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Abstract

A prerequisite for the perception of motion in primates is the transformation of vary-
ing intensities of light on the retina into an estimation of position, direction and speed of
coherent objects. The neuro-computational mechanisms relevant for object feature encod-
ing have been thoroughly explored, with many neurally plausible models able to represent
static visual scenes. However, motion estimation requires the comparison of successive
scenes through time. Precisely how the necessary neural dynamics arise and how other
related neural system components interoperate have yet to be shown in a large-scale,
biologically realistic simulation.

The proposed model simulates a spiking neural network computation for representing
object velocities in cortical areas V1 and middle temporal area (MT). The essential neural
dynamics, hypothesized to reside in networks of V1 simple cells, are implemented through
recurrent population connections that generate oscillating spatiotemporal tunings. These
oscillators produce a resonance response when stimuli move in an appropriate manner in
their receptive fields. The simulation shows close agreement between the predicted and
actual impulse responses from V1 simple cells using an ideal stimulus.

By integrating the activities of like V1 simple cells over space, a local measure of
visual pattern velocity can be produced. This measure is also the linear weight of an
associated velocity in a retinotopic map of optical flow. As a demonstration, the classic
motion stimuli of drifting sinusoidal gratings and variably coherent dots are used as test
stimuli and optical flow maps are generated. Vector field representations of this structure
may serve as inputs for perception and decision making processes in later brain areas.
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Preface

Structure and content of the thesis

The essential problem for this study is to explain, through neurally plausible simulation,
how the early visual system in some mammals is able to compute the velocity of pat-
terns moving in the visual field. The proposed model explains how the observed signal
characteristics from the retina and lateral geniculate nuclei (LGN) are transformed in the
spatiotemporal domain by recurrent networks of V1 simple cells to produce a retinotopic
map of velocity responses in the middle temporal area (MT or V5).

Chapter 1 contains a condensed review of the relevant functional anatomy of the early
visual system. This is followed by a brief overview of the prevailing models of visual
motion, including a discussion of some important shortcomings of and challenges to those
hypotheses.

The theoretical and mathematical principles that apply to the proposed model are
detailed in Chapter 2. A model of velocity computation is detailed in Chapter 3 and
draws on the material covered earlier. The results of simulations of the early visual
system under a variety of stimuli are provided in Chapter 4, with analysis and comparison
to electrophysiological data in Chapter 5.

Motivation and scientific contribution

A fundamental characteristic of the velocity-selective response patterns or receptive fields
(RFs) of neurons in the primary visual cortex (V1) of primates is the apparent translation
of Gabor-like spatial functions over time, called phase evolution. According to theoretical
models of electrophysiological data, this spatiotemporal characteristic allows the simple
cells of V1 to function as a type of velocity detector. However, the mechanism by which
phase evolution occurs is not known, and hence, velocity selection and motion processing
in the brain are not fully understood.

In this work, a biologically constrained, spiking neural network model achieves velocity
selectivity by incorporating known orientation selection methods with a novel speed selec-
tion solution. The velocity-selective mechanism correlates an efficiently-coded intensity
pattern with the dynamic representational state of a neural network oscillator. The model
is implemented in a large-scale simulation with all connection weights and physiological
time constants specified. The results explain the generation of transient and sustained
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components of separable and inseparable RFs in V1 simple cells, and how characteristic
bursts of activity from the LGN interact with V1 networks to produce velocity selectivity.

Some of the same stimuli employed in classic psychometric tests on monkeys and
cats are used as test input for the motion processing circuit. The results are in close
agreement with the experimentally measured neurometric behaviour of V1 simple cells
and MT, supporting the essential claims of the model. It is not the purpose of the model
or these results to explain the psychometric, perceptual or behavioural data of test subject
animals.

To my knowledge, there is no other biologically plausible, large-scale dynamical neural
network simulation giving results that approximate the neural activity data described
herein.
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Chapter 1

Physiology and theory of visual
motion

According to Helmholtz, seeing is an unconscious inference [1]. It is the result of a
computational process performed by millions of interconnected cells in the eyes and brain.
This system, known as the early visual system, uses as its input a noisy, unstable, narrow
band of electromagnetic intensities projected over millions of photoreceptive cells in two
displaced retinae. The visual system of humans and many other animals converts these
flickers to forms, colours, objects, perceptions, decisions and memories using vast arrays
of neurons [2] that communicate with each other every ten to one hundred milliseconds
or so using primarily electrochemical means [3].

Research in vision has historically been subdivided into anatomical domains such as
the retina, the LGN, V1 (or primary visual cortex, or striate cortex), MT, as well as
functional domains including phototransduction, edge, colour and motion detection along
with many others. This chapter attempts to synthesize the prevailing understanding of
the functional, anatomical and computational structure of the early visual system as it
contributes to the appearance of velocity-tuned neurons in MT.

1.1 The process of seeing motion: anatomy and function

The synthesis that follows is a brief account of some prevailing interpretations of anatomi-
cal structure and function of the major structures implicated in the perception of motion:
the retina, LGN, V1 and MT (Figure 1.1). The complex chemophysical phenomena that
underlie the behaviour of these tissue structures are largely beyond the scope of this
work but are mentioned when they bear on computational issues. Discussion of quantita-
tive theoretical models related to the aforementioned anatomical structures and velocity
computation begins in section 1.2.

1.1.1 Phototransduction in the retina

The process of phototransduction occurs in the retina at the cellular level, where the
photons of visible light are absorbed selectively by cells called photoreceptors (rods and
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Figure 1.1. The essential anatomical pathway for motion processing. The diagram depicts a simplified
pathway for the processing of light intensity signals on the retina to the retinotopic motion map in area MT. See
text for details.

