fit to human solution probabilities in
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the RAT. As expected, the model was not able to solve any problems for which there
was no association between the cues and the target in the association norms, indicating
that free norms might not be the only source of associative information. However, for the
other problems we have demonstrated that free associations play an important role in
the insight process. While both free associations norms and n-grams contain associations
relevant for solving of RAT problems, the FAN dataset showed a closer match to the
human solution accuracies. This was the case despite it being derived from a much
smaller and more limited vocabulary. For example, approximately 6.5 million association
pairs exist in n-grams but not in the FAN. Conversely, only about 26,000 associations
exist in the FAN that do not exist in n-grams. In some aspects, the better fit with the
FAN might not be too surprising given that the semantic search process underlying free
associations likely shares some of the mechanisms with the process of solving for remote
associations. Nonetheless, it indicates that the sheer size of the underlying resources
used to generate a dataset might not be the primary concern when modelling aspects of
human performance.

In the next section, we take a first step towards a cognitively plausible model of RAT
solving. To this end, and consistent with this evaluation, we present a neural network
model based on free associations that simulates aspects of cognitive processes involved
in the semantic search process.

4.3 A Cognitive Model

Here, we present a neural network model that realizes the semantic search process in the
RAT. Themodel resembles “classic” connectionist architectures for simulation of cognitive
processes related to language function that gained popularity in 1980s (McClelland et
al. 1987), and that remain in use in cognitive modelling due to their simplicity and
effectiveness. This model implements two cognitively plausible mechanisms involved in
the search process: a competition process based on the winner-take-all (WTA) principle,
and the spreading activation algorithm (Collins and Loftus 1975). A high-level overview
of the algorithm implemented by the network is shown in Algorithm 1. Some aspects
of the algorithm have been simplified for clarity, however, those simplifications are still
consistent with the behaviour of the network presented later.

The algorithm maintains an array of word activations (activations), and selects the
word j with the highest activation at each time step as the current word to be explored.
Initially, all activations are set to zero, except for the three cue words—their activations are
externally driven by the input I . Following the theory of spreading activation, activations
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Algorithm 1 Semantic search for a solution in a RAT problem based on spreading activa-
tion and the WTA mechanism. Adapted from Kajić and Wennekers (2015).
Require: cues, target, ϑs,max_nodes,
Ensure: visited
1: visited = [ ]
2: activations = [ ]
3:
4: for i← 1, N do
5: activationsi ← 0
6: if i in cues then
7: activationsi ← 1

8:
9: j ← −1
10: while len(visited) < max_nodes+ 1 do
11: for all neighbours i of the current node j do
12: if wij > ϑs and j 6= −1 then
13: activationsi ← activationsi + wij · activationsj
14: visited.append(j)
15: if j == target then
16: break
17: j ← WTA(activations, visited)

of all words that are associated with the word j are elevated by the value dependent on
the connection strength with the word j as well as the level of activation of the word
j. Such connection strengths are derived from the free association norms (Nelson et al.
2004), found to yield human-like performance on the RAT in the previous section. The
search process terminates if the currently explored word is the target (i.e., the solution to
the RAT problem), or, if the number of visited nodes exceedsmax_nodes. Otherwise, it
proceeds by picking the next word with the highest activation value as the current word.
TheWTA function in the algorithm sorts the words based on their activations, and returns
the word with the highest activity level that has not been visited before. In this way, the
words that have been explored (i.e., the previous winners) will not be selected again
as potential targets. This approach makes certain assumptions that simplify the search
process. For example, it does not determine whether the current winner is a solution to
the RAT problem. Instead, it models the process of ideation of possible words, assuming
that when an individual thinks of a word, they will be able to determine if it is a correct
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Figure 4.3: Neural network model of the semantic search in the RAT. The word with the
highest activity level in the semantic layer is selected by the WTA layer as a response to
a RAT problem. If the selected word does not match the solution, the inhibitory layer
suppresses the activity of the selected word allowing the WTA to select the next winner.
Adapted from Kajić and Wennekers (2015, Figure 1).

solution by testing it against cue words using cognitive mechanisms not modelled here.
Also, this search does not account for cue switching observed in people, who are known
to attend to a primary word cue (Smith et al. 2013).

To explore the influence of different word pair association strengths on the RAT
performance, the spreading of activity is implemented only to the nodes adjacent to
the node j whose connection strength to it is greater than the spreading threshold ϑs.
Weak connection strengths are a characteristic of rare and uncommon word associations,
which, according to the theory of Mednick (1962), are more likely to be generated by
highly creative individuals. Increasing that threshold corresponds to the removal of such
association pairs, resulting in a search path that either has more edges between the two
nodes, or does not have them at all.

Next, we describe the neural network implementing Algorithm 1 to simulate the
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semantic search process over time. The network consists of three layers with distinct
functions: the semantic layer, winner-take-all (WTA) layer and inhibitory layer. The
model is shown in Figure 4.3. The semantic layer implements a semantic network, where
each node in the network represents a single word, and connections among words
represent their associative strength. The activation of units in this layer is akin to the array
activations in the algorithm above. The WTA layer selects a winning unit, simulating a
solution guess to a RAT problem. The spread of activity from the winning unit proceeds
via feedback connections from the WTA layer to the semantic layer. If the selected word
is not a solution to the RAT problem, the inhibitory layer suppresses the activity of the
winning unit in the WTA layer. This allows the next unit with the highest activity level to
win in the next step. The activity of units in all layers is updated in parallel in each time
step.

The time-dependent activity of a single unit in the semantic layer is defined by

ai(t+ 1) = ai(t) + ρa

( N∑
j=1

ωijzj(t)aj(t) + Ii(t)

)
(4.4)

zi(t) = Θ(wi(t)− ϑw) (4.5)∥∥z(t)
∥∥
1

= 1, (4.6)

where ai(t) describes a non-decaying activity of a unit i at time t with i ∈ {1, . . . , N}.
ωij ∈ W is the connection strength from the unit j to the unit i, as derived from free
associations (Nelson et al. 2004). The constant ρa controls activity levels, and is inversely
proportional to the stimulus length tn. The binary vector z(t) always has exactly one or
zero active elements, with the active element representing the currently visited node
(variable j in Algorithm 1) in the semantic layer. The winner is determined based on
w(t), the activation values of the units in the WTA layer, and it is a word considered as a
solution to the RAT problem. Consistent with the algorithm, only the activity of nodes
whose edges incident to the winning node are greater than the spreading threshold ϑs,
or the activity of nodes receiving external input, will be elevated. Weights smaller than
the threshold ϑs in the connection matrix W are set to zero. If the current node only has
connections to other nodes that are less than the threshold, the activations in the network
for that node will not change. Instead, nodes with activations higher than zero continue
to compete in the WTA process. If a unit in the WTA layer crosses the threshold ϑw, the
Heaviside step function will toggle the corresponding bit in z(t). Only at the beginning
of a simulation, the external input I(t) is used to sequentially increase the activity of cue
nodes in the semantic layer.This in turn will elevate the activity of the units in the WTA
layer, yielding a winner whose feedback connection will help spread the activity from
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the corresponding unit in the semantic layer.
The first three winners are thus going to be the three problem cues. Ii(t) is clamped

to 1 for the duration tn, separately for each cue word i ∈ {cue1, cue2, cue3}, in such a way
that at each time point only one cue is active. In Algorithm 1 this has been simplified by
directly setting the activity of cue nodes to one, and then randomly picking the order of
cues in the WTA. Those cue nodes are guaranteed to be picked first, as they receive the
highest input among all nodes. In the network, this process occurs sequentially with the
predetermined order as described above, but the resulting level of node activities does
not depend on the cue order of presentation, thus yielding the same behaviour as the
algorithm. The activity of the units in the WTA layer is determined by the following two
equations

wi(t+ 1) = wi(t) + ρw
[
c1zi(t) + c2ãi(t)− c3y(t)− c4ri(t) + c5ηi(t)

]
(4.7)

y(t+ 1) =
∥∥z(t)

∥∥
1
. (4.8)

Units in this layer receive one-to-one feedforward input ãi from the units in the semantic
layer. The first WTA unit to cross the threshold ϑw will be the one receiving the strongest
normalized input ãi(t) = ai(t)

ak(t)
, where k = arg maxj aj(t).2 y(t) is a single inhibitory

unit that projects back to all units in the WTA layer, shown as the unit with the + sign
in Figure 4.3. In this way, the activity of all the units, except that of a single winning
one, will be suppressed and kept below the threshold ϑw. The winning neuron toggles
the corresponding bit in the z(t) as per Equation 4.5 and elevates the activities of its
neighbours in the semantic layer according to Equation 4.4. Due to the self-excitation,
the activity of a winning unit in the WTA layer continues to increase until it becomes
suppressed by a unit in the third layer. The noise term ηi(t) is randomly sampled from a
uniform distribution in the interval [−0.5, 0.5]. It is added to allow the WTA to select a
winning unit when two or more units receive the same input ã(t) from the semantic layer.

Finally, after a unit zi(t) has been active for a certain amount of time tn, it will activate
the corresponding inhibitory unit in the third layer according to

ri(t+ 1) = ri(t) + Θ

( t∑
j=t−tn

zi(tj)− tn
)
. (4.9)

The feedback connections from this layer to the WTA layer will inhibit the activity of
the winning unit. As input integration in r(t) is non-decaying, the inhibition will be

2The normalization helps to bound parameters that stabilize the WTA competition mechanism.
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Table 4.3: Hyperparameter values for the neural network RAT model.
Name Values Description
ρa 0.02 Integration constant for the semantic layer
ϑw 1 Threshold for the units in the WTA layer
ρw 0.995 Integration constant for the WTA layer
tn 50 Stimulus and WTA unit activity duration
c1 1 Excitatory connection
c2 1 Normalization constant
c3 1 Inhibitory unit constant
c4 50 Inhibitory layer constant
c5 0.1 Noise amplitude

permanent, preventing the winning unit from winning again. This permanent inhibition
is comparable to the aspect of WTA’s behaviour in Algorithm 1, where WTA excludes
previously visited nodes from winning again. A new unit will be selected in the semantic
layer based on the highest level of activity ãi(t). Parameter values used in the model sim-
ulations are listed in Table 4.3. The values in this table are either selected, or analytically
derived, to bound the values of activation functions and stabilize the WTA mechanism.

Figure 4.4 shows unit activities in the network over a course of time while solving the
RAT problem: river, note, account. First three winners in the network are the cues river,
note and account, followed by the first response, money. That response is inhibited and the
next response, bank is the solution to the RAT problem. For visual clarity, only a small
fraction of activated units in the semantic layer is shown.

4.3.1 Simulation Results

The model performance is evaluated on the same 117 RAT problems as in the previous
section. The problems are divided into the three difficulty categories (easy, medium
and hard) based on the percentage of participants solving an item in the 15 seconds
condition (Bowden and Jung-Beeman 2003b). The percentage of participants solving
a problem varies between 0% (e.g., no one solved the problem) and 96% (e.g., almost
everyone did). The categories are divided in three parts according to 32 percentage point
increments: easy problems are solved by 64% to 96% participants (17 problems), medium
problems by 32% to 64% (43 problems) and hard problems by 0% to 32% participants (58
problems).
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Figure 4.4: A model simulation of the search process for the RAT problem river, note,
account. Left: Normalized unit activities in the semantic layer. Red dashed lines represent
a moment when a winning unit has been selected, and determines the onset of spreading
activity to its neighbouring units. Right: Activities of the winning units. The problem
solution bank is found as a second response, after money. The first three winners are the
given problem cues. Reproduced from Kajić and Wennekers (2015, Figure 2).

The performance on all three categories is tested by varying two model parameters:
the number of responses, and the spreading threshold ϑs in the semantic layer. The
number of responses is the number of words selected by the WTA. If the correct response
was not among the predetermined number of responses, the problem is annotated as
unsolved. As a first approximation, the number of responses can be related to the time
allowed to produce the answer. The basic assumption is that with more time a participant
will be able to think of more words. By increasing the threshold ϑs we are discarding all
word pair associations with the association strength lower than that threshold. Lower
association strengths correspond to word association pairs produced by fewer individuals
in the free association task (Nelson et al. 2004), and this parameter can be thought of as
controlling the ability to think of such rare associations.

Network simulation results for 117 problems and the three difficulty categories are
shown in Figure 4.5. As expected, the performance on the RAT increases with the number
of responses. Compared to the medium and hard items, all easy items are solved within
ten or fewer responses. Approximately 20% of all easy problems are solved after a
single response, implying that the solution to easy RAT items is the strongest association
between one of the problem cues and the solution. For the medium and hard problems,
there is a continuous increase in performance with the increased number of response
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Figure 4.5: Left: Performance on the easy, medium and difficult RAT items depending
on the number of responses in the search process. Right: Performance depending on
the spreading threshold. Increasing the threshold removes word pair associations with
association strengths weaker than the threshold. Reproduced from Kajić and Wennekers
(2015, Figure 3).

words. For the purposes of current analysis, we have restricted the range of responses to
an interval could be interpreted in the context of known data. Participants instructed
to report every word they consider a solution when trying to solve a RAT problem on
average produce eight words within two minutes (Smith et al. 2013), although there
are large variations in the number of responses. As we are not explicitly modelling this
process, we take this number as a reference, and assume a greater number in the model
since it does not differentiate between reported and unreported words. The average
percentage of solved items for 117 problems given a 15 second time limit for humans is
29% (Bowden and Jung-Beeman 2003a), and the model achieves comparable performance
of 28% when given a word limit of six responses.

The right plot in Figure 4.5 shows how the removal of associations in the semantic layer
affects the performance on RAT items of different difficulties. 98% of association strengths
in free association norms (Nelson et al. 2004) are of value 0.4 or less, which we use as the
upper bound for the experimental range for ϑs. As expected, removing word associations
negatively impacts the performance on the test for all problem difficulties, however, easy
and difficult problems are differently affected. Relative to the performance on the RAT
without removal of associations (ϑs = 0), the drop in performance by 50 percentage points
occurs at lower threshold values for problems of medium difficulty compared to easy
problems. For easy items, a 50 percentage point decrease in performance occurs when all
word pairs of association strength ϑs = 0.23 (94th percentile) or less are removed, while
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for the items of medium difficulty this already occurs for the threshold value of ϑs = 0.12
(87th percentile). This effect is also observed for smaller drops in performance, when
comparing the performance on the RAT problems of medium and hard difficulty with
easy RAT problems, and when using a different number of words (here only shown for
15 words). This observation indicates that infrequent word associations are more impor-
tant for difficult RAT problems, as consistent with the theory of associative hierarchies
by (Mednick 1962).

4.3.2 Discussion

The neural network model of the semantic search process in the RAT, as presented in this
section, proposes a basic set of underlying cognitively plausible mechanisms. The model
is consistent with the theory of human semantic processing that postulates a process of
spreading activation in semantic memory (Collins and Loftus 1975). The semantic layer
in the model implements a localist representation of lexical knowledge as a semantic
network as well as the spreading of activity among units in the layer. In the context of
associative hierarchies used to characterize creative thinking (Mednick 1962) it is argued
that such processes occur at the subconscious level of semantic processing (Yaniv and
Meyer 1987; Collins and Loftus 1975). The WTA mechanism and the inhibitory layer
responsible for selecting a single word in the vocabulary are reminiscent of attentional
mechanisms mediating cognitive control attributed to the function of the frontal brain
areas (Fink et al. 2007; Kounious and Beeman 2014). The focus of attention is directed
towards a single word which is selected among several competing alternatives. Anterior
cingulate cortex (ACC) has been shown to play an important role in attentional switches
and conflict resolution in case of competing alternatives (Botvinick et al. 2004; Kerns
et al. 2004). We validated the model by analyzing its performance in the context of RAT
problems of varying difficulty and have shown that it is able to distinguish between easy
and difficult RAT problems in the normative RAT data set by Bowden and Jung-Beeman
(2003b).

While the proposed model is based on theories of semantic processing and cognitively
plausible mechanisms, aspects of its architecture are unlikely to be plausible in biological
terms. For example, every word in the model is represented with a single unit, which
is inconsistent with the theory of distributed representation in the brain. Even if such
a unit is interpreted as a population of neurons representing a concept, it is unlikely
that individual units in such populations contribute exclusively to the representation
of a single concept. Thus, the current model most closely resembles ideas within the
localist representational framework (Bowers 2009). In such a framework, it is argued that
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a single neuron or a small group of neurons represents word meaning. This approach is
often considered problematic in that it implies the existence of so-called “grandmother
cells” (Gross 2002). The underlying idea captured by this type of cells is that there are
neurons dedicated to specifically and uniquely representing a single concept (such as the
concept of a “grandmother”, for example). Some support for this type of representation
can be seen in studies recording from single-cells which show high degrees of specificity
in their response to external stimuli (Hubel and Wiesel 1968; Moser et al. 2008; Quiroga
2012). While such studies show that there are neurons exhibiting specificity, it has been
difficult to establish that they do so uniquely. In addition, and as discussed later in greater
detail, response specificity has also been observed with distributed representations, thus
overall providing little support for the theory of a localist representation.

Another requirement in the model is the mapping of units in the semantic layer
to corresponding units in the subsequent WTA and inhibitory layers. Instead of such
dedicated “winning” and “inhibitory” units for each word in the semantic layer, it is
possible that an alternative mechanism exists that relaxes the requirements on such a one-
to-one mapping. Compared to the current architecture, it is likely that such alternative
mechanisms would have better scaling properties. Finally, the activity of units in this
network is modelled with a non-decaying function, which is different from the activity
of biological neurons. Biological neurons instead have dynamic membranes that actively
respond to stimulation by emitting spikes. In the next section, we address some of these
issues and explore a biologically plausible extension of this model by implementing a
model using the Neural Engineering Framework (Eliasmith and Anderson 2003).

4.4 A Biologically Constrained Model

In Section 2.2.2 we discussed various neuroimaging studies that provide detailed char-
acterizations of brain regions involved in aspects of semantic processing, such as the
organization, retrieval and manipulation of semantic knowledge. A comprehensive
meta-analysis of such studies in Binder et al. (2009) further corroborates the view that
semantic processing is distributed across cortical regions. It also points out that such
regions are expanded in the human brain relative to the nonhuman primate brain, thus
emphasizing the distributed nature of language function in the brain. However, although
such studies provide a network-level perspective on the organization and the function
of semantic areas, they offer limited insights into how words and word associations are
represented by either individual neurons, or small groups of neurons. More specifically,
it is unclear what computational mechanisms operate at the level of individual neurons
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that contribute to the representation of words and associations. Understanding of such
mechanisms operating at lower levels is a daunting task due to the difficulty of locating,
accessing, and recording from relevant brain regions. More specifically, direct single-unit
recordings are technically complex, invasive and are only performed in controlled clinical
settings, typically with patients undergoing treatment for severe forms of epilepsy.