Figure 1.2. Human eye anatomy. Top: Simplified anatomy of the human eye. Public domain image. Bottom :
Axial organization of the retina. Public domain image adapted from Histologie Du Système Nerveux de l’Homme
et Des Vertébrés, Maloine, Ramón y Cajal, 1911.)
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Figure 1.3. The centre-surround concept. Left, middle : Idealized centre-surround receptive fields of each
type, generated from the second derivative (Laplacian) of a Gaussian function. The positive signed regions indicate
areas of visual space in which the presence of light excites the cell. Light cast onto the negative region causes
inhibition. Right : Contour plot of the spatial RF from the LGN of a cat with visual area of 3x3 degrees, similar to
those of the retinal ganglion cells. Adapted, used with permission of DeAngelis [6].

cones) (Figure 1.2) [4]. The energy from this absorption induces a complex sequence of
events that result in a change in the cell membrane potential [4]. Photoreceptors relay
information chemically to bipolar cells (BPCs) through an interface called a synapse [5].

BPCs have two classes based on the spatial distribution of sensitivity to light and
dark: on-centre (off-surround) and off-centre (on-surround ) [3]. For on-centre cells, light
on the centre or darkness on the annulus causes excitation. The opposite pattern of
light/dark causes inhibition. For off-centre cells, darkness on the centre or light on the
annulus causes excitation. The opposite pattern causes inhibition [3]. These activation
patterns are called receptive fields (RFs), depicted in Figure 1.3. These types of RFs are
essential for contrast, edge and colour detection later in the visual system, as discussed
in section 1.1.3.

When the BPCs relay information to the retinal ganglion cells (RGCs), the centre-
surround RFs are inherited [3]. The projections of the RGCs comprise the optic nerves and
terminate at the LGN structures in the thalamus on the brainstem [3]. Two important
types of RGCs are the parasol cells, which provide important information for motion
and spatial analysis, and midget cells, which are necessary for shape processing in later
vision [3]. Only at the RGC stage of the transduction process do cells transmit electrical
pulses called action potentials or spikes [3].

1.1.2 The lateral geniculate nucleus

The lateral geniculate nuclei (LGN) are the two nuclei at the end of the optic nerve
projections at the base of the thalamus. The left (or right) nucleus receives signals from
the retinal ganglia of the right (or left) hemi-field of both eyes [3]. LGN neurons are
separated into six layers: the two magnocellular (M) (called Y in non-primates) layers
receive input from parasol cells of the retina and make up about 95% of the total cells in the
LGN [3]. They respond rapidly to motion, binocular disparity and intensity information
from rods [4]. The four parvocellular (P) (called X in non-primates) layers receive input
from retinal midget cells and make up about 5% of LGN cells [3]. They respond more
slowly to signals from long- and medium-wavelength cones [3]. Between these layers is the
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koniocellular (K) layer (called W in non-primates), which responds to short-wavelength
cone signals [7]. The major projections from the LGN are called the optic radiations
which terminate in V1 [3].

A topic of much current LGN research is motivated by the fact that only 10-15 % of
the connection inputs to the LGN are from the retina, while the remaining 85-90% are
connections from the visual cortex and brainstem [8]. It has been proposed that these
cortical inputs may modulate the retinal receptive fields to enhance more relevant areas
of the visual field determined by conscious attention [8].

While the spatial response properties of the LGN are known, its functional role with
respect to spatial information is not fully understood. This is because each LGN neuron
essentially maintains the centre-surround spatial receptive fields of just a few retinal gan-
glia and preserves relative retinal spatial arrangement (called retinotopy) with respect to
the contralateral hemi-field [3]. In other words, while LGN appears to function in part as
a signal relay between the RGCs and V1, there is no clear transformation performed on
the spatial information contained in the input signals from the retina.

Temporally, however, the LGN shows rich dynamics and diversity. Recent studies have
shown that more than 50% of spikes emitted by RGCs do not lead to a corresponding
spiking event in the LGN neurons [9]. Furthermore, the spiking output from the LGN is
episodic as it occurs in short bursts of spikes with relatively long interceding periods of
inactivity (Figure 1.4) [9].

There are two dynamical types of LGN cells, lagged and nonlagged (see Figure 1.5) [10].
The lagged neurons show the highest response in the later temporal phase of their time
course, while nonlagged neurons peak in the early phase. [6] It has been shown that some
LGN outputs to V1 are of both lagged and nonlagged types [11].

Recent work has shown that RGCs have no functional counterpart to the lagged cell
behaviour in LGN [12]. Further, these dynamics cannot come from the voltage-to-spike
dynamics of RGCs alone and must be a network property [10,13,14].

1.1.3 Spatiotemporal filtering in V1

The primary visual cortex (V1) is a long-studied region of the visual system in humans,
primates and other mammals [15]. Many V1 responses act as spatiotemporal filters,
selective for combinations of local contrast, direction, speed, spatial frequency, temporal
variation and other visual features [15]. Anatomically, functionally similar assemblies of
neurons are organized in columns extending vertically from the surface of the cortex to
the white matter [16]. Projections from the magnocellular layer of the LGN terminate
in layer 4Cα of V1, which in turn projects to layer 4B of V1 [3]. Projections from the
parvocellular layer of the LGN terminate in layer 4Cβ of V1 [3]. Importantly, the geniculo-
cortical connections in V1 are estimated to constitute only only 2–28% of V1 afferents,
while the majority are intra-striate or feedback connections, which are necessarily non-
linear (c.f. section 1.2.1 below) [17].