Given such challenges associated with the experimental approach to the study of
semantic processing, we argue that, nevertheless, neurocomputational models can pro-
vide useful insights for understanding the underlying neural mechanisms. In particular,
biologically detailed neural models provide a way to investigate plausible word represen-
tations in the brain. In the previous section, we discussed a model of the semantic search
process in the RAT that uses individual units to represent words and corresponding
word selection mechanisms. In contrast to the localist representation used in that model,
distributed representations in neural networks assume that a concept is represented by a
population of neurons (McClelland et al. 1987; Rogers and McClelland 2004), where each
individual neuron participates in the representation of multiple concepts. It has been
argued that the kind of data used to support localist representations is often exhibited
by distributed models (Stewart and Eliasmith 2011; Eliasmith 2013, p. 98–99, 369–370),
demonstrating the relationship between the two. Importantly, and as described later
in this section, the method for the distributed representation of concepts used to build
a biologically realistic RAT model here suggests that each neuron within a distributed
representation has a preferred state. This means that some neurons might be highly
specific, while others will have broad responses in the biologically informed distributed
representation used here (Stewart et al. 2011b). Despite arguments and evidence that
distributed representations are used in many parts of the brain, there is no agreed upon
approach to characterizing the representation of cognitive or linguistic structures using
such representations. In particular, it is an open question as to how such representations
support word associations and how theymight be employed in tasks requiring associative
processing.

To bolster the plausibility of the proposed neural network, we use the leaky integrate-
and-fire (LIF) neuron model that exhibits behaviours more similar to those of biological
neurons. We select this neuronmodel due to its favorable trade-off between computational
efficiency, analytical tractability, and its ability to capture some of the basic features
of neuronal dynamics observed in biological systems (Izhikevich 2007). In particular,
synaptic dynamics and noise from fluctuations introduced by spiking impose constraints
that a theoretical approach used to simulate neural systems needs to account for. The LIF
neuron model is a spiking neuron model as it imitates the spiking behaviour observed
in biological neurons. It is important to note that there is no explicit “translation” of

81



computations from localist units used in the previous model to to the LIF units here.
While for some functions this can be done more easily (e.g., representing a value in a
population of neurons), more complex mechanisms such as the WTA require a different
approach due to noise introduced by neurons’ spiking activity.

In biological neurons, electrically charged ions are exchanged across the cellmembrane
and an influx of positive ions into the cell can cause the neuron to trigger an action
potential (also known as a spike). A spike can be registered by another, receiving neuron,
if it has a synaptic connection with the neuron emitting a spike. In our modelling
approach, spiking neurons are also connected by synapses so that the arrival of a spike
at the side of a receiving neuron causes the post-synaptic current. In our model, the
relevant neuron and synapse model parameters such as the membrane and synaptic time
constants, and the shape of the post-synaptic currents conform to empirically measured
value ranges and properties. These constraints are ensuring that the modeled system
approximates the biological system and provides an account of the internal mechanisms
underlying the investigated behaviour.

The model presented in this section aims to provide neural account of the semantic
search process in the RAT while reproducing aspects of linguistic behaviours observed
with human subjects solving the task. To construct the model, we use the Neural Engi-
neering Framework (NEF; Eliasmith and Anderson 2003) discussed in Section 2.3.6. The
NEF allows us to derive the required neural network to implement the necessary repre-
sentations and transformations for performing the semantic search process in the RAT.
We describe the specific model in Section 4.4.2 and evaluation methods in Section 4.4.3.
These are followed with a discussion of quantitative and qualitative results.

4.4.1 Representing Words and Associations with the NEF

To model the word search process in the RAT, words and associations among them need
to be represented in connections or neuron activations. We adopt a representation where
the activity of several neurons contributes to a representation of multiple words. In the
NEF and the SPA, this is achieved by using vectors, or semantic pointers discussed in
Section 2.3.6, to represent words. With the random distribution of preferred direction
vectors ei, each neuron will be involved in the representation of multiple words and the
representation is distributed across the neurons.

Specifically, we generate random unit-vectors with the constraint that no pair of such
vectors exceeds a similarity of 0.1 as measured by the dot product. To fulfill the similarity
constraint, a sufficient vector dimensionality has to be used. For the N = 5,018 words
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used in the model, we set the dimensionality toD = 2,048 with 50 neurons per dimension.
The dimensionality was determined empirically by testing different values and selecting
the one that showed the most accurate and stable performance. This is still considerably
below the number of words, because the number of almost orthogonal vectors that can be
fit into a vector space grows exponentially with the number of dimensions (Wyner 1967).

Such vector-based word representations have been successfully used to implement a
variety of cognitive tasks such as the Tower of Hanoi task (Stewart and Eliasmith 2011),
inferential word categorization (Blouw et al. 2015) and Raven’s Advanced Progressive
Matrices (Rasmussen and Eliasmith 2014). These representations have been shown in
simulation to be robust to neural damage (Stewart et al. 2011b), and are consistent with
the type of distributed representation found throughout sensory and motor cortex (Geor-
gopoulos et al. 1986).

We next turn to the methods used to compute the connection matrix between groups
of neurons representing associations. These methods refer to algebraic operations and
we do not consider them to be a part of the model. Instead, we use the methods to
derive the matrix Ã, which is implemented in connection weights among groups of
neurons. The matrix Ã is used to describe associations between words, and it transforms
a word vector w to a linear combination of its associates. This matrix can be derived
from an association matrix A where Aij gives the associative strength from word i to
word j. To do so, we need to define the N ×D matrix V that collects all the word vectors,
i.e., row i of V is the vector representing word i. Then, we can state Ã = V >A>V .
Applied to a vector w, this will first correlate w with all the word vectors (V w) to yield
an N -dimensional vector indicating the similarity with each word; then A> is used to
retrieve the corresponding associations before V > projects those associations back into a
D-dimensional vector. As all of this collapses into a single linear transformation matrix
Ã, the retrieval of associations can be easily implemented with the NEF in the connection
weights between two groups of neurons, computing the function y = Ãx.

To set the values in the transformation matrix Ã on the connections between the cue
selection network and the response network (further elaborated below) we collect free
association norms (FAN) in the matrix A. The FAN dataset has been identified as a
reliable source of semantic information on the RAT, as shown and discussed in previous
sections. Our preliminary analyses indicated that a binary version of that matrix was
appropriate for the good performance on the task, so we set all non-zero values in the
matrix to one. In other words, for this version of the RAT task, just capturing the existence
of the association between any two words appears to be sufficient. To model individual
differences in associative networks and adjust solution probabilities to match the human
data, we randomly remove between 60% and 80% of associations in the matrix by setting
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them to zero. This range has been determined empirically. In Section 4.3 we studied
the effect of adjusting the threshold on task performance. Here, that approach is not
suited to study individual differences given that there are only two possible values in
the association matrix. Instead, by randomly removing connections we are modelling
individual differences as differences in the set of word associations in individual lexicons.

Our model assumes that the connection weights Ã are given, and here we do not
aim to explain the underlying developmental process that yields the data captured by A.
While such a developmental process is an important aspect of language acquisition, and
ontogeny in general, it is out of scope of this model. However, we re-visit this question
in Chapter 6, where we propose a mechanism by which learning of associative spatial
relationships occurs through cooperative behaviours in emergent communication.

4.4.2 Model Description

cue 1

cue 2

cue 3

bias

WTA

noise

reset signal

primary cue
WTA response inhibition

Ã

response

cue selection

response network

Group of neurons

net Network of neurons

WTA Winner-take-all network

Gating neurons

Flow of information

Inhibitory connection

Figure 4.6: The architecture of the RAT model. All neural groups, gating neurons, and
networks consist of spiking neurons. The cues, noise, and bias are provided as external
input to the model. The Ã label indicates the transformation, implemented on the
connection to produce the associates of the primary cue. Reproduced from Kajić et al.
(2017b, Figure 2).

The model is implemented using the Nengo neural network simulator (Bekolay et al.
2014) and it is depicted in Figure 4.6. Two major model components simulating different
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cognitive processes involved in solving of RAT problems are the cue selection network and
the response network. The cue selection network randomly selects one of the three input
cues as the primary cue, and repeats this process at certain time intervals to realize cue
switching typical of the search process in the RAT (Smith et al. 2013; Davelaar 2015). The
response network realizes the response search process by selecting a word associated with
the primary cue and previous responses.

We first describe the cue selection network. While all three cue words are provided
as input to the model, only one of them at a time will be regarded as the primary cue to
generate associations. This is consistent with the way humans generate responses, where
they are found to primarily attend to one cue at a time (Smith et al. 2013). In the model,
each cue vector is fed through a group of gating neurons, determining whether the input
cue vector will be forwarded and represented as the primary cue at the output of the
network. By default, all gating neurons are inhibited so none of them are forwarding
their corresponding cues. They are inhibited by a group of neurons biased to represent a
constant value of one (illustrated with “bias” in Fig. 4.6). Thus, in order to let one out of
three cues appear as the primary cue, the inhibition has to be turned off for one of the
gating groups. This will be done by a white noise-drivenWTAmechanism that randomly
inhibits one bias group, that in turn stops the projected inhibition to its corresponding
gating group. With one out of three gates open, one cue will be regarded as the primary
cue. This process will repeat after a certain time limit defined in the reset signal group.

In the response network a single associated word is selected by a clean-up associative
memory (Stewart et al. 2011a) with an added winner-take-all (WTA) mechanism. In the
associative memory, the input vector is correlated with the individual word vectors, and
each correlation value is represented by a group of neurons. In this way, the preferred
direction vectors are not randomly distributed as in other parts of the model, but the
preferred direction of every neuron and every group of neurons corresponds to one of
the words. Furthermore, these groups of neurons threshold the represented value at
0.1. Each group is connected with every other group with lateral inhibitory connections,
and to itself with a self-excitatory connection. This allows the group with the strongest
input to remain active, while inhibiting all other groups. Another feedback connection is
used to capture the evidence on the locality of search (Smith et al. 2013). This connection
implements a transformation Ã, so that the associates of the current response are fed as
additional input to the WTA network. In Figure 4.6, all of these recurrent connections are
denoted by a single feedback connection on the WTA in the response network.

The response inhibition plays a crucial role in allowing the next word to appear in
the search process. It is realized as a neural group acting as a leaky integrator. Without
external input, the represented vector will slowly decay to the zero vector. A recurrent
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Table 4.4: Free parameters of the RAT model. Reproduced from Kajić et al. (2017b, Table
1).
Parameter Value Description
d 2,048 Number of dimensions per word vector
th 0.6 to 0.8 Percentage of randomly removed associations in

the association matrix (varies with simulation)
assoc_th 0.05 WTA cut-off input threshold
cue_strength 0.1 Input strength of individual cues toWTAnetwork
primary_cue_strength 0.7 Input strength of primary cue to WTA network
wta_feedback_strength 0.5 Input strength of associates of current response

to WTA network
noise_std 0.01 Standard deviation of the zero-centered Gaussian

noise in the cue selection network
integrator_feedback 0.95 Strength of recurrent connection on response in-

hibition

connection feeding the output of the neural group back to itself prevents this otherwise
very quick decay. External input to the integrator will slowly shift the represented value
towards the input vector. This input is provided from the WTA network, while at the
same time the response inhibition is used to inhibit the WTA network. Thus, the active
word in the WTA network will be subject to increasing inhibition until finally a new
word is selected. This switch will typically happen before the vector represented by the
response inhibition shifted completely to the input vector. Because of that, the response
inhibition will represent an additive mixture of the sequence of the last few words and
prevents those from reappearing in the search process in short succession. The list of
free model parameters and their values that produce the described model behaviour is
provided in Table 4.4. The values have been determined manually by observing which
ranges produce stable word-selection behaviour.

Not all potential responses produced by the response network qualify as a valid
response to a RAT problem. Some words might be the result of an implicit priming effect,
where a previous response primed a word that is not related to any of the cues. Also,
it is reasonable to assume that participants in the experiment have typed only a subset
of words that they thought of. To account for these effects, we implement a filtering
procedure that regards only certain words as responses to a RAT problem. We examine
the effect of four different semantic sources on the filtering procedure: FAN, Google
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Ngrams, binary FAN (bFAN) and binary Ngram (bNgram). In Section 4.2 we showed
that both FAN and Ngrams contain associative links relevant for different RAT problems,
these datasets differ in important ways that may or may not influence the filtering process.
The filtering is implemented as follows: for every generated word, a similarity measure
to the problem cues is calculated and, if it is below a threshold, the word is dismissed.
The similarity is the sum of association strengths between every cue and the word.

4.4.3 Model Evaluation

The model is evaluated using a set of 25 RAT problems from Smith et al. (2013) by
comparing the model responses to the human responses from the same study. For each of
the 25 problems, we ran 56 simulations with different random number seeds to ensure the
independence of the results from the initial conditions, such as the choice of neurons and
word vectors. For the analysis of responses, we adapt a set of analysis tools from Smith et
al. (2013), which was originally developed to analyze human responses and characterize
memory search in the RAT. Thus, the same analysis tools are used for human responses
and model responses. While the experimental details about the data collection and
detailed descriptions of analysis methods are available in the original study, we present a
brief overview of the data and a description of the adapted methods.

The data set contains responses from 56 participants, which were given 2 minutes to
solve each RAT problem. Every participant was given 25 problems and was instructed to
type every word that came to their mind as they were solving the problem. Participants
indicated when they thought they had provided the correct solution word with a key
press. Thus, every trial consists of a sequence of responses from one participant to one
RAT problem, ideally endingwith the correct solution. Here, the analysis of responses has
been performed over 1,396 human trials and 1,400 model trials. For each RAT problem,
we thus ran 56 simulations, corresponding to the number of human participants. In 169
trials, human participants marked an incorrect response as correct, and we excluded
those from qualitative analyses, as they could have skewed analyses comparing how
participants approached the final answer on incorrect and correct trials.

For every trial we did a series of pre-processing steps, as per Smith et al. (2013). Word
pairs with words not available in the Free Norms or words identical to one of the cues
were excluded from the analysis. Responses repeated twice in a row were merged into
a single response. Then, we assigned a 300-dimensional word vector to every word,
including problem cues, the solution, and human responses. Those vectors were based
on the Word Association Space (WAS; Steyvers et al. 2004b), constructed by reducing the

87



dimensionality of an association matrix. This matrix was the WAS S(2) measure based on
the Free Association Norms, which includes not only direct association strengths between
two wordswi andwj , but also links across one intermediary word, i.e., associations from
wi to wk to wj . The similarity between words was measured as the cosine angle between
the assigned word vectors. To conclude the pre-processing, every response was assigned
the word vector with the highest similarity to the primary cue vector.

Metrics were calculated on the pre-processed data to evaluate the model. First, we
determined the average response similarity for within and across cluster response pairs of
adjacent responses. Clusters were defined on the primary cue of the responses; adjacent
responses with the same primary cue are considered to be part of the same cluster. This
was done to test for bunching of responses around cues by comparing the similarity
between word pairs in each cluster. The assumption is validated with a permutation
test for average response similarity by assigning cues from another trial and checking for
conservation of similarity trends. The average response similarity within clusters is
also computed in a cleaned data set, where all missing entries were dropped, which
yielded new response pairs. Second, the probability of switching primary cues is computed
as the number of response pairs with the different cues divided by the total number of
response pairs. This value needs to be compared against a baseline probability based on
the frequency each cue was selected under an independence assumption. This baseline
calculation is required because certain cues might be selected more or less often than
pure chance would predict. Third, the similarity between adjacent and non-adjacent responses
within a cluster is computed to test for the direct influence of the previous response on
the next one. The same is done for the responses with different primary cues, which
occur right at the cluster breaks. Fourth, we tested whether the similarity to the final
response increases as participants approach the final answer (either correct or incorrect).

4.4.4 Quantitative Results

The model solved on average 43% of the problems, showing a moderate correlation
(Pearson correlation coefficient r = 0.49, p < 0.05) with humans who on average solved
42% problems. The left panel of Figure 4.7 shows the accuracy on the 25 problems
averaged, respectively, over all model simulations and over all human subjects. By
applying the two-sided exact binomial test we find that for 14 out of 25 problems there is
a statistically significant difference (p < 0.05) between the human and model responses.3

3It should be noted that if the number of problems is increased sufficiently, then there will always
be a statistically significant difference for all conditions. For this reason, we take this test as a means of
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Figure 4.7: Left: Average accuracy on 25 RAT problems for model responses and human
responses. Error bars denote 95%bootstrap confidence intervals. Right: Linear regression
(Pearson correlation coefficient r = 0.49, p < 0.05)with 95%bootstrap confidence intervals.
Reproduced from Kajić et al. (2017b, Figure 3).

These results are expected given that there are some problems that are easier for humans,
and others that are easier for the model. On two problems—dust, cereal, fish; and speak,
money, street—the model accuracy was more than 35 percentage points greater than the
human accuracy on the same problems. On the other hand, there was one problem, safety,
cushion, point where the human score was more than 35 percentage points higher than
the model. However, based on the results in columns labelled “Humans” and “Raw” in
Table 4.5, we see that while the accuracy of this model is comparable to that of humans,
the model on average produces longer response sequences than the human response
sequences (40.20 versus 7.78).

To deal with this discrepancy, we consider that there is some filter applied between
the output of the model and the actual reported responses, as discussed at the end of
Section 4.4.2. In other words, we assume that the subjects do not actually write down all
the words that come to mind while performing the task. This means that only a subset of
all words produced by the model will be regarded as a set of responses to a RAT problem.
In particular, a word that has a connection strength to all three cues below a threshold
will be discarded. Thresholds have been determined as the lowest connection strength
between the sets of three cues and solution for all problems. In this way, filtering will
ensure that all solution words pass the filter. As a result, the accuracy and the correlation
with the human accuracies are independent of the filtering method. Table 4.5 summarizes

identifying problems where model responses deviate the most from human responses, rather than as a
measure of the quality of the model.
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Table 4.5: Quantitative analysis of raw and filteredmodel responses. Association matrices
used for the filtering are FAN: Free Association Norms, bFAN: binary FAN, Ngram,
bNgram: binary Ngram. Values significant at p < 0.05 are marked with *, significant at
p < 0.001 with ***. Reproduced from Kajić et al. (2017b, Table 2).

Filtering method
Analysis Humans Raw FAN bFAN Ngram bNgram
Filtering threshold 0.006 1 0.006 3
Shortest response sequence 1 2 1 1 1 1
Longest response sequence 49 46 39 40 27 33
Mean response sequence
length

7.78 40.20 16.99 17.47 8.33 8.44

– Correlation with human
data (r)

-0.30* 0.54*** 0.51*** 0.95*** 0.93***

the statistics for the raw data and various filtering methods. We compared the average
number of responses per trial, the shortest and longest response sequence, and the match
between distributions of response sequence lengths.

Overall, the Ngram matrix and the binary Ngram matrix yield distributions that
provide the best match to human data (r = 0.95 and r = 0.93, respectively). The threshold
for the binary Ngram matrix has been set to 3, so that a word will pass the filter if it
is an associate of all three problem cues. Reducing the threshold to two decreases the
correlation with the distribution to r = 0.36 (p < 0.05) and increases the average number
of responses per problem to 17.73. Figure 4.8 displays the distributions for all filters
plotted against the distribution of human responses. The Ngram-derived matrices are
more aggressive in filtering the responses, compared to the FAN-derived matrices. The
former preserve approximately 20% of words produced by the model, while the latter
did so for approximately 40% of the responses. Although the Ngram matrix and the
binary Ngram matrix yield comparably good matches with response distributions, in
the following analyses we use the binary Ngram matrix as it provided a slightly better
match for some of the qualitative analyses.
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Figure 4.8: Distribution of number of responses per trial for human responses and model
responses plotted as Kernel Density Estimates (Gaussian kernel, bandwidth determined
with Scott’s rule (Scott 1979)). Four different model distributions were produced with
four different filters (see text for details): Free Association Norms (FAN), binary FAN,
Ngram, and binary Ngram. Reproduced from Kajić et al. (2017b, Figure 4).
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4.4.5 Qualitative Results

In the following analysis, we study semantic characteristics of filtered response patterns.
We focus on the responses produced by the model that uses the bNgram matrix as the
source of association data. The analysis compares the similarity between two groups of
response pairs, where groups refer to primary cue assignment of response pairs (same
cue versus different cue) and their proximity in a sequence of responses (adjacent versus
non-adjacent word pairs). Such analyses performed with human responses (Smith et al.
2013; Davelaar 2015) showed that responses humans give tend to bunch around one of
the three problem cues, and that different cues can be selected while the search for the
solution unfolds. Also, responses show sequential dependence, where the next response
is dependent on the previous one. We use the set of analysis methods described in
Section 4.4.3 to explore whether model responses exhibit such similarity patterns.