In their landmark work of 1959, Hubel and Wiesel described V1 simple cells as those
neurons in the striate cortex having RFs with distinct, elongated, excitatory and inhibitory
regions, sensitive to direction, orientation, speed, size and contrast. These neurons also
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Figure 1.4. Burst signals from LGN. The spike trains from cat LGN X-cell are episodic in response to a
variety of time-varying stimuli. Used with permission of Butts [9].

Figure 1.5. Time courses of LGN RFs. One-dimensional (1-D) time courses for nonlagged (left) and lagged
(right) LGN neurons in the cat. Each pixel-row is a 1-D slice through the two-dimensional (2-D) RF. Time progresses
downward. Adapted, used with permission of DeAngelis [6].

responded in an essentially linear manner to the increase or addition of preferred stimulus
in the RF [18]. For this reason they are often modelled as linear filters.

V1 simple cell RFs have diverse spatial structures (Figure 1.6) that change during
the response period, enabling time-dependent filtering operations (Figure 1.7) [19]. The
selectivity of V1 simple cells to the direction of motion of local intensity gradients (edges)
is called direction selectivity (DS). It should be stressed that DS is not velocity selectivity
(VS), which combines DS and speed selectivity (SS).
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Figure 1.6. Diversity of spatial RF structure in V1 simple cells. A sample of the diversity of two-
dimensional spatial RF structure from individual simple cells in macaque V1. Adapted, used with permission of
Livingstone [22].

Orientation tuning typically appears after delay of 30-45 ms and persists for 40-85
ms [20]. The structure of V1 RFs may retain on-off patterns of two or three lobes or
show more complex behaviour such as sign inversion, drift or secondary peaking (Figure
1.8) [20]. The V1 input layers, 4Cα and 4Cβ, which receive input from the M and P layers
of LGN, respectively, show a gradual ‘appearance’ and ‘disappearance’ of a constant
orientation preference. Neurons in the output layers 2, 3 and 5 show inseparability or
phase evolution, layer 4B exhibits separability, and layer 6 produces a late secondary peak
(see Figure 1.8) [20]. While many of these V1 RFs also show a sharpening of orientation
tuning not achievable by simple feedforward connectivity [20], the essential behaviour can
be modelled by a feedforward process [21]. Orientation tuning has been shown to be
contrast invariant in a study of the cat visual cortex (Figure 1.9).

1.1.4 Motion integration and velocity representation in MT

The cortical area MT receives the majority of its inputs from layer 4B (magnocellular)
of V1. Like V1, MT shows retinotopic and columnar organization [25]. An important
MT study on the macaque by Albright, et al., established that about half of MT neurons
respond to moving stimuli regardless of colour, shape, length or orientation. The spatial
length of a stimulus affected the response magnitude but not the preferred direction.
Cell responses could be divided into those that respond only to one direction of motion
(60%), those with a strong preference to one direction but a weaker response in the
opposite (24%), orientation selective cells (8%), and those responsive to motion in any
direction (8%) [16]. Electrophysiology on behaving monkeys shows that MT neurons are
selective for the direction of a moving pattern or component of pattern motion [26], with
an average response time (latency) of about 87 ms for a distribution like that shown in
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Figure 1.7. The separable and inseparable RF concepts. A idealized depiction of separable and inseparable
spatiotemporal RFs. Left : The separable RF with the spatial impulse response along the horizontal and the
temporal impulse response along the vertical. Space and time are independent factors of the product (centre).
Right : The spatial response is a function of time. The spatial response undergoes a phase shift, causing the lobes
to translate left. It is assumed in the motion energy model that this type of RF can produce velocity selectivity.
Both separable and inseparable types show inversion of amplitude sign late in the time course.

Figure 1.11 [24]. It is believed that MT is involved in the pooling or integration of local
motion signals into pattern motions [27], but the precise mechanism of such processing
is not fully understood. The functional organization of MT can be depicted as a field or
array of velocity sensitive columns, in which each MT receives input from a number of V1
neurons. The RF widths in MT from primate experiments in some studies was shown to
be ∼4–25 degrees in width, whereas V1 RFs ranged from 0.3–1 degree [28, 29]. A more
recent study has shown that the distribution of RF sizes for V1 and MT often overlap [25].

Projections from MT terminate in other vision-related cortical areas that have been
implicated in the perception of optic flow, visuospatial decision-making and saccadic eye
movements. These include the medial superior temporal area (MST), ventral intraparietal
sulcus (VIP), lateral intraparietal sulcus (LIP), the frontal eye fields (FEF), superior
colliculus (SC) and dorsolateral pons [25].
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Figure 1.8. Example time courses from V1 simple cells. 1-D time courses (‘x-t’ plots) from simple cells
in cat V1. Top row : The separable or biphasic type. Bottom row : The inseparable type. Adapted, used with
permission of DeAngelis [6].
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Figure 1.9. Contrast invariant orientation selectivity in V1. The preferred orientation of this cat V1 cell
is invariant under changes of stimulus contrast. Each trace indicates the an averaged tuning curve for a number
of neurons selective for 0-degree orientation. The relative contrast of the stimulus is indicated by grey level, where
black is strongest contrast. The spiking response is roughly proportional to contrast level. Redrawn from Priebe [21].