Results are summarized in Table 4.6. To test for bunching of responses around problem
cues, we explore the similarity of response pairs with a common primary cue. The
similarity is greater for word pairs with the same cue compared to word pairs with
different cues (0.141 vs. 0.054; two-sided t-test t(9,915) = 20.4). This trend is preserved
when we use the permutation test, which randomly assigns cues from a different trial
(0.142 vs. 0.054; t(4,729) = 13.7). Evidence for sequential dependence of word responses
has been found by comparing similarities for word pairs within the same cluster; adjacent
word pairs within the same cluster are more similar than pairs that are further apart
(0.141 vs. 0.076; t(13,652) = 17.8). Additional evidence for sequential search arises from
greater similarity between adjacent word pairs with different primary cues compared to
non-adjacent word pairs with different primary cues (0.054 vs. 0.011; t(12,819) = 22.4).

We found that when the model produced a response, it produced another response
with the same primary cue in 54.4% of cases. As done in the previous studies (Smith
et al. 2013; Bourgin et al. 2014), we also analyzed the change in similarity between the
final response (either correct or incorrect) and each one of the ten words prior to the final
response. We identified a positive slope in similarity rates as responses were approaching
the final answer.

4.4.6 Analyses of Neural Responses

In the previous analyses, we demonstrated that our model provides a robust match with
the human data by comparing model responses with human responses. In this section,
we investigate characteristics of neural responses of individual neurons, as well as groups
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Table 4.6: Performance on the RAT and similarity patterns in the response search. Stated
95% confidence intervals are computed on the difference of reported mean values. Values
significant at p < 0.05 are marked with *, significant at p < 0.001 with ***. Reproduced
from Kajić et al. (2017b, Table 3).
Analysis Humans Model
Average problem accuracy 42% 43%
– Correlation with human data (r) 0.49*
Shortest response sequence 1 1
Longest response sequence 49 33
Average number of responses per trial 7.78 8.44
– Correlation with human data (r) 0.93***
Average response similarity
– Within vs. across cue clusters 0.189 vs. 0.041 0.141 vs. 0.054

CI: [0.134, 0.162] CI: [0.079, 0.095]
– Permutation test 0.182 vs. 0.040 0.142 vs. 0.054

CI: [0.124, 0.160] CI: [0.077, 0.100]
– Within vs. across cue clusters (cleaned
responses)

0.180 vs. 0.039 0.141 vs. 0.054

CI: [0.128, 0.154] CI: [0.079, 0.095]
Baseline vs. actual percentage of response
pairs with the same primary cue (two-sided
exact binomial test)

33.3% vs. 37.1%*** 34.2% vs. 54.4%***

Average similarity between adjacent and
non-adjacent responses
– With different primary cues (across clus-
ter)

0.041 vs. 0.016 0.054 vs. 0.011

CI: [0.063, 0.098] CI: [0.038, 0.047]
– With same primary cues (within cluster) 0.189 vs. 0.108 0.141 vs. 0.076

CI: [0.063, 0.098] CI: [0.057, 0.072]

of neurons, performing computations that underlie the word search process in the RAT.
Most observations in this section can be regarded as qualitative comparisons to spiking
patterns observed in cortical neurons.

Figure 4.9 shows an excerpt of the spiking activity in three different parts of the model
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Figure 4.9: Spikes and decoded values for three neural groups in the model. Data shown
are an excerpt from a longer single simulation run. From the top to the bottom, the
activity of neurons is shown in the following networks: the primary cue, the cue selection
reset signal, and the response. Line plots for the primary cue and response show the similarity
of the vector decoded from the activity of neurons with the ideal vectors (annotated for
clarity). The reset signal line plot shows the decoded scalar value. Reproduced from Kajić
et al. (2017b, Figure 5).

for the simulation the RAT problem with the cues widow, bite, monkey. Only a subset of
all neural activities in the networks primary cue, reset signal and response is shown (see
Figure 4.6 for a reminder on these networks within the model). The primary cue starts
as widow, but changes to bite about halfway through. This change is induced by the
rising reset signal inhibiting the cue selection and causing a reselection of the primary
cue. During the active period of either cue, the response neurons sequentially represent
different words associated with the cue. Note, while four associations are shown for
either cue, the number of responses generated during each active phase of a primary cue
differs.

The spike raster plots in Figure 4.9 and firing rate estimates in Figure 4.10 reveal
interesting neuron tuning properties. We observe neurons that appear to be selective
to cue words: some neurons only fire for widow (Fig. 4.10A), while others only fire for
bite (Fig. 4.10B) in the shown time span. However, it is important to note that we did not
test the response of these neurons to all possible cues and there are likely other words
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Figure 4.10: Firing rates of individual neurons. Spike trains where filtered with h(t) =
[α2t exp(−αt)]+ to obtain firing rate estimates. (A) Neuron responding to widow. (B)
Neuron responding to bite. (C) Neuron responding to both widow and bite to a varying
degree. (D) Neuron responding to both widow and bite with a more subtle difference. (E)
Neuron responding to varying degrees whenever a response is produced. Reproduced
from Kajić et al. (2017b, Figure 6).

that also elicit such responses. Notwithstanding, such selective and explicit response
behaviour is consistent with observations from single-neuron recordings in the medial
temporal cortex in humans (Quiroga 2012; Földiák 2009). We also observe neurons that
fire for both cues, but with different firing rates. This word-dependant change in firing
rate is more prominent for some neurons, for example, in Fig. 4.10C we see a neuron
that is active for both words, though noticeably more so for bite. The change is more
subtle for a neuron whose activity is depicted in Fig. 4.10D. The response population
also includes neurons that are primarily active when a word is being represented, but
not otherwise (Fig. 4.10E). From a single neuron perspective, of particular interest is the
reset signal. Here, the neurons produce a clear bursting pattern during the onset of the
reset signal. Such behaviour is often thought to need an explanation in terms of complex
neuron models that intrinsically burst (Izhikevich 2007), which is not a characteristic of
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LIF neurons. Such bursting behaviour occurs because of the recurrent network dynamics
producing the reset signal.

We have shown that the spiking RAT model presented in this section, constrained
by biological properties such as membrane and synaptic time constants, and the range
of neural firing rates, provides a robust match to human data, as demonstrated by the
exhaustive comparison between model and human responses. Thus, we argue, the
model connects different levels of explanation; at the neural level it proposes specific
computational mechanisms such as the WTA and the gating behaviour realized through
inhibition, at the cognitive level we observe two processes: cue selection and response
generation, both of which are consistent with empirical evidence on semantic search in
the RAT (Smith et al. 2013; Davelaar 2015). Finally, the model replicates response patterns
and achieves accuracy comparable to those of human subjects, showing that it is able to
solve the task and thus replicate important aspects of linguistic behaviours.

4.5 General Discussion

In this chapter, we investigated the neurocomputational basis of the semantic search
process in the Remote Associates Test (RAT), a task used in research on creativity and
insight problem solving. The theory of associative hierarchies by Mednick (1962) pro-
poses that highly creative individuals perform better on this task, as they are able to
think of unusual or less frequent word associations that are solutions to harder RAT
problems. Such arguments have also been supported empirically, as semantic networks
of individuals scoring higher on the test have been found to have small-world network
characteristics, which are of importance for efficient word search strategies (Kenett et al.
2014). However, it is unclear how such networks as well as processes operating on them
are supported by biological neural networks. To address this gap, in this chapter we
investigated two specific aspects of RAT solving: first, what sort of semantic data is most
suitable for finding solutions to RAT problems; second, what are different neurally and
cognitively plausible mechanisms that might realize semantic search underlying RAT
solving.

To address the first aspect, in Section 4.2 we analyzed the performance on the nor-
mative RAT dataset from Bowden and Jung-Beeman (2003a) using two different sources
of semantic data: Free Association Norms (Nelson et al. 2004) and the Google Ngram
dataset (Michel et al. 2011). We argued that the methods used to evaluate the datasets
are comparable to the cognitive strategy relying on insight, rather than explicit problem
solving. While we found that the Ngram dataset produces the most correct solutions,
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word association norms provided a closer match to human data. Somewhat surprisingly,
it was also found that latent structure representation as derivedwith SVD did not improve
performance on the task.

Using word association norms, we then presented a cognitive model in Section 4.3
that implements the semantic network and search processes involved in the RAT based
on a precisely tuned WTA mechanism and a layer of inhibitory neurons. The model
implements cognitively plausible mechanisms such as spreading activation and the WTA,
while distinguishing between the RAT problems of different difficulty. However, aspects
of such a model are unrealistic in biological terms, such as the localist representation
and poor scaling properties. To deal with such limitations, we extended that model
using the methods of Neural Engineering Framework (Eliasmith and Anderson 2003) in
Section 4.4. In particular, we designed its components to search for a solution in a way
that is consistent with what is known about how humans search for a solution to RAT
problems (Smith et al. 2013; Davelaar 2015).

The resulting model is constrained by biological properties such as membrane and
synaptic time constants, and the range of neural firing rates, while exhibiting a moderate
correlation with human performance on the test. We argue that the model bridges de-
scriptions at different levels of explanation, starting from the low-level neural mechanisms
(e.g., spiking activity) to cognitive processes (e.g., memory search) and behaviour (e.g.,
linguistic task solving). We corroborated this claim with a detailed analysis of model re-
sponses that replicate similarity patterns observed in human responses (Smith et al. 2013;
Davelaar 2015). The model has reproduced the pattern of RAT item difficulty correlating
with human accuracies on the 25 problems from Smith et al. (2013). Individual differences
in associative networks known to influence the performance on the test (Kenett et al.
2014) were modeled by randomly dropping a fraction of associations from the association
matrix.

Aside from the test accuracy, we also demonstrated that quantitative and qualitative
properties of model responses show strong correlations with human data, in particular
with aspects pertaining to response sequence lengths, bunching of responses around
single cues, cue switching, and sequential search. Those samemeasures have been used to
characterize human responses (Smith et al. 2013), as well as some model responses (Bour-
gin et al. 2014). While the probabilistic approach used in Bourgin et al. (2014) were also
successful in reproducing those effects, they made no reference to underlying cognitive
or neural processes. Interestingly, we found that the best match with the human data
was observed when the Ngram dataset was used in conjunction with a response filter-
ing method. These observations are somewhat at odds with conclusions obtained in
Section 4.2. We hypothesize that this could be due to several reasons. First, with the
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biologically plausible model, we focused on a different cognitive strategy that involves a
deliberate search process, in contrast to the more rapid insight-based process discussed
in Section 4.2. Second, with the model presented in this section we matched human
data more rigorously on a different dataset that consists of 25 RAT problems, where the
solutions appear to be mostly compound words, or word phrases involving the problem
cues. These features appear to be better captured with co-occurrence statistics present
in the Ngram dataset. Thus, these observations lead us to speculate that humans use
both the associative and co-occurrence semantic information when searching for a spe-
cific word, as they do in RAT problems. We argue that this spiking model offers a first
unified account of the RAT search process in terms of both psychological and biological
mechanisms. Consistent with evidence on single neuron responses, we have shown
that individual neurons in the model are capable of displaying both specificity, which is
commonly attributed to the theory of the localist representation in the brain, as well as
broad tuning that is commonly attributed to the theory of distributed representation.

We also point out that there are several aspects of the model that can be improved and
investigated further in light of additional human data. First, the primary cue switching is
induced in quite regular intervals in the model. While we cannot exclude the possibility
that this is the case in the actual cognitive process, we expect the actual process to be
more complex, and possibly depend on the RAT problem at hand. It would be interesting
to explore how changing this part of the model can improve the match to human data,
especially regarding the percentage of response pairs with the same primary cue. Second,
the filtering of potential responses could be further investigated by exploring a more
sophisticated process that discards less of the human and model responses, providing a
closer match with the plausible cognitive mechanism. Third, current analysis methods
filter out repeated responses, but these might give additional information on the search
process and considering their occurrence patterns would allow us to refine the response
inhibition network. Finally, the current model does not explain how humans learn word
associations, or how the process of learning relates to changes in connection weights that
store the relevant information. Since the acquisition of linguistic structure happens early
in childhood and continues to develop throughout adulthood, a full account of word
representation in the brain would also need to address learning at multiple time-scales,
as well as mechanisms which enable such learning. In Chapter 6 we revisit the question
of how aspects of such associations are learned in an interactive setup with agents solving
a collaborative task while situated in an environment.
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5 |
Associative Mechanisms in the Brain:
Semantic Fluency

In this chapter, we explore the neurocomputational basis of a semantic memory search
paradigm known as the semantic fluency task. The search process in the task unfolds
from a single cue word, and, compared to the search process in the Remote Associates
Test (RAT), discussed in the previous chapter, it is less constrained as it does not have a
single correct solution. Instead, all words that are generated according to the task rule
(e.g., “list all animals you can think of”) are considered as valid responses. Although
related, the semantic fluency paradigm is also different from the free association task
discussed in Section 3.1, as in the free association task participants are asked to produce
only one response that comes to their mind, or is meaningfully related to the given cue
word.

The semantic fluency task has been used to investigate how people retrieve related
items from memory (Bousfield and Sedgewick 1944). The responses they produce con-
form to a characteristic semantic pattern, where the words tend to group in clusters (Troyer
et al. 1997; Hills et al. 2012a). All words in such a cluster belong to one semantic sub-
category. In this chapter, we present and expand on the biologically constrained model
of the semantic fluency task first proposed in Kajić et al. (2017a). We show that some
model components and mechanisms are the same as those in the RAT model in Chap-
ter 4. Again, we use different sources of semantic data to model associative relationships
between words in the model, and evaluate which ones produce responses that reflect
characteristics of human responses on the task. Finally, we discuss the plausibility of
the model and the relationship between its components and their neurally plausible
counterparts.
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A) B) C)

Figure 5.1: A toy example of possible word responses in the semantic fluency task with
the cue word “animal”. Each colored area denotes a different animal category or cluster:
A is for pets, B is for farm animals and C is for African animals. Arrows denote the
sequence of responses.

5.1 The Semantic Fluency Task

Different verbal fluency tasks, also known as word generation tasks, have been used to
study how humans search memory when retrieving related items according to task
instructions (Thurstone 1938; Bousfield and Sedgewick 1944). In a typical fluency exper-
iment, an individual is asked to list as many words as possible, usually within a time
limit of 60 seconds. Two versions of the task are common: In the phonemic fluency task,
participants are asked to list all the words starting with a given letter, such as f or s. In
the semantic fluency task, they are asked to list all words that relate to a given cue word
such as animal or grocery items. In experimental settings investigating memory processes,
the tasks are used to study characteristics of the organization and retrieval processes
from semantic memory (Troyer et al. 1997; Abbott et al. 2015). In clinical evaluations of
patients with impaired memory function, the task is used to investigate and characterize
effects of different brain lesions on word retrieval (Randolph et al. 1993; Gourovitch et al.
2000; Benke et al. 2003).

The responses in the task tend to be grouped into clusters corresponding to subcate-
gories (Troyer et al. 1997), such as pets or farm animals. For example, responses might start
with the animals most familiar to an individual, such as dog, fish, cat, and then continue
with a list of farm animals such as pig, chicken and cow. Such responses can be categorized
in groups also referred to as clusters, as shown in Figure 5.1. Measures typically reported
to characterize the search process are the number of words generated, cluster switching
patterns, response times, word similarity trends, and so on.

Functional brain imaging studies have identified contributions of frontal and temporal
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lobes in the task. More specifically, frontal lobes have been implicated in the strategic
search process and category switching, while temporal lobes are involved in word clus-
tering patterns, verbal memory and temporal storage (Troyer et al. 1998). It has also
been shown that age-associated diseases, such as Alzheimer’s and Parkinson’s, cause
reduced performance on the task (Randolph et al. 1993). It is assumed that the loss of
neurons and synapses occurring in the Alzheimer’s disease negatively impacts cognitive
processes involved in the production of word clusters and animal exemplars within a
cluster (Binetti et al. 1995). The impairment of the basal ganglia function in Parkinson’s
disease affects the word retrieval process, so that affected individuals on average produce
fewer words in the task compared to healthy subjects (Raskin et al. 1992).

To explain the clustering trend observed in the responses, Hills et al. (2012a) suggest
that individuals generate responses according to the optimal foraging policy (Charnov
1976). Animals use such a strategywhen searching for food in natural environments: after
resources in one area have been depleted, animals continue their search for food in a new
spatial patch. In the context of the semantic fluency task, an individual listing animals in
a specific subcategory would stop listing animals from that category after being unable
to generate new items at a certain rate. Search behaviour suggestive of optimal foraging
has been reproduced with several different representations and algorithms, including a
random walk on a semantic network constructed from free association norms (Abbott
et al. 2015). Jones et al. (2015) attribute the simplicity of this particular algorithm to the
association norms being a direct result of an experimental design that is very similar to
the semantic fluency task. They argue that the fundamental memory retrieval processes
and representations are obscured by the data underlying the model and the behaviours
that are being explained. However, association data from sources other than association
norms, such as data learned from natural language, have also been used to successfully
reproduce human response patterns with random walks (Nematzadeh et al. 2016). Thus,
such alternative accounts argue that it is the structure of the network, rather than the
processing mechanisms that lead to responses that conform to the optimal foraging
patterns.

The modelling work presented here does not directly address the debate on the
structure versus mechanisms, as we assume that a structured semantic representation is
already available to the model, independently of how it is acquired. This differs from
the approach in Nematzadeh et al. (2016), where such representations are learned from
linguistic input and where assumptions on the origin of structure are made explicit.
Instead, assuming that the model is provided with a structured semantic representation
standing for semantic memory, we investigate how such representation can be realized in
a distributed way and how mechanisms operating on such representations can produce
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observed responses.
The existing models typically do not attempt to address neural or cognitive mecha-

nisms underlying the task performance. As such, these models remain largely agnostic
to two components of cognitive processes suggested by Troyer et al. (1997): clustering,
“the production of words within semantic or phonemic categories” and switching, “the
ability to shift efficiently to a new subcategory”. In what follows, we present a model
that we argue realizes semantic fluency search in a biologically constrained way, while
being consistent with proposed cognitive processes in the literature.

5.2 Biologically Constrained Model

We propose a network of simulated spiking neurons that is able to perform the semantic
fluency task in a manner that we argue is similar to human performance on the task.
While providing a good match with behavioural data, the model also proposes specific
neural mechanisms that may be involved in semantic processes. The components of the
model are discussed in terms of functionally and neurologically plausible counterparts
found in the human brain. The model performs the search based on associative weights
encoded within connections between neurons, resembling aspects of a random walk,
while conforming to constraints of neural computations. The noise resulting from spiking
neurons and the diversity in neuron parameter values lead to the response variability.