1.2 Current theoretical approaches

1.2.1 Linear filtering as a modelling tool

In his seminal papers of 1959 and 1961, H. B. Barlow combined Claude Shannon’s new
quantitative theory of information [30] with a previously qualitative notion that a pri-
mary function of the sensory nervous system was “recoding to reduce the redundancy
of our internal representation of the outer world” [31]. Barlow’s was the efficient coding
hypothesis, which states that “sensory relays recode sensory messages so that their redun-
dancy is reduced but comparatively little information is lost” [31, 32]. In the language of
modern signal theory, such an operation is called decorrelation and, in the linear method,
requires an impulse response function (or linear filter, or kernel) to be convolved with an
input signal. This idea and its mathematical formulation have become fundamental to
the quantitative study of vision, neuroscience and many other disciplines.

In physical terms, a filter is a system that responds to a signal in a manner that
produces another more useful signal. Filtering is a form of computation since such systems
perform calculations on quantifiable signals; they transform a given input quantity into
an output quantity. Linearity refers to the properties of a transformation that acts on
the vector quantities x and y, with scalar c, such that the conditions are satisfied:

1. T (x + y) = T (x) + T (y), (superposition) and

2. T (cx) = cT (x) (homogeneity).

Intuitively, these statements mean: 1) combining any two vectors before transformation
gives the same result as combining them after transformation, so there is no interaction
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Figure 1.10. Spiking responses from direction selective neurons in macaque MT. The grey arrows
indicate the preferred directions of motion for the corresponding MT neurons. The green arrow is the direction of
motion of the stimulus, a bright moving bar. Recreated from Dubner and Zeki [23].

Figure 1.11. Distribution of response latencies in macaque MT. The response latency refers to the time
for MT neurons to begin responding to directional stimuli. The starred (*) bar indicates the mean latency time,
87 ms. Recreated from Raiguel, et al [24].
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Figure 1.12. Convolution, conceptually. An example of the effect of convolution with image intensities (left)
and the centre-surround (difference of Gaussians) kernel. The result is a new image consisting primarily of edges.

between any two vectors within the transformational system, and 2) an increase or de-
crease in the magnitude of the input vector produces a proportional change in the output.

In the convolution operation the impulse response or kernel is denoted h(∙). It de-
scribes how the system interacts with each unit impulse of input. The linearity conditions
mean that the output signal of a linear system is the sum of impulse responses weighted
by the input. This linear transformation is called convolution and is expressed as the
integral

y(n) = (x ∗ h)(n) =
∫

x(n′)h(n − n′)dn′ ,

where x(∙) is the input signal and the convolution is usually over a domain in time,
frequency or space. Thus, for a known input signal, the response of the linear system is
completely characterized by the kernel [33]. Determining this function for neurons in the
visual system is fundamental to using linear systems as an analytical tool.

In vision research, the kernel is also referred to as the receptive field map [34,35], where
the signal domain is typically restricted to a small area or ‘patch’ in the visual field. A
system of large numbers of overlapping patch functions is a convolution array, which is
the essential large-scale system description of V1 and other cortical visual areas.

So the primary computational role of the major anatomical structures in the study of
vision is that of linear filtering, characterized by the receptive field. These notions will
play a central role in the rest of the thesis. A conceptual example is shown in Figure 1.12.

1.2.2 Receptive fields are results of prior computation

It must be stressed that the RF is not an intrinsic property of the neuron. Through a com-
plex, time-dependent chemophysical process, neurons release neurotransmitters through
spikes in membrane potential as a result of the input of ionic currents that arise from
the spike responses of many other preceding neurons (see section 2.1). So the RF is ac-
tually the result of prior computations that determine the pattern of incoming currents
in a given neuron. To understand how RFs arise is to understand the computations that
determine why a neuron is selective in its response.

1.2.3 The Gabor filter for V1 simple cell spatial responses

Gabor functions are used as filter kernels to approximate the spatial responses of V1
simple cells, extracting the locations and directions in space where the greatest changes
in intensity (edges) occur. Mathematically, they can be interpreted as a sinusoidal wave
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with an exponential decay factor called a Gaussian window whose width is σ, that shapes
the radial spread of the function. The Gabor is also shaped by the ellipticity, γ, which
affects the elongation of the Gabor in the y direction (see Figure 1.13). So for a given
orientation θ in the xy-plane, with wavenumber k and phase φ, the amplitude at any
point in the (x, y) is given by

f(x, y) = exp

(

−
x′2 + γ2y′2

2σ2

)

cos
(
2πkx′ + φ

)
, (1.1)

where x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ. Changing the parameters affects
the function as shown in Figure 1.13. The physiological correlates of these parameters,
especially the phase angle φ, serve an important role in the model of velocity computation
proposed in this paper.

θ = 0 θ = π
4

θ = π
2 θ = 3π

4
θ = 3π

4

φ = 0 φ = π
4

φ = π
2 φ = 3π

4
φ = π

k = 1 k = 2 k = 3 k = 4 k = 5

σ = 17 σ = 14 σ = 11 σ = 8 σ = 5

γ = 1.0 γ = 0.8 γ = 0.6 γ = 0.4 γ = 0.2

Figure 1.13. Effect of variation of Gabor parameters. V1 simple cell spatial receptive fields approximated
by Gabor functions. The effects of changing one parameter while holding others constant: θ, orientation; φ, phase
angle; k, wavenumber; σ, spread; γ, ellipticity. Values for k, σ and φ should be considered relative since the patch
area is arbitrary. The Gabor functions used in the proposed model are biologically realistic, using fixed values for
γ, λ and σ to give high responses to low spatial frequencies within the receptive field at each resolution.

While the Gabor function is a very common modelling tool in describing V1 RFs, a
more general fit has recently been shown by Young, et al, using a Gaussian derivative
method that accommodates three dimensional spatiotemporal RFs (2-D space and 1-D
time) and approximates a wide variety of primate V1 RFs [36].
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Figure 1.14. The predicted temporal (left) and spatial (right) impulse responses for an LGN X cell. Adapted,
used with permission of Dong [10].

1.2.4 Models of temporal processing in LGN

Temporal decorrelation

Dong and Atick proposed that a fundamental role of the LGN is the temporal decorrelation
of the intensity signals passed from the retina. Just as spatial redundancies are removed
by efficient coding with on-off RFs in the retina, temporal redundancies may be removed
by the LGN by its lagged and nonlagged RFs [10].1 Starting from the assumption of linear
filter behaviour and the efficient coding hypothesis, Dong and Atick used natural image
statistics under noise to derive the spatiotemporal kernels that would most efficiently
encode a time-dependent intensity signal. The predicted spatial and temporal profiles are
shown in Figure 1.14, in excellent agreement with experimental data [10].

The predicted temporal kernel is of particular importance to the proposed model of
motion processing as it exhibits the characteristics of a damped oscillator (see Figure 2.8).
Such dynamics can be generated by a recurrently connected network of V1 simple cells
and LGN (see Section 3.2.5). Thus, the proposed model can help explain the predicted
and observed LGN dynamics.

The Dong-Atick model does provide a theory of the dynamical responses of LGN based
on efficient coding, making a strong argument for the computational role of the structure
based on biological evidence and natural image statistics. However, it does not purport to
be a network model or even a neural one. Although it provides reasons for LGN behaviour
in a larger motion processing system, it does not offer an explanation of how the observed
RFs arise in LGN.

1This suggests a distinct specialization in spatial and temporal filtering roles between the retina and the LGN,
respectively. This is not strictly true since RGCs show some temporal decorrelation along with spatial responses,
but it is a good approximation since the temporal bandpass response of RGCs is essentially flat, and the same holds
for the spatial bandpass behaviour of the LGN [10].
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1.2.5 Models of V1 direction and speed selectivity

Feedforward models and extensions

Feedforward models are computational algorithms without feedback or recurrent connec-
tions. They are typically simpler in construction than feedback models, using a forward-
only sequence of linear and/or nonlinear transformations.

A classic and influential feedforward model is the motion energy hypothesis of Adelson
and Bergen [19]. They cast the problem of velocity computation as one of detection of an
orientation vector in space-time. They used a measure called motion energy, a positive
magnitude resulting from the convolution of the local intensity signals of a moving stimulus
and the impulse response of a spatiotemporally-tuned simple cell in V1 [19].

The first type of linear filter they proposed, called a separable impulse response, is the
product of independent spatial and temporal impulse responses. A second, inseparable
response has a time-dependent spatial component. These two types are shown in Figure
1.8.2 Since the separable type can select for orientation but not direction of motion, they
theorized that velocity selectivity in V1 simple cells would likely come from inseparable-
type responses.

To eliminate the problem of negative or null responses from a stimulus feature that
trailed a drifting grating by a phase angle of 90 degrees, Adelson and Bergen proposed
that the V1 responses were associated in quadrature pairs [19], the responses of which
were rectified by squaring then summation to give a total motion energy. The model is
illustrated in Figure 1.15.

The motion energy model produces a response distribution from the collection of RF
responses. However, if the stimulus is one-dimensional in structure when viewed through
the RF apertures, the extraction of object velocity from the population of V1 responses
may not be possible since it requires reconstructing a two-dimensional quantity (velocity
components Vx and Vy) from one-dimensional information. This is called the aperture
problem, and is illustrated along with its geometric solution in Figure 1.16. It is a long-
standing problem in vision research. A realistic interpretation of this decoding problem
and solution is presented in section 2.2.2.

As an extension to this and other feedforward models, Wimbauer, et al, describe the
formation of DS RFs as a process whereby the spatiotemporal correlations among LGN
afferents (permutations of the on, off, lagged and nonlagged types) are learned using a
Hebbian rule [37]. Shon, et al, have also recently specified a learning mechanism for DS in
V1 through spike-timing dependent plasticity [38]. A recent review by Priebe and Ferster
show that contrast invariance and orientation selectivity require feedforward mechanisms
only [21].

Weaknesses of feedforward models

An immediate problem with feedforward approaches is the lack of anatomical justification.
As mentioned in section 1.1.3, the majority of connections in V1 is intracortical, suggesting
a strong role for non-linearity in the spatiotemporal processing of early visual signals.

2Inseparable spatiotemporal RFs are typically depicted as sinusoidal gratings translating in one direction.

16



Figure 1.15. The motion energy model of Adelson and Bergen. As described in [19]. The quadrature
pair of RFs consists of two phase-progressing Gabor functions, differing only by a 90-degree phase shift, that act
as convolution kernels. One dimension of the 2-D filter is shown along each horizontal axis, with time along the
vertical. The output of each convolution operation is squared to eliminate negative values. The sum of the two is
termed the motion energy.

Another major weakness of feedforward schemes is the disparity with electrophysiolog-
ical data. A feedforward model requires sustained, high input magnitudes from the LGN
to drive DS in the preferred direction in the cortex [17, 39]. Also, suppression of neural
activity in the null direction requires a high level of inhibitory conductance. Evidence of
these physiological requirements has not been observed. In fact, a significant absence of
large inhibitory conductance changes has been measured [17,40,41].

Crucially, feedforward models offer no account of the dynamics that must play a role
in DS or VS; that is, they do not explain how the observed dynamic characteristics of V1
RFs arise.