As with the biologically constrained RAT model presented in Chapter 4, we use the
NEF methods (Eliasmith and Anderson 2003) to implement the model in the Nengo
simulation environment (Bekolay et al. 2014). Given that both models implement a
semantic search process, there is a considerable overlap between model components
and mechanisms. As consistent with the theory of a distributed representation in the
brain (Huth et al. 2016; Rissman and Wagner 2012), we employ semantic pointers to
represent words.

5.2.1 Word Representations and Association Data

Since we focus on matching the human data from the semantic version of the fluency
task with a cue word animal, the vocabulary used in the model is restricted to animal
words only. Such words are represented by 256-dimensional unit vectors. The vectors
are generated randomly such that the similarity between any two vectors is generally less
than 0.1, a default value in the SPA framework. This ensures almost orthogonal vectors,
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Figure 5.2: A: Architecture of the neural network model performing the semantic fluency
task. Each box represents a population of spiking neurons. B: Neuronal spiking activity
in the model recorded from the population cue. Some neurons are actively spiking when
representing words dog, cat and donkey (highlighted area 1), while others only spike when
representing words dog and cat (highlighted area 2). The similarity between these spikes
and the ideal spike pattern for each word is shown above. Reproduced from Kajić et al.
(2017a, Figure 1).

with some overlap in the representation, meaning the same neurons will be involved in
the representation of different words. An example of this representational overlap can
be seen in the spike raster plot in the lower panel of Figure 5.2B, where some neurons
fire independently of the word they are representing, such as those whose activity is
highlighted with the number “1”. Other neurons are more selective and fire only when
representing a subset of all possible words, such as those labelled with the number “2”
in the same plot. In the upper panel of Fig. 5.2B, the similarity of the decoded spiking
activity is shown in terms of the words found in the overall vocabulary. Since the activity
of neurons is noisy, the decoded vectors can be more or less similar to the pattern as
defined by a canonical semantic pointer.

Associative relationships between words are represented as linear transformations
implemented in the connections between two groups of neurons, as with the RAT model
in the previous chapter. Word vectors are collected row-wise into a single matrix V and
associations between pairs of words are encoded into a matrix A such that Aij is the
association strength from word i to word j. We then express a new matrix Ã = V >A>V
to implement a transformation that multiplies the vector represented by the first group
of neurons by the matrix Ã and transmits the result to the second group. This operation
results in a weighted linear combination of vectors that represents words associated with
the word represented in the first group of neurons.
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Five different datasets are used to construct five association matrices A: Free Associa-
tionNorms (FAN;Nelson et al. 2004), GoogleNgrams (Michel et al. 2011), word2vec (Mikolov
et al. 2013a; Mikolov et al. 2013b), GloVe (Pennington et al. 2014), and BEAGLE (Jones and
Mewhort 2007). The FAN and Ngrams datasets have been introduced in Section 4.2 in
the context of the RAT model. Here, we use the asymmetric version of both matrices, and
for Ngrams we only use co-occurrences of bi-grams. The word2vec and GloVe datasets
were discussed in Sections 2.3.3 and in Chapter 3. We build association matrices for those
two models by calculating the cosine angle between two words, where the first word is
represented by a row and the second word is represented by the column. The BEAGLE
dataset (Jones and Mewhort 2007) is constructed from the semantic space model trained
on a 400M-word Wikipedia corpus, yielding unique vector representations for each word.
Cosine similarity is also used to compute the similarity between pairs of word vectors,
analogously to GloVe and word2vec. Here, we use pre-computed similarities between
pairs of animal word-vectors as in Hills et al. (2012a). We restrict the vocabulary size
associated with each dataset to 157 words, corresponding to the number of unique animal
words extracted from human responses.

5.2.2 Model Description

The architecture of the model performing the semantic fluency task is depicted in Fig-
ure 5.2A. Functionally, themodel can be divided into two components: the semantic system,
and the action selection system, approximately corresponding to two cognitive components
of clustering and switching as suggested by Troyer et al. (1997). In terms of their biological
correlates, the semantic system can be thought of as representing areas of the medial
temporal cortex, and the action selection system as representing the basal ganglia and
the thalamus. The action selection system maintains two possible phases: initializing the
task and performing the task.

The initialization phase is active only at the beginning of a simulation, where external
input is used to drive the goal1 population of neurons to represent the vector start. The
second phase consists of performing the task itself, and occurs once a cue is provided.
After the task has been initialized, the action selection system (consisting of the basal
ganglia BG and thalamus THAL populations) switches to the process of generating word
responses within the semantic system. The recurrent action selection system maintains

1We use italics to refer to the name of a population of neurons or the vector that is represented by that
population, which is to be inferred from the context. The bold font is used to refer to labels assigned
to vectors representing a word. For example, cue · animal refers to the dot product between the vector
represented by the population of neurons labeled “cue” and the vector corresponding to the word “animal”.
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Table 5.1: Utility calculations for different goals and the corresponding actions. Repro-
duced from Kajić et al. (2017a, Table 1).

Goal Utility calculation Action
1. Start goal · start Set cue to animal, set goal to

think

2. Think goal · think + response_magnitude− 1
Copy response to cue, add response

to responses, set goal to think

3. Default 0.4 Set cue to animal, set goal to
think

word generation by simultaneously evaluating utilities of actions and selecting the action
with the highest utility value. Table 5.1 shows the mapping between utility calculations
and corresponding actions by the action selection system. Since the external input initially
sets the goal to start, the action selection system will select the first action due to its high
utility value. This action will feed the vector animal as input to the population cue, and
set the representation in the goal population to think. This action can be interpreted as
the instruction “list all animals you can think of”.

Next, the semantic system begins to generate associations of the word animal within
the association network. The connection between cue and the association network implements
the transformation Ã, as described in the previous section. The association network then
represents a vector which is a linear combination of word-vectors associated with animal.
For example, there might be a representation corresponding to the vector: 0.5·cat +
0.4·dog + 0.1·fish. Coefficients represent association strengths between each individual
word and the word animal, as derived from the associationmatrixA. AWTAmechanism
within the network selects the vector with the largest coefficient, and projects it to the
response population. In this example, the response population would now represent the
vector cat.

When a response has been generated, the action selection system selects the second
action (see Table 5.1) due to its high utility value. This action projects theword represented
in response (e.g., cat) to cue, simultaneously adding it to the representations stored in
response memory. The goal continues to be think. This process within the semantic
system continues, with the action selection system selecting the second action most of the
time. To prevent the same responses from re-appearing immediately, response memory is
implemented as a neural integrator population. It projects inhibitory connections to the
association network in order to suppress representations of words previously generated as
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Table 5.2: List of model parameters. Reproduced from Kajić et al. (2017a, Table 2)
Name Value (unit) Explanation
d 256 Dimensionality of word vectors

assoc_th 0.3 (or 0.25) Default WTA input threshold (Ngram, BEAGLE thresh-
old)

ccs 3 Cue to association network connection strength
cfs 0.2 Cue feedback connection strength
cinh −5 Response memory to association network inhibitory connec-

tion strength
τsyn 100 ms Synaptic time constant between association network and

response
τsyn 5 ms Synaptic time constant (default)

max_rate 200 Hz to 400 Hz Range for maximal neural firing rates (default)

responses.
The last action with a fixed utility value of 0.4 is selected if utilities of all previous

actions have evaluated to a lower value. This occurs when the system is unable to come
up with a new response (e.g., the WTA mechanism takes too long to decide between two
words). While rare, when this situation occurs, the action selection system sets cue to
represent the input animal and the goal is set to think, which can also be interpreted as
the “switching” pattern observed in human responses.

Table 5.2 lists the major parameters in the model. Most of them have been left at their
default values as defined in Nengo software (Bekolay et al. 2014). Some parameter values
(e.g., maximal firing rates) are selected randomly. Each time the model is run, a new set of
such parameters are chosen. Such diversity in parameter settings is a first approximation
of differences in cognitive processing that may occur across cortical regions of different
individuals.

5.3 Results

We ran 141 model simulations for each of the five association matrices (Beagle, Ngram,
FAN, word2vec and GloVe) and compared the results with human data from Hills et al.
(2012a). The number of simulations corresponds to the number of participants in the
experiment. For each comparison, we performed the same analysis with model responses
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Figure 5.3: A comparison between model responses (blue) and human responses (yellow,
reproduced fromHills et al. (2012a). A: Pairwise similarity between a word and the words
preceding it within the same categorical cluster. B: Pairwise similarity between subse-
quent words. C: Inter-item response times (IRT) between subsequent words. Standard
errors of the mean are shown with error bars in all plots.

107



cat → dog → fish → giraffe → elephant → hippo 
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Figure 5.4: A toy example of six responses in two colour-coded clusters in the semantic
fluency task: pets in red, and African animals in green. Numbers refer to relative item
indices: A for within cluster similarity in Fig. 5.3A, and B for word similarity across
clusters as well as timing data in Fig. 5.3B and C.

that were conducted with the human data in the original study. The simulations were
run until the average number of responses produced by the model matched the average
number of responses produced by participants within three minutes.

For each simulation, we recorded the sequence of the model’s responses (as decoded
vector representations in the response population), and inter-item response times (IRT) as
times between the onset of the current response and the previous response. The onset of
the current response is defined as the moment when the vector represented in the response
population matches any of the pre-defined animal word vectors in the vocabulary. A
match is defined a dot-product of at least 0.8, a threshold that has been found empirically
to produce the desired behaviour. We only consider relative timings, that is, the time
differences between responses. A mapping to the absolute timing, that is, a mapping
to exact times as reported in the human experiments would require a model of other
cognitive and sensory-motor processes that are beyond the scope of this model. Model
responses were pre-processed in the same way as the human data, using the set of scripts
provided publicly by the authors of the original study. Each response produced by the
model is assigned an animal category, and the clusters are identified as sequences of
responses within the same category. An animal that could be assigned to two clusters is
assigned to both.2

The first analysis compares the pairwise similarity of a word in a cluster (also re-
ferred to as a patch) and each of the five words preceding it. The results are shown in

2See Troyer et al. (1997) for more detailed description of the categorization procedure.
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Figure 5.3A. The graph presentation in the figure follows that of the original study to
aid the comparison, however, for clarity, in Figure 5.4 we included a toy example that
illustrates the meaning of indices on the x-axis in Figure 5.3. The similarity shown on
the y-axis is computed as a dot product between two BEAGLE vectors corresponding
to the two words in a word pair. The reproduced results for human data in Figure 5.3A
confirm that the word most similar to the recent word in the patch is the one preceding it,
observed by the gradual increase in the average word similarity as moving from the index
−5 to −1. It has been argued that this similarity trend supports the theory of locality
in a memory structure (Hills et al. 2012a). For the model, this trend is observed with
the Ngram and the FAN association matrices, with Ngrams providing a closer match.
The effect is not observed with the BEAGLE, GloVe or word2vec association matrices, for
which the pairwise word similarity remains flat across different word positions in the
cluster.

The second analysis compares the pairwise similarity of subsequent items, relative
to the position of an item in the cluster, with results shown in Figure 5.3B. With human
responses, the lowest pairwise similarity occurs at the cluster transition points, indicated
by “1” on the x-axis in the figure as well as in Figure 5.4B. That point shows the average
similarity between the first word in a cluster and the last word in the previous cluster.
For example, in Figure 5.4B that is the similarity between the words fish and giraffe. For
humans, themean similarity µ at the cluster switch is µ = 0.92with the standard deviation
σµ = 0.01. The model using the FAN data yields comparable results with µ = 0.93 and
σµ = 0.01. This effect was weakly observed with the Ngram (µ = 1.00, σµ = 0.01) and
BEAGLE datasets (µ = 1.01, σµ = 0.01), and less so with GloVe and word2vec (both
µ = 1.02, σµ = 0.01), as the word similarity at the transition point remains above a
subject’s average.

The third analysis is concerned with the position of a word item within a cluster
and the speed of generating that word. The ratio between the average IRT for an item
and the participant’s mean IRT over the entire task is shown in Figure 5.3C. Human
participants take the most time to produce the first word in a new cluster (reported
t(140) = 13.14, p < .001) and the least time to produce the second word in a new cluster
(reported t(140) = 11.92, p < .001). This effect is the hallmark prediction of the optimal
foraging strategy, suggesting that cluster switches occur when the current IRT increases
over the mean IRT value. Figure 5.3C shows that the model using the FAN association
matrix exhibits the same effect. It takes significantly more time to generate the first words
in a new cluster (t(140) = 4.78, p < .001), compared with the second words in the cluster
(t(140) = 4.78, p < .001). Interestingly, the effect is also significant, althoughmuchweaker
for the word2vec dataset, for both the first item (t(140) = 3.08, p < .005) and the second
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Figure 5.5: A comparison of distribution lengths between the model responses and
responses generated by the models using the word2vec, FAN and Ngram matrices.

item (t(140) = 3.50, p < .005).
Lastly, we expanded the set of analyses with an additional comparison of average

cluster length distributions. These lengths are calculated for each sequence of responses
by counting the number of words in a cluster. Those computed from human responses
are then compared with those generated by the models, using the matrices that showed a
good match with the human data, namely the word2vec, FAN and Ngram datasets. The
distribution of cluster lengths over the number of clusters with corresponding lengths are
plotted as histograms in Figure 5.5. In all cases, the models on average produce clusters
with fewer words: while for human responses the average cluster length is µ = 2.61, it is
µ = 2.03 for FAN, µ = 1.28 for word2vec and µ = 1.43 for Ngram. Also, the maximum
cluster length for human data is 11, while for models that number is smaller for the model:
8 for FAN, and 4 for Ngram and word2vec. These results indicate that, compared to
human responses, model responses are characterized by more frequent cluster switches.
In summary, we conclude that across different analyses conducted here, the FAN matrix
provides the closest match with the human data.

5.4 Discussion

In this chapter, we proposed a biologically constrained neural network model of cognitive
processes involved in the semantic fluency task. We evaluated the model on five different
semantic datasets: Free Association Norms, Google Ngrams, word2vec, GloVe and

110



BEAGLE, by embedding association strengths extracted from the datasets in connections
between neurons within a large recurrent network. We explored which of the datasets
provides the closest match with the human data from Hills et al. (2012a). In doing so,
our focus was on identifying plausible, causal neural mechanisms for performing the
semantic fluency task.

The word similarity trends and inter-response timing patterns of responses produced
by themodel are consistentwith predictionsmade by optimal foraging theory as proposed
byHills et al. (2012a). More specifically, the model is more likely to switch to a new animal
category when when the average similarity of subsequent responses drops below, or
gets close to, the overall mean similarity. While this effect was observed with all five
association matrices, it was most pronounced with the FAN matrix. Also, the Ngram
matrix as well as the FAN matrix produced responses that support the hypothesis on the
locality of search in the memory as described by the increased similarity of subsequent
responses within a cluster.

The analysis of timing effects allowed us to clearly distinguish between the five ma-
trices in terms of their matches with the human data. The model using FAN exhibited
the same timing effects as observed with human responses, which is that of increased
time needed to produce the first word in a new cluster, and decreased time to produce
the second word. This timing effect was weakly observed with the word2vec dataset, al-
though FAN provided a closer match. None of the effects observed with other association
matrices were significant. Finally, we qualitatively analyzed how closely the distribution
of cluster length responses produced by the model matches that of human responses. On
average, model responses show more frequent cluster switching compared to the human
data. Out of analyzed datasets, the effect was most prominent for word2vec and Ngram,
while the FAN produced cluster lengths that were on average longer and thus closer to
human data.

The ability of association norms (FAN) to model aspects of the search process in the
semantic fluency task is likely due to the similarity between cognitive processes involved
in the fluency task and in the free association task, as pointed out by Jones et al. (2015).
However, this result could also be seen as support for the plausibility of the proposed
neural mechanisms, as they are able to generate behaviours in accordance with these
underlying associations. We expect that a better understanding of cognitive processes in-
volved in free associations could aid understanding of the processes underlying semantic
fluency. Our model may prove useful in exploring a variety of possible ways that such
associations are neurally realized, as the direct embedding in connection weights as done
here is only one possibility.
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When building biologically constrained neural models, timing is a highly constrained
property of a model—the timing of responses is sensitive to both neural time constants
and our characterization of the concept representation. As such, timing is an inherent
property of the model, and only some ranges of parameters influencing the timing of
responses in the model, such as synaptic time constants, will yield the desired behaviour.
This is one of the major differences compared to models based on semantic networks,
where the timing function needs to be specified by the modeller. For example, Abbott
et al. (2015) assign a discrete timestamp to each response based on whether it is unique
in the sequence and depending on the number of previous, non-unique responses. In
our model, we needed to explicitly control for exclusion of repeated responses, which we
did with the response memory, a network that inhibits recent responses from appearing
again, simulating the function of working memory in the fluency task.

We also identified that a longer synaptic time constant (τsyn = 100 ms) was needed be-
tween the association network and the response populations to stabilize the representation.
This observation can be interpreted as a prediction that this network will be rich with
NMDA receptors in the biological system, as such receptors are known to have longer
time constants in the range of 50 ms to 100 ms (Sah et al. 1991). In comparison, the more
common AMPA receptors have time constants in the range of 5 ms to 10 ms (Destexhe
et al. 1994). NMDA receptors are found in hippocampus, and their function has been
implicated in cellular learning andmemorymechanisms in brain areas such as the medial
temporal lobe, neocortex and others (Gazzaniga et al. 2014).

Our characterization of the neural concept representation also has an effect on the
timing responses. Specifically, we have observed that the dimensionality of employed
vector representations needed to be sufficiently large to achieve experimentally observed
timing effects. While we find that d = 256 suffices for this purpose, a systematic search of
dimensionality effects on the performance is needed to see how it affects the behaviour.
We have tested this model with lower values (e.g., d = 64) and it produced results in
support of local search strategy, yet it failed to provide a good match with the timing data.
In related literature, it was suggested that d ≈ 500 is necessary for representing human-
scale conceptual structures (Eliasmith 2013), which is consistent with our observations.
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6 |
Behavioural Basis for the Emergence of
Linguistic Structure

In previous chapters, we investigated the neurocomputational basis of cognitive processes
involved in different semantic memory search paradigms. Our experiments have demon-
strated that the most accurate match with human data on those tasks was achieved with
biologically realistic models using free association norms as a source of semantic informa-
tion (Nelson et al. 2004). Such results affirm the importance of associative relationships
in a variety of linguistic behaviours. While we have shown how such associations might
be realized in the brain, we have not yet addressed the mechanisms underlying learning
of associations, or any aspects thereof. In Section 2.2, we discussed stages of language
acquisition, including the process of word learning and grammaticalization, all of which
are inextricably linked to the process of learning of inter-word relationships.

In this chapter, we focus on one specific behavioural aspect of learning of associative
relationships. We investigate representations learned in a cooperative communication
paradigm using reinforcement learning (RL). The agents are required to communicate
useful information in order to jointly complete the task. However, they need to agree
on a communication protocol in order to do so. We study the emergent communication
system, the mapping between learned signals and meanings, and discuss the properties
of the system in the context of some fundamental linguistic features. Parts of this chapter
have been adapted from Kajić et al. (2020).
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6.1 Language as a Collaborative Effort

In Section 2.1.2, we discussed the notion of language as a form of joint, coordinated action,
as proposed by Clark (1996). According to such a pragmatic view of language, the context
providing meaning extends beyond that of linguistic conventions—instead, it depends on
many different factors. For example, such factors at the level of linguistic adaptation are
aspects of the social, the physical and the technological environment (Lupyan and Dale
2016). At the level of individual communicative acts, the relevant factors are intentions
of the people involved (Grice 1975). This versatile and adaptive nature of language is
also evident in studies showing that humans possess a striking ability to adapt their
communication in light of changes to such factors: for example, by coordinating their
actions to rapidly develop novel communication systems that exhibit core features of
natural language (Bohn et al. 2019; Galantucci 2005).

The study of emergent communication systems and emergent languages is gener-
ally challenging as “established human communities have very little need to originate
novel communication systems” (Galantucci 2005). A few exception are sign languages
developed by deaf children born to hearing parents (Goldin-Meadow and Feldman 1977;
Goldin-Meadow 2005), and “contact” languages such as pidgin and creole that develop
out of a communicative need between communities that do not share a common lan-
guage (Siegel 2008). Thus, the majority of communication systems used are studied as
the end product, with no opportunity for experimental manipulation to examine the
influence of different factors on the resulting system. Consequently, the emergence of
linguistic structure is often studied in experimental setups using artificial languages and
communication systems (Kirby et al. 2008; Little et al. 2017; Galantucci 2005), as well as
using computer simulations with artificial agents (Cangelosi and Parisi 2012; Brighton
and Kirby 2006; Steels 2004). While such agents are limited in their capacity to capture the
complexity of human cognition and behaviour, they offer a valuable testbed for exploring
the influence of various factors on the emergence of linguistic structure.

In recent years, emergent artificial languages and their relationship to natural lan-
guage have been increasingly studied using interactive multi-agent setups in RL. In such
setups, agents endowed with a communication capability learn to reason about novel
signals while being situated in environments (Li and Bowling 2019; Lazaridou et al. 2018;
Mordatch and Abbeel 2018; Kottur et al. 2017). In contrast to “passive” approaches, such
as learning of word embeddings from large corpora of text, as discussed in Section 2.3.3,
these setups offer an experimental platform for “active” learning through interactions
with the environment. Such interactive learning experience is more likely to resemble,
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or capture, environmental conditions and pressures faced by humans and AI systems
acquiring or learning languages.

Emergent communication is often studied in the context of cooperative games, such as
the signaling game of Lewis (1969), where two agents, a sender and a receiver, act jointly
to achieve a common goal (Li and Bowling 2019; Lazaridou et al. 2018). In such a game,
the sender sees an artifact (e.g., an image) and uses a communication channel shared with
a receiver to transmit a message (e.g., a symbol or a sequence of symbols). The receiver
then conditions its decision on the message to select the target object among distractors.
Both agents are rewarded if the receiver selects the target. Senders and receivers are thus
able to perform actions and observe the outcome to adjust their behaviour, in line with
the view of language as form of joint action coordination (Clark 1996).

Communication protocols in such games exhibit some level of structure reminiscent of
natural language. In particular, compositional structure is foundwith end-to-end training
on disentangled input data (Lazaridou et al. 2018) or by introducing environmental
pressures during training (Li and Bowling 2019). While referential games provide a
useful paradigm for investigating conditions that give rise to communication protocols
with natural language-like properties (Kottur et al. 2017), the resulting communication
policies are often difficult to interpret (Lowe et al. 2019). Moreover, the agents’ actions
in such setups often do not affect the environment, as the sender and receiver are each
restricted to one choice of action.

Here, we extend such a referential game paradigm as a navigation task, while investi-
gating relationships in the meaning space of emergent signals. We introduce a control
component where an agent needs to reach a specific, to it unknown, location in the envi-
ronment by relying on signals received from another agent that knows the location. This
extension of the task is akin to a situation in which a tourist asks a stranger on the street
for route directions to a particular location in a city they are visiting for the first time.
Such directions are likely to contain the description along the lines of “Go up this street,
take the 2nd street to the right, then 1st to the left”. We show that the communication
protocol learned by our agents exhibits features that can be interpreted in a similar way,
while being optimal for this task, as demonstrated by agents’ performance on the task.
In addition, we demonstrate that when a population of agents coordinates their joint
description of a route, even without knowing each other’s descriptions, the protocol
exhibits structure, where individual messages encode different spatial aspects of the
environment such as left, up, or upper left room.

One difference between our work and related research is that we make minimal
to no assumptions about the properties of the communication protocol, or the reward
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agents receive. For example, in this line of research, it is common to use RNNs to encode
messages, but this explicitly biases protocols to have sequential structure. By using
populations of independent senders, we show that structure also emerges even without
assumptions on the order of symbols. Furthermore, we quantify the optimality of the
protocol and show that, in many cases, and depending on the dimensionality of the signal
space, the agents learn an optimal communication protocol. Such optimal signals exhibit
similarity structure, insofar that signals used to encode spatially proximal locations are
more similar than those encoding spatially distant locations.

6.2 Methods

The task we propose in this section situates agents in an environment, and augments
their communicative actions with a set of behavioural, non-communicative actions. More
specifically, one or multiple senders communicate signals to the receiver that acts upon
the signals using non-communicative actions to reach the goal state. Thus, the two agent
types are assigned a mutually exclusive set of actions, and, in order to complete the task
successfully, they need to learn to coordinate their actions. This inductive bias enforces
collaboration between the agents, as the optimal performance on this task requires action
coordination. Another assumption refers to their communicative ability, which, in this
case, is restricted by the model used to produce the signals (for the sender) and the model
used to interpret those signals (for the receiver).

6.2.1 The Navigation Task

We consider a cooperative navigation task, where the sender sees the goal location in a
gridworld environment, and in response to seeing the location, it sends a message to the
receiver. The receiver sees the message, and has to navigate to that goal location to collect
the reward. The receiver, however, does not know where the goal location is. When the
receiver reaches the goal location, both agents are rewarded. Thus, the receiver relies
on the information received by the sender, and it is in their mutual interest to “agree”
on useful signals so that the receiver can reach the goal. In our experiments, we study
characteristics of the communication protocol as the number of signals varies while the
number of possible goal locations stays the same. We refer to the number of signals
as the communication channel capacity, and discuss it in Section 6.3.1. Communication
channel capacity and goal locations can be interpreted as the signal space and meaning
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Figure 6.1: Both the sender and the receiver see the gridworld environment, yet only the
sender sees the goal location. It selects a message action (a single symbol) based on the
one-hot encoding of the goal location. The receiver selects a navigation action based on
the multi-hot input vector that encodes its own location and the message. Reproduced
from Kajić et al. (2020, Figure 1).

space, respectively, in the context of related literature describing language as a mapping
between the signal space and the meaning space (Brighton and Kirby 2006).

In a given task setup, there is exactly one receiver, and at most five senders. At the
beginning of each episode (t = 0), the goal location in the environment is determined
by placing a reward at a random, non-occupied location. The sender observes the goal
location and it emits a message m from a vocabulary V , with |V | = N . All messages
are represented as single discrete symbols, and in this case we use natural numbers
as symbols. The message is stored by the environment and provided as part of the
observation available to the receiver. Themessage observation persists at each subsequent
time step t > 0. The sender performs no more actions until the end of the episode. For
the sender, we interchangeably use the terms “message” and “message action”.

After t = 0, the receiver observes its own location and the message, and performs a
navigation action. This process repeats until either the goal state is reached or the episode
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terminates with the probability pterm. Because the episode can be terminated randomly
at each step for the receiver, the environment is non-deterministic. The average episode
length T , given the probability pterm, can be derived by considering all possible path
lengths l by

T =
∑
l

l · pterm · (1− pterm)(l−1). (6.1)

The path length l is the number of steps the receiver took, excluding the possibility
that the episode terminates before the fist step. If the episode terminates because the
receiver reached the goal state, both the receiver and the sender are rewarded with the
reward r = 1, otherwise r = 0.

The receiver always starts at the centre of the map. If the setup involves a population
of senders, the interaction remains as described, except that the message emitted at
t = 0 consists of an array of symbols [m1,m2, ...,mM ], wheremi is the message emitted
by the i-th sender andM is the number of senders. A single sender does not have any
information about message actions selected by other senders, and selects its ownmessage
action independently of actions by others.

6.2.2 Experimental Setup

The Sender Agent

A sender is modelled as a contextual N -armed bandit that selects one message action
m out of N possible messages. It selects the message based on the static context vector
c ∈ Rd, where d is the size of the gridworld (d = height× weight). The dimensionality of
all gridworlds used in the experiments here is 5×5, thus resulting in 25 locations. The
uppermost left location is denoted as (0, 0), and the lowermost right location as (4, 4).
The context is a one-hot vector that encodes the goal location by having a single “1” entry
corresponding to the location of the reward position, where the location has beenmapped
from (x, y) coordinates to a single integer index {1, ..., d}. In setups with multiple senders,
each one of them has its own vocabulary that it uses to select messages. Thus, the items in
an individual sender’s vocabulary are unrelated to items in another sender’s vocabulary.
In the experiments, we varied N to study the effects of compression on task performance.
In particular, we examine the characteristics of the communication protocol when there
are more or less messages compared to the possible reward locations in the environment.

The i-th sender’s action-value function Q(·) is implemented as a single layer feed-
forward neural network parameterized by θsi . The loss used to adjust neural network
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parameters during training for a single sender is

Lsi(θsi) =

{
0, 0 ≤ t < T(
Rt −Q(c,mi; θsi)

)2
t = T,

(6.2)

where Rt is the reward received at the end of an episode of length T , c is the context
vector andmi ∈ Vi is a message action. Message actions are selected with the ε-greedy
policy, where the agent selects a randommessage action with ε probability, and the action
with the highest Q-value with the 1− ε probability. For simplicity, the ε value is the same
for all senders and is determined empirically using hyperparameter search as the one
yielding the highest average return on the task. Other hyperparameters are listed and
discussed in the subsection 6.2.2 on the environment and training. The implementation
of a sender agent is schematically shown in Figure 6.1A.

The Receiver Agent

The receiver is implemented as a Q-learning agent (Watkins and Dayan 1992) with a
neural network representing action-values and parameterized by θr. After t = 0, which
is when it is the receiver’s turn to act, the environment provides it with an observation
ot = [pt, m̄1, m̄2, ...] at each time step t, where pt is a one-hot encoding of the receiver
position, and each m̄i is a one-hot encoding of the message emitted by sender i. ot is
provided as the input to the neural network, and outputs are Q-values for each of the
four possible navigation actions (up, down, left and right). An action is selected using an
ε-greedy policy, and the TD error (Sutton and Barto 1987) is used to compute the learning
loss

Lr(θr) =

0, t = 0(
Rt + γmaxaQ(ot+1, a; θr)−Q(ot, at; θr)

)2
, 0 < t ≤ T.

(6.3)

The loss is set to zero for the first time step, because only the sender selects an action
at this point, therefore not affecting the receiver’s network. Finally, the total loss can be
expressed as

Ltotal =
∑
i

Lsi(θsi) + Lr(θr). (6.4)

While the total loss is expressed as the sum of the receiver’s loss and individual sender’s
losses, during the backpropagation process only relevant weights for each network will
be adjusted. For example, after the receiver executes a navigation action in one step, it
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Table 6.1: Hyperparameters used to train different sender-receiver agent configurations.
Reproduced from Kajić et al. (2020, Table 1).
Name Values Description
M [1, 2, 3, 4, 5] Number of sender agents
C [3, 4, 5, 8, 9, 16, 25, 27, 32, 36, 64] Communication channel capacity

(NM )
η [5 · 10−5, 1 · 10−4, 5 · 10−4, 1 · 10−3] Learning rate for RMSprop
εs [0.01, 0.05, 0.1, 0.15] Sender’s action exploration rate
εr [0.01, 0.05, 0.1, 0.15] Receiver’s action exploration rate
γ [0.7, 0.8, 0.9] Receiver’s Q-learning discount factor

layout [Pong, Four room, Two room, Flower,
Empty room]

Environments (see Fig. 6.2)

will either get the reward or not—this information will be used to adjust the weights of
its neural network as the derivative of the loss function with respect to only those weights
will be greater than zero. Sender’s weights will be only adjusted at the end of the episode.
These computations are implemented as a computational graph in Tensorflow (Abadi
et al. 2016) that automatically tracks the propagation of losses and their assignments to
corresponding parts of the nodes in the graph. The loss is minimized using the RMSprop
optimization algorithm (Hinton 2014).

In order to additionally incentivize the agents to adopt efficient behaviours, such
as reaching the goal state using the shortest possible path, the random termination
probability is set as pterm = 1 − γ, where γ is the discount factor in the Q-learning
algorithm. This ensures that each episode terminates, and we examine the effect of
different pterm values. This can be also achieved in a different way, for example by setting
the reward to −1 for each step where the receiver is not at the goal state.

The Environment and Training

Each experiment consisting of a sender-receiver agent setup is trained for 20 million steps
in one gridworld environment. Each step is a step within a single episode, and the length
of the episode is determined by the termination probability pterm, so that on average
each episode consists of 3, 5 or 10 steps. Shorter episodes impose an additional pressure
on agents to act efficiently. Five gridworld environments: Pong, Four room, Two room,
Flower and Empty room used in experiments are shown in the upper panel in Figure 6.2.
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Figure 6.2: Upper panel: The five different gridworld environments used in experiments.
Blue cells represent walls. Reproduced from Kajić et al. (2020, Figure 2). Lower panel: An
example of optimal message distributions for different goal locations in all environments.
A single number at a location is the message a sender would send if that particular
location was the goal state. The locations are colour-coded for redundant presentation to
match the message content.

Blue locations in an environment are inaccessible to an agent, representing walls. The
centre of each map, which is the starting point for the receiver, is at (2, 2). Table 6.1 lists
hyperparameter values, and their descriptions, that were used across experiments. In
experiments that contain more than one sender, all senders have the same ε value, and
the same vocabulary size N . The number of available messages depends on the number
of senders, and is selected so as to allow a fair comparison among different configurations
in terms of the total number of messages (more details are provided in the following
sections). In the analyses, we select the runs with the best performing learning rates and
exploration rates, resulting in approximately 180,000 experiments.

6.3 Results

We first analyze the agents’ performance on the task, expressed as the average training
returns. The upper panel in Figure 6.3 shows the returns sampled at regular intervals
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Figure 6.3: Mean training return curves for different sender-receiver agent configurations
with baseline comparisons (Q-learning, Random and Theoretical maximum. Reproduced
from Kajić et al. (2020, Figure 3).

during training for different sender-receiver configurations, for the first 12 million steps
to highlight convergence trends. The highest possible return for each environment is
indicated by a gray line, and is calculated as the average of all possible discounted
rewards in the given environment, when using the optimal policy (i.e., the shortest path
to each location from the centre). The figure also shows comparisons with two additional
baselines: a single, non-communicating Q-learning agent that sees the goal, as well as
a random baseline, which consists of a sender emitting random messages. In the latter
case, the receiver’s optimal strategy is to treat the messages as noise, and learn to visit
every possible location in the environment in search for the goal.

Based on the training curves, we make two major observations. First, communicating
agents are able to successfully solve this task, as shown by the learning curve approaching
the theoretical maximumvalue. The performance of communicating agents is comparable
to that of a single Q-learning agent. Second, we observe that different combinations of
communicating agents, and in particular the configuration consisting of a single sender
and a single receiver, often display faster convergence than the single Q-learning agent.
This is apparent in all environments, except in the Empty room environment where they
are comparable. We note that this could also be due to the lack of extensive tuning of
neural network hyperparameters, such as the number of units in the hidden layer or the
regularization factors.

From our experiments, it appears that the single Q-learning agent was more affected
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Figure 6.4: Increase in average return depending on the channel capacity C, defined as
the total number of messages C = NM in a setup. Each plots shows all environments,
yet one is emphasised for the comparison with others. This is a categorical plot and 95%
bootstrapped confidence intervals are shown as bars which are not always visible. Abbre-
viations: Return*=Return normalized by theoretical maximum. Reproduced from Kajić
et al. (2020, Figure 3).

by the lack of hyperparameter tuning, but our goal was not to examine the conditions
under which the agents perform optimally on this task. Instead, we are interested in the
coordination problem when two or more agents need to cooperate to solve the task, given
individual restrictions on the action space. The task is purposefully designed to be suffi-
ciently simple to yield an interpretable solution to the coordination problem that allows
us to understand the influence of different environmental pressures on communicative
success.

Finally, we note two reasons why the training curves do not reach the theoretical
maximum. First, these were generated in the training regime, which contains some level
of random behaviour as determined by the ε-greedy strategy. Second, these curves are
averaged over all communication channel capacities, and for some of them the task cannot
be solved optimally with the Q-learning algorithm (discussed later).

6.3.1 Communication Channel Capacity

The capacity of the communication channel, C, is defined as the total number of messages
used in an agent setup, and is computed as C = NM . Recall, N was defined as the
number of messages available to a sender, andM as the number of senders in a setup.
For example, C = 16 corresponds to the following setups: 1 sender with 16 messages,
2 senders with 4 messages each, or 4 senders with 2 messages each. We examine the
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relationship between the channel capacity and the average return normalized by the
theoretical maximum.

We know that the agents should perform well on the task if the size of the communi-
cation channel is the same as the number of non-occupied locations in the environment.
In this case, every message can be used to uniquely identify one location. However, we
are particularly interested in understanding the meaning of messages when the size of
the channel is small compared to the number of possible goal locations. For example,
if there are only 3 or 4 messages available, the sender needs to compress information
about goal locations and use a single message to convey information about several goal
locations.

Figure 6.4 shows normalized returns for different sizes of the communication channel,
averaged over all agent setups. A single point on a curve is an average return computed
over all sender-receiver agent configurations that use the total number of messages that is
indicated by the corresponding channel capacity C on the x-axis. In all environments, we
observe two distinct curve regions: a linear increase in the performance with every mes-
sage added to the communication channel, and a plateau where adding more messages
does not improve performance. These regions are most apparent in the Empty room and
Two room environments, where we see an increase in performance up to approximately 8
or 9 messages. For the Pong environment, the peak is reached at about 4 messages, and
there is a slight drop in performancewhen 8 ormoremessages are available. We speculate
that the restrictive features of the Pong environment make the task more difficult when
agents have an abundance of messages available, although it is not entirely clear how.

The point after which we observe little to no improvement is different for each environ-
ment, and it approximately corresponds to the smallest number of messages needed to
encode shortest paths to all possible goal locations. For example, in the Pong environment
4 such paths exist, so when the goal is located anywhere on one of the paths, the agent is
guaranteed to reach the goal using the fewest steps possible, if it knows which path to
take. For all other environments, there are 8 such paths. The lower panel in Figure 6.2
shows examples of such optimal paths for each environment. Such path configurations
may not be unique, as for some environments there are multiple shortest paths to each
goal location. In this context, we refer to a path or a route as a contiguous sequence of the
same message label in an environment. Such paths are also colour-coded in Fig. 6.2 for
redundancy. Section 6.4.1 on solution optimality provides a detailed explanation on how
the smallest number of messages needed for an optimal solution is found. Thus, while
having 8 (or 4 for Pong) messages requires agents to compress information about goal
locations, this compression still allows them to optimally solve the task, and can be seen
as a form of lossless compression.
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Table 6.2: Spearman’s rank correlation coefficients ρ between communication channel
capacity and the performance in the subcapacity regime.

pterm .10 .20 .30
Empty room 0.89 0.92 0.93
Flower 0.89 0.85 0.84
Four room 0.85 0.93 0.90
Pong 0.65 0.71 0.65
Two room 0.92 0.93 0.92
All p < .001.