Feedback or recurrence models and extensions

To address the lack of intracortical mechanisms in feedforward models and explain ob-
served changes in neural conductances, Douglas and Martin devised a feedback or recur-
rently connected microcircuit, in which weak input from LGN is amplified in the preferred
direction and suppressed in the null direction by combination of excitatory and inhibitory
connections within V1 [39]. Further refinements from biologically plausible computer
simulation of this micro-circuit were performed by Suarez, et al [17].

Another biophysically detailed, system-theoretic implementation of a DS network and
further elaboration of the feedback microcircuit has been provided by Maex and Or-
ban [42]. A central claim of this work is that the interaction of excitatory and inhibitory
feedback connections in V1 provide the mechanism for spatiotemporal correlation (filter-
ing) necessary for DS. In the model, DS (not SS or VS) is derived from excitation and
subsequent inhibition by spatially adjacent bipolar Gabor-like RFs in the cortex. Essen-
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tially, local excitation of an edge-selective RF inhibits its neighbours in the preferred and
null directions. Dynamical properties of RFs are implicit in the model, determined by
spacing of the on/off regions of the RF and temporal lags in recurrent connections.

Mineiro and Zipser have attempted to analytically simplify the Maex-Orban model,
and in doing so have shown prediction characteristics in recurrent networks that sustain
signal representations under noisy visual conditions [43]. Further, they demonstrate that
the integration time constant, τ

RC
, and not the propagation delay of a recurrent signal,

is the most appropriate mechanism for speed preference in single neuron models [43].

Weaknesses of feedback models

These feedback models suffer from several common weaknesses. First, they do not capture
the observed characteristics of neural selectivity for both direction and speed, i.e. velocity
tuning, in which velocity is vector quantity of at least two dimensions. Second, the
proposed mechanisms do not explain or predict the known time courses (e.g. separable,
inseparable) in V1 simple cells. Finally, they are designed using only a few neurons,
lacking any means for distributed representation or large scale simulation.

1.2.6 Models of motion processing in MT

Divisive normalization

An extension of the motion energy model has been proposed by Simoncelli and Heeger in
an attempt to resolve the aperture problem. They use a “neural implementation” of the
geometric solution, called the intersection of constraints [44], which is the main thrust
of the divisive normalization model. It is an extension of the motion energy model that
uses half-wave rectification and squaring of individual neural firing rates to determine the
magnitude of the preferred direction represented by each neuron in a pool. These decoded
vectors are then scaled by a proportionality constant, common to all neurons in the pool
to recover the original stimulus projection (see Figure 1.17) [44]. This algorithm is used
for converting the population firing rates of V1 and MT neurons into coefficients of pre-
ferred velocity vectors. However, as with the motion energy model, divisive normalization
provides not account of dynamics required to generate the required DS RFs.

The cascade extension

The ‘cascade’ model described by Rust, et al, extends the divisive normalization approach
[26,45]. Its primary aim is to show how a composite stimulus, composed of a combination
of directional components, drives component-tuned V1 DS cell responses that are pooled
as a weighted linear sum in an MT neuron. Essentially, the normalization constant from
the Simoncelli-Heeger method becomes a directionally-dependent variable in the cascade
model, determined by putative suppression within and between V1 RFs [26].
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Figure 1.16. The aperture problem and the intersection-of-constraints solution. The velocity of a 1-D
structure transiting a local aperture is ambiguous since many possible motions produce the same neural response.
Top left : A neuron tuned to the object velocity will respond maximally. Top right : The same stimulus on a neuron
tuned to a different direction produces a lower response. A population of variously tuned neurons would produce a
Gaussian-like distribution of responses. Bottom : To produce a single vector from the distribution, the ‘intersection
of constraints’ construction finds the true vector that intersects all constraint lines [25].

Figure 1.17. The divisive normalization model by Simoncelli and Heeger. Continuous input is convolved
with local linear spatiotemporal filters followed by rectification and summation. The α term is a common background
spike rate. A normalization constant, σ2, is calculated for the pool of afferents and used to scale the output value
of each neuron. The algorithm is the same for LGN or V1 input.
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Three-dimensional naturalistic RF extension

In attempt to generalize and simplify the prevailing models of Adelson-Bergen, Simoncelli-
Heeger and Rust [19, 26, 44], Nishimoto and Gallant have used naturalistic stimuli on
behaving macaques to derive a more accurate MT RF fit in a three dimensional spa-
tiotemporal frequency (STF) domain [46]. One important result of the naturalistic MT
RFs is that excitatory fields tend to lie in a common STF plane while inhibitory fields
lie off-plane. The studies also showed that MT responses to naturalistic stimuli can be
suitably approximated based on MT responses from idealized stimuli such as moving bars,
gratings and dots [46].

1.3 Relationship of the proposed model to previous work

The model of motion processing proposed in this thesis shares some similarities to those
outlined above. It resembles feedforward models of DS in its use of LGN afferents to
drive V1 simple cell activities. It is similar to recurrence models in the use of feedback
connectivity in V1 to amplify and sustain thalamic output signals. Like the motion
energy scheme, it relies on a measure of frequency similarity between the spatiotemporal
structures of the stimulus and V1 simple cell RFs. It is similar to the divisive normalization
model of motion integration in MT since it uses weighted pooling of velocity tuned V1
efferents in the construction a retinotopic map of optical flow in MT.