Subcapacity and Supracapacity Regime

The subcapacity regime is defined as 5 or fewer messages in total for Pong, and 9 or fewer
messages for all other environments. Approximately, these thresholds correspond to the
channel capacity regions in which agents need to use lossy compression (subcapacity) or
not (supracapacity). In the subcapacity regime, increasing the capacity of the communica-
tion channel by adding an additional message strongly correlates with the improvement
in performance for all environments, as shown in Table 6.2.

We also investigate the relationship between the environment structure and the nor-
malized performance. While there are several possible interpretations of the meaning
of “environment structure”, here, we consider structure as a measure of the uniqueness
of the optimal receiver’s policies. We quantify it as the inverse of the total number of
shortest paths to each location in the environment. The number of shortest paths for
each location can be calculated iteratively, since only steps “forward” (i.e., starting from
the centre towards a corner of the map) are allowed. Then, the number of shortest steps
needed to reach one location can be expressed using a recurrence relation, based on the
number of steps needed to reach locations that lead to that one.

Following this procedure, we obtain the following values: 1
14

for Pong, 1
22

for Four
room, 1

32
for Two room, 1

44
for Flower and 1

64
for Empty room. According to this definition,

Pong is the environment with most structure, and Empty room has the least structure. This
measure is also related to the amount of empty space in an environment, as environ-
ments with more empty space are less structured. To examine the relationship between
environment structure and performance, we first encode layouts as categorical variables
by enumerating them, starting from the layout with the least structure, up to the layout
with the most structure. Spearman’s rank correlation coefficients are computed between
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Table 6.3: Spearman’s rank correlation coefficients between the environment structure
and the average normalized return. Abbreviations: S=Sender, R=Receiver.

pterm
.10 .20 .30

Agent Setup
Subcapacity (low)
(C = 3, 4)1 1S-1R 0.030 0.311** 0.462***

2S-1R 0.397* 0.465** 0.640***
Subcapacity (medium)
(C = 5, 8, 9) 1S-1R -0.047 -0.202* -0.230**

2S-1R -0.194 -0.447*** -0.387**
3S-1R 0.531*** 0.581*** 0.610***

Supracapacity
(C > 9) 1S-1R -0.437*** -0.656*** -0.636***

2S-1R -0.626*** -0.533*** -0.534***
3S-1R -0.581*** -0.635*** -0.654***
4S-1R -0.418** -0.494*** -0.782***
5S-1R -0.414** -0.381** -0.588***

3C = 3 for Subcapacity (low), C = 4 for Subcapacity (medium) and C > 6 for
Supracapacity for Pong, see text for details. ∗p < .05. ∗∗p < .01. ∗∗∗p < .001.

the layout variable (ordinal) and the normalized return (continuous) and reported in
Table 6.3.

We find some evidence that agent pairs in the subcapacity regime, specifically in the
low subcapacity regime of C = 3, 4 and pterm > 0.1 achieve higher normalized returns
in environments with more structure. In this case, the structure is helpful insofar as
walls in an environment restrict possible paths for the receiver, making it easier to solve
the navigation problem. This effect reverses when more messages are added to the
communication channel, so that there is a negative correlation between performance and
structure. We speculate thatwhile havingmore choices (i.e., messages)might be beneficial
for layouts with more empty space, the same can hinder learning in environments with
fewer empty locations.
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6.3.2 Emergent Communication Protocol

In this section, we analyze agents’ policies in order to qualitatively characterize the learned
communication protocol. To this end, we show a few selected examples from different
experiments to interpret and highlight aspects of meaning of learned messages. Later, in
Section 6.4.1 on optimality of solutions, we quantify effects and observations made in
this section, and show that observations which follow from the examples shown here are
not “cherry-picked”, instead, they are indeed consistent across experiments.

First, we examine what kind of information is conveyed by senders’ messages by
manipulating goal locations, and observing what effect the manipulation has on the
emitted messages. The manipulation consists of placing the goal at all possible locations
in an environment. We also analyze the receiver’s policy by manipulating messages and
observing the resulting navigation trajectories in the environment. Therefore, we will be
predominantly concerned with the following two questions:

1. What message does the sender choose for goal (x, y)?

2. Where does the receiver go if it receives a message m while at location (x, y)?

To address the first question, we repeat the process depicted in Figure 6.1A by manu-
ally setting goal locations to all possible (x, y) locations. From a trained sender-receiver
experiment, we use the sender’s network, and probe it with a one-hot encoded vector that
represents a single goal location (x, y). We then use greedy action selection (ε = 0) to select
a message at the output. This process is repeated for all goal locations for an environment,
thus obtaining a single message for each non-occupied location in that environment.
Then, to obtain the same display as in the lower panel in Figure 6.2, locations with the
same message are colour-coded, yielding a single plot in Figure 6.5.

The figure shows message distributions from 25 different experiments, each one
corresponding to a different 1S-1R setup in all environments, and for different channel
capacity sizes. The centre, corresponding to the location (2, 2), is left blank in all plots,
as the starting position of the receiver can never be a goal location. The figure shows
that messages in the subcapacity regime, C = 3, 4, 9, are typically assigned in such a way
to cover a region in space, or a path. The effects of lossy compression are particularly
noticeable when C = 3, 4—in those cases, a single message is used to encode multiple
goal locations. Such regions are also interpretable. For example, when C = 3 in the Pong
environment, a single message encodes left of the centre, and in the Two room environment,
a single message encodes right of the centre. C = 3 is a particularly interesting case for
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Figure 6.5: 25 examples of different sender policies from different experiments including
one sender and one receiver. Channel capacity sizes (C) are shown in rows, and different
layouts in columns.
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a Q-learning agent in some environments, as the agent bases its next action only on its
current location and the message. As such, it cannot learn a strategy where it “goes back”
to a previously visited location and select a different action in that state. For example,
once the agent enters the left corridor in Pong (C = 3) upon seeing the message “1”, it
learns to navigate either up or down in that corridor. It is only due to random action
selection that it visits the other part of that corridor. Due to this restriction, agents in
this setup can never perform optimally, in a sense that they will never use the shortest
possible path to all possible goal locations. Finer spatial interpretations emerge with
C = 4, where message clusters encode regions that can be described as individual rooms,
such as those in Four room, or equal and symmetrical areas of space, as those in Flower
(C = 4) or Empty room (C = 4).

As we increase the size of the capacity channel, we observe that messages start encod-
ing shorter paths to all possible goal locations, as seen for C = 9 in Figure 6.5. Adding
messages shortens the average path length that the receiver takes to reach the goal, which
explains why we see such improvements in the subcapacity regime in Figure 6.3. In most
cases in Figure 6.5 (C = 9), a single message is used to signal goal locations lying on the
same shortest path, but we also observe cases where a single message is used to encode a
single goal location (e.g., “7” and “3” in Four room, or “3”, “5” and “6” in Two room).

This effect becomes even more prominent as we further increase the number of
messages in the communication channel. The paths tend to “disintegrate” into several
ones, such that a single message encodes fewer locations, as observed with C > 16. In
this regime, there is a strong tendency to use a single message to encode a single location.
For example, the Empty room setup is shown for C = 64 in Figure 6.5, where each location
is uniquely encoded with a distinct message. There are other interesting path formations,
such as discontinuous paths labelled with messages “15” or “12” in Four room (C > 16).

Next, we examine receiver policies by answering the second question above: Where
does the receiver go if it receives a message m while at location (x, y) ? To answer this
question, we repeat the process shown in Figure 6.1B by setting ε = 0. For each message
and for each location we observe one of the four possible answers corresponding to the
movements: up, down, left and right. In the subcapacity regime where information
is compressed so that a single message indicates multiple locations, we observe that
the receiver adopts a “sweeping” strategy. Figure 6.6 shows the receiver’s policy for
the sender’s policy Empty room (C = 4) in Figure 6.5. For each message in that setup,
the receiver’s greedy actions for each location (x, y) are depicted as arrows. That is, a
single arrow at a location answers the question we asked above. Iteratively answering
the question, starting from the centre of the map, yields a trajectory in the space.
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Figure 6.6: Receiver’s policy: Navigation trajectories as actions with the highest Q-value
for each location and each messagem for Empty room (C = 4). Red and blue lines show
trajectories outside the region encoded by the message that can also lead to the goal
location. Reproduced from Kajić et al. (2020, Figure 5).

Highlighted regions in individual subplots in Figure 6.6 are those where the sender
would emit the same message, provided that the goal is located at any of the locations in
that region. Starting at the centre of the map and following the trajectory in each plot, we
notice that such a trajectory visits each highlighted location only once, before looping
back to a previously visited location. The path defined by that trajectory is a Hamiltonian
path, and therefore an optimal one for this specific case in the subcapacity regime. This
is optimal behaviour because each location is visited exactly once using the shortest path
possible given the constraints (i.e., the communication channel capacity). We emphasize
that the shortest path given these constraints is not the same as the shortest path without
such constraints. For example, let us consider the plot labelled with m=“0” in Figure 6.6.
If the sender used a unique message for every location in this environment (e.g., C = 25),
the receiver could reach the location (0, 2) in just two steps, instead of 6 steps (as shown
in the plot for C = 4).

A few trajectories outside the highlighted regions in Figure 6.6 show effects of ε-
greedy exploration strategy. Red trajectories originate from locations that do not lie on
the Hamiltonian path, but eventually lead the agent to the region encoded by the current
message that contains the reward. The blue trajectory leads the agent to the correct region
of space where the goal is located, but the agent might still fail to find the goal, if the
goal is located at either of the two locations closest to the centre. Due to randomness
in exploration, when the receiver finds itself in a random location, it partially learns
to recover from the deviation. This effect is somewhat consistent across experiment,
although it is not present in all simulations (i.e., not all trajectories outside of highlighted
regions will lead to the goal location).
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6.3.3 Multi-sender Agent Setup
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Figure 6.7: Upper panel: An example sender policies for five different experiments
consisting of two senders and one receiver (2S-1R). Lower panel: An example sender
policies for a single experiment in the Four room environment with five senders and one
receiver (5S-1R).

In this section, we take a closer look at learning behaviours in experimental setupswith
two or more sender agents. In particular, we examine properties of the communication
protocol when information about the goal location is encoded using multiple messages.
We investigate and characterize the relationship between messages emitted by different
senders, and discuss it in the context of task performance, as well as in relation to some
core properties of language.

Previously, for setups with a single sender, each (x, y) location in the gridworld was
described by a single message m. With multiple senders, each emitting one message,
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a location is now described by an array [m1,m2, ...,mM ], where each symbol mi in the
array is the message emitted by the i-th sender. It is worth noting that this representation
is not quite a sequence (as one might expect when referring to the outputs of an RNN,
for example), as there is no inherent ordered relationship in this representation. More
precisely, it is a network design decision to “stack” neural networks vertically to represent
receiver’s input (as depicted in Figure 6.1B), and this design decision ties meaning of
each specific message to its position. Another consequence of this design decision is
that messages are unrelated, since every sender has its own vocabulary. For example, a
message might be [1, 1], denoting that both senders emitted a “1” when the reward is
located at some particular position, but since those are independent symbols, there is
no inherent relationship between those two symbols. That is, we could have decided
to encode the message as [A, 1], [1, A], or [a,A], since each sender’s vocabulary contains
mutually exclusive items. Amessage can be meaningfully interpreted as long as we know
how each symbol in the message maps to a corresponding sender’s vocabulary. Therefore
the order matters only insofar that each symbol can be matched to a corresponding
sender.

As previously done with sender-receiver setups with one sender, we first discuss
senders’ policies in multi-sender setups based on their qualitative properties. A few
selected sender policies for multi-agent setups are shown in Figure 6.7. The upper panel
shows results from five different experiments, one conducted in each environment. A
single experiment consists of a (Sender #1, Sender #2) plot, since each sender selects a
message for every location in an environment. The communication channel capacity
size in each experiment is C = 4, as each sender’s vocabulary V contains two messages
(V ∈ {0, 1}). The lower panel shows sender policies in one experiment in the Four
room environment with five senders and two messages, thus having the communication
channel capacity C = 25 = 32.

Looking at the selected examples shown in the upper figure panel, we observe a highly
coordinated, regular, and interpretable pattern of message allocations. For instance, if
the first sender allocates messages by partitioning the space according to one axis, the
second sender does the same with a different, possibly orthogonal axis. For example, in
the Pong environment, Sender #1 partitions the space according to the y-axis, using the
message “0” to denote “down” and “1” to denote “up”. Sender #2 then partitions the
space according to the x-axis, by assigning message “1” to all goal locations to the left
of the centre, and “0” to all goal locations to the right of the centre. Similar partitioning
patterns are observed in other environments. For example, Sender #2 in Four room, as
well as Sender #1 in Flower, partition the space diagonally. One feature of the partitioning
schemes in examples shown is that each sender allocates one message for about the half of
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all locations, and another message for the other half. Although we enumerate senders for
easier identification, we note that there is no training requirement that imposes any kind
of order in message assignment process. Therefore, independent senders coordinate the
assignment of messages to goal locations, even though they do not directly have access
to information about each other’s messages. The only signal impacting this coordination
process is the joint reward r that is of the same value for all of senders. In later sections,
we analyze the optimality of the solutions and show that solutions are highly consistent
with each other in terms of their geometry, as well as the behaviours they afford to the
receiver.

If we interpret the representation [m1,m2, ...,mM ] as a single messageM consisting
of individual symbolsm1,m2, ..., then, we argue that the meaning ofM is determined
by the meaning of its constituents. More specifically, a location or a region in space that
is described byM derives its meaning from individual spatial descriptions afforded
by each individual mi. In linguistics, cognitive sciences and psychology, the type of
relationship where the meaning of complex expression is determined by the structure
and the meaning of its constituents is known as compositional structure (Fodor and
Pylyshyn 1988; Jackendoff 2002). The representations we use here are constrained in such
a way that they are unable to capture the complexity of structure in natural language. As
such, the aspect of compositional structure observed here is rather limited in comparison
to that attributed to natural language. As well, the notion of compositionality in language
is often discussed in the context of language unboundedness, as given the finite number of
words, it is possible to understand an effectively infinite number of word combinations.
This property is known as productivity, and it gives language its expressive power. In
our case, where messages are created by concatenating individual symbols into arrays,
productivity is limited as the length of the message is bounded by number of elements in
an array, and by the number of possible identities of those elements. This is a consequence
of a design decision that could be alleviated in different ways, for example, by binding
fillers to their roles and collecting them together, as done in the SPA.

Quantitative Analysis of Multi-sender Performance

For different multi-sender setups we examine the effects of message redundancy and sender
redundancy. Message redundancy refers to the property where unused messages carry
some information that is useful for the receiver needing to reach the goal. An unused
message is defined with respect to a location, and it is a message in a sender’s vocabulary
that is not used to encode that specific location, as it has a lower Q-value than the
dominant message. For example, in Figure 6.1A such unused messages would be those
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represented by the orange and green output nodes for the sender’s neural network for the
location (0, 0). Thus, if there is any redundancy present, when using such a non-dominant
message, there should be an increase in performance compared to a random baseline.
To investigate message redundancy, we only consider messages with the second highest
Q-value. To evaluate the performance, we re-run experiments in the test setting with
the following modification: we replace one message in the sequence emitted by senders
with a message with the second highest Q-value. In a test setting, learning is disabled
for both agents, as well as the exploration (ε = 0). In addition, there is a timeout of 10
steps, which means that if the agent does not reach the reward within that number of
steps, the episode terminates with 0 reward. This modification is performed for each
message in an array of messages, such that for one sender-receiver setup consisting ofM
senders, we getM modifications. For each modification, we calculate the average return
by simulating 1,000 test episodes of the task. Then, we calculate the performance drop
in average return with respect to the non-modified version of the experiment. We also
include a random baseline condition, where the message sequence in the communication
channel is intercepted and replaced with all random messages.

Similarly, we define sender redundancy as the relative impact of individual senders on
the task performance and evaluate it by replacing a message in the message array with a
random, different message in each episode. By doing this, we are effectively replacing
that sender with a random sender, and study how well the receiver performs in such
a condition. We examine the performance in a similar way to message redundancy, by
letting trained agents perform the task for 1,000 episodes (ε = 0), replacing a single
message out ofM messages in a way just described. This is also done iteratively for each
message in a single experiment, and we calculate the average return after completing all
episodes.

The results of message redundancy and sender redundancy evaluations, including the
random baseline, are shown in Figure 6.8. The results are shown as drops in performance
compared to the learned behaviour without any interventions to the communication
channel. Overall, we see that setups with more senders are more robust, as evidenced
by smaller performance drops. But even in those cases, the performance drops are
still substantial, ranging from about 55% (for 5S-1R setups) to about 70% (for 3S-1R
setups). There is a weakly significant difference (p < 0.01) in performance drops between
sender redundancy and message redundancy conditions for the 2S-1R setup. In this
case, the performance drop is about 2% smaller for the message redundancy condition,
meaning that using the message with the second highest Q-value is better than using a
random message. This difference is not significant for 3S-1R setup, and it is non-existent
in other cases. These two conditions are exactly the same for 4S-1R and 5S-1R setups:
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Figure 6.8: Average drop in task performance caused bymodifying the message sequence,
with a random message (sender redundancy) or the message with the second high-
est Q-value (message redundancy). 95% bootstrapped confidence intervals are shown.
**: p ≤ 0.01, ****: p ≤ 0.0001.

sender agents in those two setups have only two messages in their vocabularies, and in
both setups replacing the dominant message corresponds to picking the other available
message. Both drops are significantly (p < 0.0001) smaller than the performance drop
observed with a random baseline. We conclude that only 2S-1R setup exhibits weak
redundancy in a non-dominant message.

While these results show that interfering with anymessage in an array of messages has
severe effects on the task performance, they reveal little about the relative contribution
of individual messages. That is, they do not provide any information on the impact
of individual senders on overall task performance. We perform an additional set of
experiments to investigate whether messages from all senders contribute equally to the
receiver’s ability to solve the task. If all messages are equally important, we expect to see
an equal drop in task performance when we scramble each message separately, leaving
other messages unmodified. To test this hypothesis, we plot the results for all 5S-1R trials,
where we sort performances by the amounts of their drop compared to setups with no
modifications, in descending order. Thus, for one 5S-1R pair we get five data points,
corresponding to five returns, where each return was computed over 1,000 episodes
with one randomized message. The randomized message in this particular case is the
other, non-dominant message since in this setup each sender has only two items in the
vocabulary. We compare those returns to the baseline, which is the performance of trained
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Figure 6.9: Average drop in task performance caused by scrambling each sender’s mes-
sage in 5S-1R setups. 95% bootstrapped confidence intervals are shown. *: p ≤ 0.05,
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agents without any modification to the communication channel, and report performance
drops.

The results shown in Figure 6.9 display a gradual decrease in performance drops
with each subsequent sender. We can therefore reject the hypothesis that each sender
contributes equally, as interfering with a message from some senders will result in higher
drops than interfering with messages from other senders. Scrambling the message from
a single sender can cause a performance drop anywhere from 10% to 92%. To some
extent, this phenomenon appears to be environment specific. For example, the drop in
performance is consistently smallest for Pong for the second or higher sender ID, and it
consistently remains highest for Empty room. This gradual decrease in drops observed
with “less important” senders can be explained by the saturation of the communication
channel. Once the goal location has been uniquely identified with a fewmessages, adding
more messages does not provide any new information.

To better understand the differences in performance drops between different senders,
we examined more closely setups in which they occur. One such setup is shown in
the lower panel in Figure 6.7. In this setup, the biggest drop in performance (100%)
is observed when scrambling the message emitted by Sender #4, which partitions the
space according to the y-axis. In this particular case, the message emitted by this sender
can be considered as “the most significant bit”, since toggling it will direct the receiver

136



to the wrong side of the map, where it will not have a chance to find the reward. The
second highest drop (58%) in this setup is found when scrambling the message sent
by Sender #1, and the smallest (45%) for Sender #3. The same pattern is observed in
other experiments where a single sender uses its messages to partition the space in a way
similar to Sender #4. Other assignments of messages such that each message is assigned
to the half of all possible locations, and the other message to the other half does not
yield a 100% drop in performance. It is unclear what are the benefits of having a single
dominant sender in this setup, and we speculate that this phenomenon might emerge
due to its ease of learning. However, further analysis of the training data is needed to
obtain more conclusive results on learning outcomes.

6.4 Optimality of the Communication Protocol

In this section, we perform a quantitative analysis of sender’s policies that we have
qualitatively analyzed in the previous section. While previous analyses were useful in
establishing the relationship between messages and features in the environment, we only
briefly discussed the notion of optimality of policies defining message distributions. In
what follows, we will refer to a learned sender’s policy as a solution to the navigation
problem discussed in this chapter. Then, we discuss optimal solutions in the context of
experimental variables, and propose a cost measure to quantify the distance between a
solution and an optimal one. This allows us to directly compare different policies and
discuss which ones are “better” in the context of the introduced cost measure.

6.4.1 Solution Optimality

For a given number of messages and an environment, we define a problem solution as
the distribution of messages over all possible goal locations in the environment. As
mentioned previously, a solution is a policy learned by the sender, since the distribution
of messages corresponds to its actions. For example, each plot in Figure 6.5 is one solution,
and so is each pair of (Sender #1, Sender #2) plots in the upper panel of Figure 6.7. An
optimal solution allows the receiver to find the goal state using the fewest steps possible.2
In other words, if the receiver is given a messagem from an optimal solution, then it is
guaranteed to reach the location encoded bym as fast as possible. Equivalently, such a
solution maximizes the reward on the task. Intuitively, we can think of such a message as

2Assuming the receiver is behaving optimally.
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Figure 6.10: Shortest path lengths expressed as the smallest number of steps needed to
reach each location in an environment using BFS and starting from the centre of the map.

instructions we would get when we are visiting a city as tourists and asking for directions
to reach our point of interest, such as a museum. Assuming that the shortest path to the
museum will be the fastest path, optimal directions to the museum will describe that
path.

To find the smallest number of steps needed to reach each location in a gridworld
environment we use the breadth-first search (BFS) algorithm. To apply the BFS, the
gridworld environment is represented as a graph, with nodes in the graph representing
2D locations and edges representing transitions between adjacent locations. Weights of
all edges are set to be equal to one. The node representing the location at the centre of
the map, i.e., (2, 2), is the designated starting node for the graph traversal. Figure 6.10
shows the smallest numbers of steps needed to reach each location, computed using BFS
in each environment.

Knowing such smallest number of steps from the centre to each location provides
some clues about the shortest paths between the two locations. For example, on such
a path, if n steps are needed to access one location, then n + 1 steps will be needed to
access the subsequent location on the path, where n is the number of steps computed
with BFS. This also means that there are multiple shortest paths possible for some pairs of
locations. For example, with the exception of Pong, reaching corners of the gridworld in
all environments can be achieved via multiple shortest paths. Since an optimal solution
implies that every location is visited using the shortest path available, the agent is not
allowed to “go back”. That is, it should not visit a location it visited previously on the
same path. Therefore, for this set of environments, a path consists of a sequence of steps
where each step brings the agent one step closer to the reward location.

Given the smallest number of steps to each location, we now consider what is the
smallest number of shortest paths in each environment. Answering this question is
analogous to finding the smallest number of messages that allows the receiver to reach
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every location as quickly as possible. In order to answer that question, we consider the
distribution of steps shown in Figure 6.10. In each environment, we enumerate the step
counts and consider the highest. For example, in Empty room, there are eight locations
that can be reached in two steps. This implies that all such locations that can be reached
within two steps should lie on eight different paths, since if such two locations would lie
on the same path, they could not be visited using at most two steps. In the context of the
navigation game agents are solving, this means we need at least eight distinct messages to
be able to reach each location as quickly as possible. The same holds for Four room, Two
room and Flower, while for Pong this can be done with four messages.

For all environments, there are multiple solutions satisfying the minimum message
count constraint as discussed above, and one possible solution is shown for each environ-
ment in the lower panel in Figure 6.2. For instance, for Empty room we can see that with a
small modification we can get another optimal solution, by extending the path labelled
with message “4” to reach the upper right corner that is currently labelled with “6”. What
all such optimal solutions have in common is that they allow the receiving agent to reach
each goal location using the fewest steps possible, as consistent with BFS-solutions shown
in Figure 6.10.

6.4.2 Cost Measure to Quantify Optimality

Given the distribution of step counts for an environment, such as those shown in Fig-
ure 6.10, we can compute the cost Stotal, the total number of steps needed to reach each
location when starting from the centre. If the number of steps needed to reach the location
(x, y), starting from the centre, is sxy, then

Stotal =
5∑
i=0

5∑
j=0

sij, (6.5)

where 5 is both the width and the height of the gridworld environment. Stotal values
for the environments are: 60 for Empty room, 54 for Two Room, 52 for Flower, 50 for Four
Room, and 38 for Pong. These numbers correspond to the sums of all step counts shown
in Figure 6.10 for each environment. In the following, we will use this measure to discuss
the optimality of solutions learned by the agents.

We first discuss how to compute the cost Stotal for any solution found by agents, some
of which contain disconnected paths or might not be optimal. Knowing the Stotal for
any solution will allow us to express the distance between that solution and an optimal
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one. Before we do so, it is important to highlight and understand the diversity of learned
solutions and how that impacts the total cost. For example, many solutions contain
disconnected paths where the agent has to step over a location encoded with a message
different from the one it is currently receiving. A few examples are present in Figure 6.5.
For example, paths labelled with “4” and “8” for Four room and C = 9 are disconnected,
and so is each path where a message is used to encode a single location (e.g., message “7”
or “3” in the same plot). A disconnected path is an optimal one as long as all the locations
on the path are reached in the smallest number of steps, as derived with the BFS.

We also observe solutions where Hamiltonian paths are not possible. This means that
an agent has to go over a previously visited location to reach every possible goal location.
One of the cases where this is most apparent is the Pong environment and three messages
(C = 3), also depicted in Figure 6.5. Here, one message is assigned to the left half of
the environment (e.g., message “1”), and two messages to the right part, splitting it into
upper (message “2”) and lower (message “0”) segments. When finding the shortest path
to all locations left of the centre, after visiting either upper or lower branch of the path
encoded with the message “1”, the path will need to trace back nodes it already visited.
A Hamiltonian path is also not possible for the path labelled “0” in Empty room when
C = 3. When a Hamiltonian path is not possible, it means that the agent needs to make
additional steps to reach every location in the environment, violating the requirements
of an optimal solution.

To take such cases into account when computing Stotal, we frame this problem as the
Travelling salesman problem (TSP) for each message partition, where a partition refers
to the locations encoded by the same message, and represented as a graph. Each node
is a (x, y) location and edges are distances between nodes, computed in a way that is
explained below. The TSP formulation of the problem is then the following: given a
set of nodes in a (possibly disconnected) partition and the distances between each pair
of nodes, what is the shortest possible route3 that visits each node? In our case, we do
not require the route to return to the starting node as the typical formulation of TSP
postulates. The distance for a pair of nodes is computed as the L1 distance, which is the
sum of the absolute differences of the Cartesian coordinates of those nodes. As such, the
distance between the adjacent nodes is one, and for disconnected nodes such distance is
always greater than one, implying that reaching such a node will require the route to go
over a node belonging to a different partition. For an optimal solution, TSP will find a
route that satisfies the shortest number of steps requirement as computed by BFS.

Even though TSP is a NP-hard problem, and it is not known whether a provably effi-
3In the context of our problem, we will use the term path and route interchangeably.
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cient (e.g., polynomial-time) algorithm to solve it exists, we can use different approaches
to solve it due to the small size of our environments. For example, we can rely on the brute
force approach, or use heuristics to find a TSP route in a partition. Since most partitions
have 10 nodes or fewer, to find a route in such cases, we test all possible permutations
(10! = 3,628,800) of node orderings. A node ordering defines the sequence of node visits
in a partition, and thus each node will be associated with a number of steps sxy. For each
node ordering we compute the associated cost Stotal and select the one with the lowest
cost. While this approach guarantees to find the smallest Stotal as it searches exhaustively
for the solution, if there are more than 10 nodes in a partition, the problem becomes
computationally expensive. In such cases, we use the nearest neighbour algorithm for
TSP path finding (Lawler 1985). This is a greedy strategy where the next node is selected
based on the edge with the lowest value, however, this solution is not guaranteed to be
optimal. As an attempt to improve the solution, we further use 2-opt algorithm (Croes
1958) that uses edge swapping to find a better solution given an existing one. This process
allows us to compute Stotal for any solution, including those with disconnected paths and
paths that are not Hamiltonian.

6.4.3 Best Suboptimal Solution in the Subcapacity Regime

For optimal solutions, the sum of steps Stotal will be equal to the one computed with
BFS, as in those cases the route will be the shortest possible that visits each node once.
In some cases where a Hamiltonian path through a partition does not exist, the route
will visit some locations more than once, or it will include nodes belonging to another
partition, which is manifested in the weight of that edge being greater than one. Optimal
solutions, as defined above, are only possible if there are at least 8 messages available in
the communication channel (4 for Pong), as discussed above. If there are more messages
available, then shortest paths can be split up in such a way that each message will encode
only a segment of a path, which can be as short as a single location. Thus, if there are
enough messages, a single message can be assigned to each location. This phenomenon
is also observed empirically when agents have a large number of messages, such as for
C > 16 in Figure 6.5. In contrast, in the subcapacity regime, the agents cannot find
the optimal solution, according to the definition provided above. In the absence of a
sufficient number of messages, the receiver will form a path that visits each location, but
this will not be necessarily done using the shortest number of steps as found with BFS in
Figure 6.10. In the subcapacity case, we can instead define the best suboptimal solution as
one that the agents can find given the insufficient communication capacity.

The best suboptimal solution is therefore defined for a specific environment, and a
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specific number of messages in the subcapacity regime. Informally, we can observe two
necessary conditions for such solutions. First, each path should be either of the same, or
approximately the same length, so that they cover the area of the roughly same size in an
environment. Second, when following such a path, each location should be visited only
once. For example, the Empty room environment has 24 possible goal locations, and if
there are 4 messages available, the agents should allocate each message to a region of
space extending over 6 locations (such as the solution in Figure 6.5 for C = 4). If there
are 3 messages available, the space can be partitioned into three regions with 8 locations
each.

When the number of messages does not divide the number of empty locations without
a remainder (e.g., 5 messages in Empty Room), finding the best suboptimal solution is
more involved. For example, there might be several combinations of 5 regions of space
(corresponding to five messages) that are approximately the same size (e.g., [4, 5, 5, 5, 5],
[4, 4, 5, 5, 6], [3, 5, 5, 5, 6]). The sizes of such regions can be found by listing all combinations
of path lengths that add to 24, where 24 is the number of empty locations in Empty Room
(and similarly for other environments). Then, for each combination it is possible to
compute the cost Stotal. However, in this process so far we only guarantee path lengths,
but not that paths should be Hamiltonian. For all lowest cost configurations we manually
try combinations of paths that satisfy the length requirement and select the one with
lowest Stotal that guarantees all paths are Hamiltonian. In this way, we can find the
minimum cost for each best suboptimal solution, though we note that this is the best
empirical guess at a solution.

6.4.4 Optimality Analyses

Figure 6.11 compares the cost Stotal of experimental solutions to the costs of theoreti-
cally optimal (or best suboptimal) solutions found with BFS. The costs of optimal and
best suboptimal solutions are shown in straight dashed lines as they are fixed for an
environment and the number of messages (shown in different colours). Solid lines are
experimental results from all 1S-1R simulations (15 per environment/message setup),
sorted in ascending order by the total cost of a solution. Where solid and dashed lines
overlap, the agents have found an optimal, or a best suboptimal solution. The fewest
optimal solutions are found with setups that have three messages (blue lines), since those
show the largest discrepancy between the dashed and solid lines. This effect is smaller for
four and five messages, but it is reduced, or almost entirely eliminated, when there are
eight or more messages. In other words, it is harder to find the best suboptimal solution
than it is to find an optimal solution. In particular, when there are three messages, agents
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find solutions with non-Hamiltonian paths that for the current implementation of the
receiver (a Q-learning agent) can not be deterministically learned.

We also examine whether there is any significant difference in the number of optimal
solutions found for multi-sender setups. The results for different capacity channel sizes
are shown in Figure 6.12. Bars are only shown for setups that were possible and present
in our experiments (for example, it is not possible to have a setup with 4 messages in
total when using 3 senders). None of the differences were significant at the level p < .05,
calculated using the t-test for unequal variances for two independent samples with the
Bonferroni correction for multiple comparisons. Therefore, in terms of performance, we
do not see significant differences between setups with a single or multiple senders.

To summarize, in this section, we scrutinized senders’ policies by assuming an optimal
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policy on the side of the receiver, and computing a cost associated with each such sender’s
policy. The cost is expressed as the sum of the total number of steps needed to reach each
location in an environment, when starting at the centre of the map. The cost for each
sender’s policy is calculated based on shortest paths found using the TSP formulation of
the problem. Approximately, 78% of all sender policies are optimal or best suboptimal
solutions, confirming that agents are able not only to coordinate their actions to solve
this task, but they are able to do so optimally.

While we have shown that the majority of all solutions learned by agents are either
optimal or best suboptimal, the difference was observed between solutions in the sub-
capacity regime and those in the supracapacity regime. Specifically, in the subcapacity
regime, where the communication channel consists of 9 messages or fewer (5 or fewer for
Pong), approximately 55% solutions are best suboptimal solutions (i.e., as good as they
can be), while in the supracapacity regime 95% of solutions are optimal. These numbers
are consistent with prior observations, as this task is easier for agents to perform when
they are given an abundance of options to choose from. The space of solutions is thus
much more restricted in the subcapacity regime, and even though about the half of them
are not best suboptimal (i.e., as good as they can be), many of them are close to it, as
shown in Figure 6.11. In the next section, we further investigate the characteristics of
solutions, starting from the similarity of solutions in different experiments, up to more
general notions of similarity that we argue reflects an inherent structure in the learned
communication protocol.

6.5 Towards the Emergence of Linguistic Structure

So far, we have shown the difference between optimal (or best suboptimal) solutions and
solutions found by agents, exposing different levels of discrepancies between the two.
Although these results hint at it, they do not directly provide evidence showing that
agents found solutions that are similar, i.e., two solutions can have the same cost, yet
the underlying policies might not be identical. These results only confirm that there are
solutions that are equally distant from an optimal solution in terms of the TSP-derived
cost measure we introduced. The goal of comparing sender policies to each other is
to ascertain that there are abstract principles captured by these policies that facilitate
behaviours beneficial to performance on this task.

In this section, we further scrutinize senders’ policies by investigating types of struc-
ture in learned representations. We compare the geometric structure in sender’s policies
across different experiments, and examine the structure in mappings between messages
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1S-1R experiments. Labels are messages as learned in the experiments, and colours
denote subgraph mappings under which the two graphs are isomorphic.

and spatial encodings in multi-sender setups. The purpose of this analysis is to under-
stand to what extent learned representations capture core properties of language, such
as structural aspects discussed in Section 6.3.3, or inter-word relationships as modelled
in Chapters 4 and 5. In what follows, we define, quantify and investigate two kinds
of structural similarities that arise in our experiments: geometric similarity refers to the
similarity in solution representations across sender policies in different experiments in
the subcapacity regime. Structural similarity is defined over the mapping of messages to
locations they encode.

6.5.1 Geometric Similarity

We first discuss the notion of “similarity between two solutions”. Intuitively, one could
take a look at two different sender policies, such as those shown in Figure 6.5, and visually
examine whether they look alike. In doing so, one would focus on the geometric shape of
message partitions, where each partition consists of all locations with the same message
label, and compare those shapes between solutions, mentally performing different geo-
metric transformations (e.g., rotations, reflections). In doing so, we effectively abstract
away specific message labels and instead focus on the structure of the area that is encoded
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by a message. We can say that if we can map one solution to the other in terms of such
geometric transformations, those solutions are the same. In other words, solutions that
are similar according to this criterion would partition the space in a similar way. In
formal terms, this comparison can be expressed as a graph isomorphism problem which
determines whether two graphs are the same. The problem examines the equivalence
relationship in graphs, defined as a bijective mapping from a set of nodes of one graph,
to the set of nodes of the other graph. While graph isomorphism problem belongs to the
NP class, given the small size of our problem, we can exhaustively search by testing all
possible combinations of such bijective mappings.

To do so, we first represent both solutions as graphs, where each node in a graph
represents one accessible (i.e., non-walled) location in a gridworld, labelled with a corre-
sponding message. For every two adjacent locations in a gridworld, an edge is placed
in a graph between the two corresponding nodes. An example of two graphs created
from two solutions is shown in Figure 6.13. We fix the first graph, and apply different
transformations to the second graph, and for each transformation we count how many
nodes overlap between the two graphs. Every transformation is a different mapping of
node labels from the first graph to the second graph. Because solutions can be rotated
or mirrored versions of each other, we also test label mappings under these conditions.
Therefore, for each pair of graphs we do a number of comparisons and return the number
of overlapping node labels. In other words, this process examines the size of the largest
isomorphic subgraph between the two graphs, where the size of the subgraph corre-
sponds to the number of nodes. The two graphs shown in Figure 6.13 are isomorphic:
the graph on the right is the mirrored version of the graph on the left.

The geometric similarity is then defined to be the number of matched nodes in such a
subgraph normalized by the total number of nodes in a graph. Geometric similarity of
the graphs shown in Figure 6.13 is equal to one, as there is a one-to-one mapping between
the set of nodes in each graph. We compute this similarity for each pair of solutions for
all environments in the subcapacity regime, which results in similarity matrix where each
entry is a pairwise geometric similarity between two solutions. The results are shown as
similarity matrices in Figure 6.14, with the overall average similarity µ annotated in each
plot.

Only half of the values are shown since the metric (i.e., the number of overlapping
nodes) is symmetric, and the average similarity is computed for those values. The highest
degree of similarity is observed for C = 4 for all environments, and those values are
highest for Four room, Flower and Pong environments, where average similarity is at or
above 0.98. Therefore, we can conclude that sender policies have similar structure in
those cases. For comparison, the average similarity of randomly generated graphs of the
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Figure 6.14: Pairwise geometric similarity between message distribution representations
in the subcapacity regime. Each plot is annotated with the average similarity value and
standard deviation of non-zero elements. There is no data for Pong environment with
C = 5.
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Figure 6.15: Relation between the spatialL1 distance and the similarity of representations.

same size is about µ = 0.54± 0.13. As C increases, the average similarity drops, which
is unsurprising, given that the number of possible solutions increases. Anecdotally, we
manually inspected a few pairs of solutions that have pairwise similarity lower than the
average value µ, which are identified as occasional green “pixels” in plots for Empty Room
C = 4, or Pong C = 8. Although such solutions are rare, they can still be optimal. We
speculate that such solutions have some features that make them more difficult to learn.
Overall, we can conclude that solutions in the subcapacity regime are highly consistent
with each other, as witnessed by high geometric similarity values among such solutions.