Unlike other models, the proposed model explains how the spatiotemporal charac-
teristics of velocity selective RFs (namely, the transient and sustained components of
separable/inseparable RFs observed in macaque electrophysiology studies [22, 47]) are
generated within V1 simple cell ensembles, and how those populations interact with ef-
ferent thalamic signals to produce velocity selectivity in V1. The mechanism for velocity
selection is a driven and damped state phase oscillator : a spiking neural ensemble in
which a time-dependent Gabor function—a vector encoded by the activities of neurons
that share a common orientation preference but collectively span the phase angles around
a circle—undergoes phase evolution by the rotation of the vector in a two-dimensional
space in which the plane axes are any two orthogonal phases. Thus, the rotation of the
oscillator state vector in time corresponds to the progression of the phase angle in time.
Intuitively, the rotation of the state vector represents the translational ‘motion’ of the
Gabor. If the LGN output signal is similar to the intrinsic state of the oscillator at a
given time after the onset of oscillation, the interference will be constructive, increasing
the state magnitude; if dissimilar, destructive interference will act to decrease the state
magnitude. Sensitivity to static signals is eliminated by using V1 efferents that correspond
to phase angles late in the oscillation period.

Another important distinction of proposed model is in the biological constraints of
the implementation. It uses spiking, noisy, leaky integrate-and-fire (LIF; see section 2.1)
neurons in a large scale network with a minimum of 10,000 for each V1-MT microcircuit,
and up to 1.29 million neurons when processing the entire stimulus area. It incorporates 49
microcircuits, retinal ganglial output and representational LGN ensembles. Further, the
proposal specifies all neural membrane time constants, absolute refractory periods, post-
synaptic time constants and distribution of firing rates using the methodology devised by
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Eliasmith and Anderson [48]. Finally, the model utilizes and demonstrates the necessity
of burst-like signals from LGN to V1.
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Chapter 2

Theoretical principles of the
proposed model

Figure 2.1. The neural connection. Left : The essential communication structure between two neurons
illustrating a transmitting axon and the many signal-receiving dendrites. Public domain image created by US
National Institutes of Health, National Institute on Aging. Right : Schematic depiction of the event sequence at
the synapse, relevant to signal communication.

Neurons are electrically excitable cells in the nervous systems of vertebrates. In vast
networks, they allow animals to sense, represent, process and interact with the environ-
ment in order to survive. The left of Figure 2.1 depicts the transmission of an electrical
pulse one neuron to another. This pulse, called a spike or action potential [49], is trans-
mitted along the axon of a neuron in a few milliseconds [50]. The spike is transduced into
a chemical signal by a complex process (Figure 2.1, right) that causes an ionic current
to flow into a receiving neuron via projections called dendrites [50, 51]. The interface
between axon and dendrite is called the synapse [3]. In the construction of a biologically
plausible neural network that can compute the velocity of a visual pattern, we must begin
with a quantitative model of the neuron. In this chapter, the single unit approximation
of a spiking neuron called the leaky integrate-and-fire (LIF) model is presented, followed
by a discussion of its suitability in large-scale network simulations.

Next, a general methodology called the Neural Engineering Framework (NEF) [48] is
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presented to show how vector quantities can be represented and transformed in realis-
tic, time-dependent, noisy networks of neurons. Network dynamics using the state-space
method are included in the NEF formalism. An application of the methodology is ap-
plied to the damped oscillator, which is an important motivating example for the model
proposed in Chapter 3.

2.1 The LIF neuron model

Figure 2.2. An RC circuit. A parallel resistor-capacitor circuit is the electrical analog of the subthreshold range
of the LIF neuron. Public domain image.

Figure 2.3. The voltage time course of a LIF neuron. Vth: threshold voltage; τRC : membrane time
constant; τref : absolute refractory time period. See text for full description. Adapted, used with permission of
Eliasmith [48].

The LIF neuron model is a simplification of the successful but more complex Hodgkin-
Huxley model [52]. In the subthreshold range the LIF neuron is equivalent to a resistor-
capacitor (RC) circuit (or leaky integrator ) (Figure 2.2) driven by an input current [52].
The change in the quantity of charge Q(t) over time is called the membrane current, IM (t),
where IM (t) = dQ

dt . The membrane capacitance, CM , results from the differences in ionic
concentrations of across the membrane. These terms can be related to the membrane
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voltage, VM (t), by the definition of capacitance:

CM =
Q(t)
VM (t)

or Q(t) = CMVM (t) .

By differentiating with respect to time, we can relate IM to these quantities:

IM (t) =
dQ

dt
= CM

dVM

dt
. (2.1)

The cell membrane is not a perfect insulator since it leaks ionic current. This gives it
resistor properties as well.1 So a ‘leak’ term is added to (2.1) as the membrane resistance,
RM :

IM (t) −
VM (t)
RM

= CM
dVM

dt
. (2.2)

We now drop the subscripts for clarity. Next, we define τ
RC

≡ RC, the time required to
charge the capacitor to IR(1 − 1

e ) assuming a step input of magnitude 1. Solving (2.2)
for V (t) under constant current I gives

V (t) = IR
(
1 − e−t/τ

RC

)
, (2.3)

and is valid for times 0 < t < ts, where ts is the spike time. This is called the sub-threshold
regime (Figure 2.3).

At the threshold voltage, Vth, the neuron fires. In the LIF approximation, the spiking
event is considered stereotypical and is formalized by adding on a delta function at the
threshold time (Figure 2.3).