6.5.2 Structural Similarity

We now investigate the similarity arising from interpreting a compound messageM =
[m1,m2, ...,mM ] in multi-sender setups as a single representation encoding one spatial
location. In what follows, we examine whether spatially close locations are assignedmore
similar representations than spatially distant locations. Spatial “closeness” is defined
in terms of the L1 distance. We refer to this kind of relation between the distances and
encodings as structural similarity.

To compute the similarity between different message encodings, we follow a process
consisting of a few steps. In the first step, for a single experiment, we map all spatial
locations (x, y) to their corresponding encodingsM that represent those locations. For
example, a few suchmappings constructed from the experiment shown in the lower panel
of Figure 6.7 are (0, 0) → 11011 and (4, 4) → 01001. This step then yields a dictionary
where keys are individual 2D coordinates, and values are specific strings encoding those
coordinates. As explained in Section 6.3.3, each digit in an encoding is a categorical value
independent of other values, and so applying arithmetic operations to encodings with
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Table 6.4: Spearman correlation coefficients for topographic similarity for experimental
data ρ and random baseline ρrnd. All ρ values are significant at p < .001, while p > .1 for
all ρrnd.

Number of senders ρ ρrnd

2 0.57 0.03
3 0.48 0.04
4 0.63 -0.04
5 0.64 0.04

such values is not meaningful. In the second step, we compute the similarity between
such two strings. Commonly used measures of vector similarity such as the Euclidean
distance or cosine similarity are not applicable here, and instead, we count the number
of overlapping elements between two encodings and normalize the count by the total
number of elements. In setups where one or multiple senders have two messages each
(such as those shown in Figure 6.7), encodings are binary vectors (with dimensionalityM ,
corresponding to the number of senders), and so the count is equivalent to the number
of “1”s after applying the negation XOR operator to two vectors.

Average normalized encoding similarities for all distances and all multi-sender experi-
ments are shown in Figure 6.15. Solid lines represent the similarity values computed from
the experimental data, while the dashed lines represent a random baseline computed
using random strings, where each element is sampled with replacement from possible
message values. Curves shown in the figure exhibit two interesting characteristics. First,
in all setups, encodings representing locations within two steps from the current loca-
tion are more similar than what would be expected with random encodings. Second,
encodings that are farther apart (3 steps or more) are more dissimilar than what would be
expected by chance. This representation, where spatially proximal locations are assigned
similar encodings, and spatially distant locations are assigned dissimilar encodings, is
robust, since it is mitigating the effect of small perturbations to encodings with respect
to task performance. As the number of senders increases, the gap between the random
baseline and the experimental data narrows, though it still remains significant. This
effect might be due to the larger space of possible encodings, and the fact that there are
more messages than locations. In those cases, agents are more likely to agree on the first
solution they arrive at without much further fine-tuning of the representation.

This characterization of representations in terms of the relationship between the signal
space and the meaning space has been described as the topographic similarity in related
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literature (Brighton and Kirby 2006; Lazaridou et al. 2018). Lazaridou et al. (2018) express
it as the negative Spearman correlation ρ between average pairwise vector similarities
and Levenshtein distances. A high degree of similarity is taken to reflect the presence of
structure in the representation (Brighton and Kirby 2006), where similar signals are used
for similar meanings. This is in contrast to unstructured, holistic representations, where
there is no relationship between the elements in the signal space and the elements in
the meaning space. For example, we find evidence for holistic mapping in agent setups
where communication channel capacity C, that is, the dimensionality of the signal space,
exceeds the dimensionality of the meaning space (i.e., possible goal locations). In such
cases, we often find that a single signal is used to encode a single location, and there is
no structured relationship between different signals and different locations.

Using the measure of topographic similarity, we examine the presence of structure
in the communication protocol in all setups shown in Figure 6.15. We averaged over
all experiments with the same number of senders, and calculated their corresponding
Spearman ρ correlations. The results are shown in Table 6.4. We observe strong and
significant correlations between the distances and representations, concluding that en-
codings learned by agents are highly structured. In related literature (Brighton et al. 2005;
Lazaridou et al. 2018), it has been argued that topographic similarity is associated with
the compositional structure due to its purported ability to capture the difference between
holistic and compositional representations in language.

6.6 Discussion

We have proposed a simple collaborative navigation task as a language game (Wittgenstein
1953) to investigate the emergence of basic linguistic features in an interactive setup. While
many NLP models rely on large text corpora to learn structured word embeddings, we
have shown that basic structure in learned representations can also emerge in a grounded,
interactive setup. We argue that such a setup is more likely to reflect environmental pres-
sures and conditions affecting learning experiences of humans, or AI agents interacting
with humans. Interaction with the environment by means of trial-and-error-learning
is one of the fundamental ways of learning about the associative relationships in the
world (Thorndike 1898). In addition, a view of communication as coordinated action
taking is consistent with usage-based approaches to language (Clark 1996).

With our experimentswe have demonstrated that the communication protocol adopted
by agents depends on the topology of the environment, as well as the dimensionality of
the signal space, which we referred to as the communication channel capacity. Given
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sufficient capacity, agents were able to find optimal solutions to the problem, as defined
by the shortest paths to goal locations that maximize the reward. In the subcapacity
regime, agents compressed the signals, so that a single signal was used to refer to several
locations. Therefore, by varying the communication channel capacity, we observed how
the efficiency of communication changed from a system that is simple and imprecise,
characterized by a small vocabulary where each message encodes a large region in space,
to a system that is complex and precise, characterized by a one-to-one mapping of mes-
sages to locations. Regier et al. (2015) argue that simplicity and informativeness are two
competing communicative principles shaping efficient communication observed in natural
language. A simple system is the one that minimizes the cognitive load by enabling ease
of learning, remembering and use. For example, in our setup simplicity can be quantified
as the numbers of messages in the vocabulary. The most simple system would consist
of a single message, effectively telling the receiver to “go and explore the environment”.
Yet, such a simple system is not informative, as the receiver would have to “sweep” the
environment in its search for the target location. An informative system enables preci-
sion, so that each possible semantic category is assigned a unique label. This increase in
precision comes at the increased cost in complexity as more words are needed to refer
to a higher number of possible categories. The receiver will know precisely where to
go, if there is a single message associated with each possible location. The simplicity of
our setup enabled us to find a specific point in each environment where that trade-off
between simplicity and precision was optimal, yielding efficient communication.

To study the emergence of structure in this setup, we used a population of independent
agents, each emitting a single symbol, to encode a message. We have shown that only the
feedback signal in a form of a reward was sufficient for structure to emerge. We argued
that we observe a form of structure that is reminiscent of compositionality, one of the core
properties of natural language and cognitive systems. For example, a message in a setup
can be interpreted as referring to upper right, based on one of its constituents referring
to upper and another one to right. Such message representations are topographically
similar, so that similar representations encode spatially close locations. The form of
structure observed here is too basic to capture the complexity of natural language, due to
experimental assumptions that are at odds with the properties of natural language and
its use. Individual signals used here are insufficient to resemble the semantic richness of
words. As well, the way in which such signals are combined to form messages does not
model the syntax of natural language defining the space of valid word sequences, which is
one defining feature of compositional systems. This representation is also not productive,
which is another property often discussed in the context of compositional representation.
Finally, the assumption on the nature of interactions in the model is restricted to that
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of referential games with a sender and receiver, which is not representative of ordinary
language use. Instead, we see this type of representation as a stepping stone for further
investigations that might be used to explore more complex communication systems.

Despite the contrived nature of the navigation task used, the emergent protocol
exhibits some features that can be meaningfully interpreted in the context of spatial
discourse used in route descriptions. Our results are congruent with recent research
showing that people establish different linguistic strategies when describing locations of
goal states in maze environments (Nölle et al. 2020). Such strategies are dependent on
the environmental structure, landmarks and other features, corroborating the hypothesis
that aspects of natural language are shaped by environmental affordances. Similarly to
language used by individuals describing maze environments, emergent signals in our
experiments can be interpreted as describing lines (e.g. “Turn left and go down that
way”) in stratified environments such as Pong, and paths (“Go 1 step up, 1 right, 1 up”)
in more regular environments such as Empty room. However, in our case, these strategies
are dependent on the communication channel capacity, as we observe such behaviour
only when agents have to compress information about the environment. In the regime
where the dimensionality of signal space exceeds that of the meaning space, we observe
a tendency for holistic representations, with one-to-one mapping between signals and
locations.

Finally, when interpreting message encodings of space as paths, we speculate that
there is a relation between our work and the option discovery framework (Sutton et al.
1999; Precup 2001), a body of research in reinforcement learning that studies temporally
extended actions. Such actions that can be interpreted in hierarchical terms are postulated
to facilitate learning when reused in different tasks (Sutton et al. 1999). We draw this
connection as the spatial clustering of environments in our experiments resembles some
geometric aspects of eigenvector mappings used for option discovery (Machado et al.
2017). However, we leave the closer examination of this connection to future work.
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7 |
Conclusion

In order to depict the complexity of language, we started this thesis with an overview of
its characteristics, and its portrayal in the developmental and neurobiological literature.
As well, we have discussed various computational approaches used to model language
function, and aspects thereof, in various fields such as natural language processing, cog-
nitive science, and psycholinguistics. While contemporary AI systems show remarkable
performance on a variety of language tasks and benchmarks, even outperforming humans
in some cases, they are limited in their capacity to explain aspects of human linguis-
tic ability. To some extent, this is expected, considering that the process of language
acquisition and realization is remarkably different in machines and humans.

Language processing capacity, as exhibited by many AI systems, is often based on sta-
tistical pattern matching learned by processing immense amounts of textual data (Devlin
et al. 2018; Radford et al. 2019; Mikolov et al. 2013a; Mikolov et al. 2013b). In contrast,
humans acquire language gradually, by interacting with others in physical environ-
ments, using different sensory modalities. As well, the human capacity for language
develops in unison with a multitude of other socio-cognitive skills during the formative
years (Tomasello 2009; Elman et al. 1997). Such skills, language included, are supported
by hundreds of millions of spiking neurons in the brain. While certain brain areas and
genetic factors play an important role in language function, like many other cognitive
functions, the overall linguistic ability, and the development thereof, relies on many dif-
ferent higher-brain functions and general-purpose neurocognitive mechanisms (Hamrick
et al. 2018; Kolodny and Edelman 2018; Elman et al. 1997).

Nevertheless, to a large extent, it remains unknown how computations carried out
by such large groups of neurons in the brain give rise to the rich variety of linguistic
behaviours observed in children and adults. In other words, how the brain and, more
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specifically, individual neurons and groups of neurons, represent, access and manipulate
linguistic information, such aswords and sentences, remains an active topic of research. In
this thesis, we made steps to bridge the gap between neural computation and observable
linguistic behaviours by proposing a set of computational models and simulations that
reliably reproduce aspects of linguistic function.

In Chapters 4 and 5, we proposed neural network models that explain how aspects
of language function pertaining to semantic processing can be realized in the brain by
imposing various neurally and cognitively realistic constraints on such models. We did so
using the example of two semantic tasks: the Remote Associates Test (RAT;Mednick 1962),
and the semantic fluency task (Bousfield and Sedgewick 1944; Troyer et al. 1997; Hills
et al. 2012a), both of which rely on the mental lexicon and accompanying semantic search
processes over word associations. While these two tasks have been used in different
research domains studying how people search for related items in their memory, the
process itself is a fundamental aspect of our memory function, and occurs on a daily basis
in a variety of situations. For example, every time we plan a grocery list or pack lunch,
we need to think of numerous related items, occasionally adapting the process to account
for various constraints such as "make a gluten-free, dairy-free cake without nuts, but
with white chocolate" or "substitute lemon juice for vinegar if you have none available".
In all those situations, we need to think of several related items, possibly ruling them out
as we engage in the activity.

Our implementation of word associations in the models is consistent with the dis-
tributed theory of representation in the brain, where a word is represented by the activity
of a group of neurons (McClelland et al. 1987; Rogers and McClelland 2004; Stewart
et al. 2011b; Eliasmith 2013). Such models propose how specific cognitive or neural
mechanisms, such as spreading activation (Collins and Loftus 1975) and the winner-take-
all mechanism, can be realized in a spiking neural network to yield high-level aspects
of fundamental linguistic behaviours, such as the search process in semantic memory.
The proposed models demonstrate a robust match with the experimentally acquired
behavioural data on the RAT and the semantic fluency task. In particular, we have demon-
strated that the source of semantic information is an important factor influencing the
models’ ability to reliably reproduce human-like response patterns on these tasks. As
well, we showed that the approach we adopt accounts for some of the experimentally
observed individual differences. Thus, instead of creating models that outperform peo-
ple on such tasks, we aimed to answer the question "How can we create models that
reproduce human performance on the task with similar computational constraints?" In
particular, in the case of the RAT, we have shown that the proposed model is capable of
distinguishing between problem items of varying difficulty, such that problems that are
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easy for humans are also easy for the model (as measured by the task accuracy), and vice
versa. We argued that framing the question of language modelling in this way benefits
our understanding of cognitive and neural mechanisms underlying aspects of linguistic
behaviour.

The models in this thesis demonstrated how biologically constrained computational
mechanisms can give rise to aspects of language function. However, we do not claim that
this is the only plausible realization. While our models provide a good match with the
human data, it may be possible to devise other types of architectures. Nonetheless, we
would expect to find some commonality among all such models, such as certain compu-
tational mechanisms—for example, a winner-take-all competition mechanism coupled
with memory that was important in both of our models. This inherent connection with a
biological medium is an important asset distinguishing biologically constrained neural
networks from networks typically used in NLP research and applications. While for many
NLP applications this connectionmight not be relevant, we believe that creatingmachines
which exhibit a variety of intelligent behaviours will include capturing some universal
computational principles underlying intelligence as exhibited by human cognition and
behaviour. To this end, we believe that understanding such principles will be essential
for their computational realization in models of language.

To address the question of how aspects of associative relationships fundamental for
semantic processes are learned, we proposed a collaborative navigation reinforcement
learning setup with communicating agents in Chapter 6. We have shown that in such
a framework that highlights the pragmatic aspect of language, agents develop a simple
communication protocol that depends on the structure of the environment and reflects
some basic features of language, such as topological similarity and compositional struc-
ture. While being highly simplified, in order to aid interpretability, the proposed task
shows that communicative success was sufficient for a population of agents to reach an
agreement on how to optimally use signals to solve the task. This setup is consistent
with the usage-based view of language, and in particular with the view of language as a
form of coordinated activity (Clark 1996). We argued that this type of communication,
grounded in interactions with the environment, is more likely to capture constraints and
pressures that affect natural language, and the way humans use it to interact with others.

It is important to acknowledge that different NLP models exhibit aspects of highly
sophisticated linguistic behaviour, while, at the same time, bearing little to no similarity
with the aspects of neural or cognitive processing involved in language function. Thus, it
is reasonable to askwhether we “need” to understand how human brains realize language
in order to simulate it, especially given the success of such methods. We would argue that
the question of need depends on the goal. While there might be specific domains where
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human cognition and biological realization are less relevant, such as machine translation
or text completion, creating intelligent, reliable and safe machines will require them to
demonstrate language use akin to that of a human.

To elaborate, consider the specific example of the GPT-3 language model (Brown et al.
2020), which is likely the most powerful language model to date, as defined by its ability
to performwell on a variety of NLP tasks and benchmarks as well as its ability to generate
meaningful, coherent and grammatical texts on a wide variety of topics, such as news
articles, poetry or even programming code. In fact, the text it is capable of generating
can be of such high quality that even humans are unable to distinguish whether it was
produced by another human or the model (Brown et al. 2020). Without a doubt, this is
one of the most impressive achievements in NLP, and AI more generally, in many years.

From the perspective of describing intelligent behaviour, it is important to recognize
that while the linguistic capacity exhibited by GPT-3 appears human-like in many aspects,
it does not mean that the model understands utterances produced by either itself or
others.1 At the time of writing, the model cannot be accessed publicly, which makes it
difficult to systematically evaluate and characterize its behaviours. However, anecdotal
examples of interactions with the model are available online by individuals who were
given exclusive access, and who probed the model’s comprehension in a question-answer
form (Lacker 2020; Sabeti 2020). Based on such reports, it can be seen that the model is
able to produce correct and meaningful responses on an astonishing number of questions,
ranging from factual data such as historical events and geography, to subjective “opinions”
such as the best operating system or favourite animals. However, the model often fails
when prompted with questions that require physical reasoning or understanding of
the relationships between concepts (e.g., it responds with “Yes” to questions such as
“Can a bulldozer fit inside a breadbox?”, or “Can a human ride a mouse?”). While in
some cases it may appear as if the GPT-3 comprehends the meaning of the text, it lacks a
cohesive model of the world and cause-effect relationships. In other words, although its
responses can appear as if the model has its own agency, it lacks common sense in a form
that we humans attribute to other member of our species. In contrast, adults and even
young children, understand the world in terms of agents, objects, causal interactions and
abstract concepts, such as intuitive physics. GPT-3’s language production does not reflect
a comprehension of the world, as its knowledge is not grounded in the environment,
social interactions and perception. This does not mean that the model will never produce
correct responses when probed with questions pertaining to the physical environment—

1We refrain from the epistemological discussion on the meaning of “understanding” here, and instead
assume it refers to the same, or similar principles that we would probe when evaluating understanding
exhibited by young children, as done in developmental literature.
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Lacker (2020) and Sabeti (2020) show several successful examples of such reasoning-like
ability—instead, the model can fail catastrophically in a way in which no healthy individual
would when prompted with the most simple questions about the nature of the world.
Current interactions with GPT-3 are reminiscent of a verbal exam classroom scenario
familiar to many educators, where a teacher is faced with a challenge of determining
whether the student truly understood a concept, or whether they just learned it by heart
with some serious gaps in their knowledge.

We have argued in this thesis that considering natural intelligence will be an impor-
tant factor in overcoming such issues that largely distinguish behaviours of AI systems
from those of humans. Moreover, we hypothesize that cognitively, biologically and be-
haviourally constrained models are more likely to reveal principles behind biological
computations that underlie human cognition and behaviour. In doing so, to create ma-
chines that exhibit human-like intelligent behaviours, not just in the linguistic domain,
but across various cognitive domains more generally, we may want to consider methods
and approaches that can expand on theories of human cognition and behaviour. This is
without a doubt a challenging task, and the difficulty of finding the right approach was
discussed almost 70 years ago by Turing (1950), where he concludes:

“We may hope that machines will eventually compete with men in all purely
intellectual fields. But which are the best ones to start with? Even this is a
difficult decision. Many people think that a very abstract activity, like the
playing of chess, would be best. It can also be maintained that it is best to
provide the machine with the best sense organs that money can buy, and
then teach it to understand and speak English. This process could follow the
normal teaching of a child. Things would be pointed out and named, etc.
Again I do not know what the right answer is, but I think both approaches
should be tried.”

Alan M. Turing (1950)

Since this quote was written, developments in AI have come a long way towards
showing that machines can indeed not just compete, but also substantially outperform
humans in abstract activities such as playing chess, and other board games such as shogi
and Go (Silver et al. 2018; Schrittwieser et al. 2019). We hope that with this thesis we
made an argument in favour of a tighter connection between behaviours that are natural
to human interactions, such as teaching and instruction, using language, and learning in
artificial agents endowed with human-like cognitive functions.
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