The time of the spike is given by Vth = V (ts), which we can use to solve for ts in (2.3):

ts = −τRC ln

(

1 −
Vth

IR

)

. (2.4)

Note that ts is just the period of one spike ‘cycle’ assuming a constant current. So, just as
the frequency f of a steady-state periodic system with period T is f = 1

T , the steady-state
firing rate of the LIF neuron can be found by the expression

a(ts) =
1

ts + τref
, (2.5)

where τref is the absolute refractory period, a duration in which no current can enter
the cell [53]. Substituting (2.4) into (2.5) and using Ohm’s law, Vth = IthR, gives the
steady-state firing rate or activity of the neuron under constant current:

ai(I) =

[

τref − τRC ln

(

1 −
Vth

IR

)]−1

=

[

τref − τRC ln

(

1 −
Ith

I

)]−1

. (2.6)

1This also allows the neuron to discharge current relatively slowly. Otherwise, it would hold or ‘remember’ past
input indefinitely, which is highly unrealistic.
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If I = I(t), we can interpret ai(I(t)) as the ‘instantaneous’ firing rate of the neuron.
Single neuron models that express activities by rates, as opposed to spiking events, are
called rate neurons.

2.1.1 Suitability of the LIF neuron model

There is an ample body of literature dealing with the shortcomings of the LIF model as an
appropriate simplification of a real spiking neuron [48,54–57]. The main concerns include:
the LIF neuron has no volume in space and thus does not account for the variation in
potential over the entire cell membrane; ion conductance by the membrane is not taken
into account; the leak term in (2.2) is derived from Ohm’s law, where voltage is a linear
function of current, yet ionic currents are generally nonlinear functions of membrane
potential and time [48,55].

However, a more realistic approximation like the Hodgkin-Huxley model [58] would
improve spiking statistics but would not be computationally feasible in a large-scale net-
work simulation [52]. Eliasmith and Anderson have argued that the LIF approximation
represents the best trade-off between computability and realism [48].

The importance of a reasonably accurate analytical description of a single neuron is
that it allows us to relate an input current to a stimulus signal and the preferred signal
of a neuron in order to derive its signal response or tuning curve.

In the next section we consider how to connect individual LIF neurons in order to
perform information processing in a dynamic network.

2.2 Neural network modelling principles

We approach the task of network modelling using a general neural system design method-
ology called the Neural Engineering Framework (NEF), developed by Chris Eliasmith
and Charles H. Anderson [48]. The NEF is a general, biologically constrained, scalable
approach that consolidates and extends a variety of classical and modern methods. In
particular, the NEF allows us to solve for the neural connection weights necessary to
represent and transform vector quantities with spiking neurons in noisy, time-dependent
networks of arbitrary function.

The central principles of the NEF are:

1. Neural representations are defined by the combination of nonlinear encoding and
weighted linear decoding.

2. Transformations of neural representations are functions of variables that are repre-
sented by neural populations. Transformations are determined using an alternately
weighted linear decoding (transformational decoding).

3. Neural state dynamics are characterized by considering neural representations as
state variables in linear time-invariant systems.

4. Neural systems are subject to significant amounts of noise, which must be accounted
for in system design and analysis.
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Figure 2.4. Sample tuning curves for a scalar value. The tuning curves of a neural ensemble encoding a
scalar value between -1 and 1 with only positive-valued rates. For each input value in the domain, the set of firing
rates can be decoded using the principles described to reconstruct the input. Adapted, used with permission of
Eliasmith [48].

2.2.1 Vector encoding

The neural ensemble

In many neurophysiological studies of behaving animals, the cortical response induced by
a stimulus is distributed over a population of neurons. These functionally related neurons
are called an ensemble [59]. Each neuron in the ensemble can be characterized as being
tuned to a particular stimulus vector, ei = (e1, e2, . . . , en)T , which generates the highest
firing rate in that neuron. This means that it receives the highest ionic current, I, when
the stimulus x = (x1, x2, . . . , xn)T = ei. We can relate I to x and ei by the inner (dot)
product 〈ei,x〉n, plus a constant background current, Jbias

i . So our rate equation (2.6)
becomes

ai(x) = Gi

[
I(x)

]

= Gi

[
αi〈ei,x〉n + Jbias

i

]
, (2.7)

where ai is the firing rate of neuron i, Gi[∙] is the nonlinear function specific to the single
neuron model being used (in our case, the LIF neuron), and αi is the unit conversion and
scaling factor. In this way, we can determine the population encoding of x for any neuron
defined by Gi[∙], so long as we can specify the encoders and the other parameters in the
ensemble. An example of ensemble tuning curves for the scalar range [−1, 1] is shown in
Figure 2.4.
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2.2.2 Vector decoding: principles of optimal linear estimation

In order to determine how well the encoding scheme performs, we require a method of
decoding the quantities being represented by the neural activities. This is the subject of
the remainder of section 2.

In linear algebra, vectors are represented by a unique linear combination of the ele-
ments of a basis. This combination is determined by the projections (dot products) of the
given vector on each basis element. So for vector x and an n-dimensional orthonormal
basis {bi},

x =
n∑

i

(bi ∙ x)bi (2.8)

=
n∑

i

aibi . (2.9)

If the basis is known, we can write x more compactly using the set of projection coefficients
so that x = (a1, a2, . . . , an). In this form, the coefficients encode the vector x. To decode
or reconstruct the vector in a linear manner, we use the ai to weight the contribution
of each bi in the sum over the basis elements, as in (2.9). This system of encoding and
decoding defines a representation. It is particularly simple since the basis is orthonormal,
i.e. consisting of orthogonal unit vectors. By definition, the number of vectors in the
basis is the dimensionality of the vector space.

In an attempt to use neural activities as a basis, we begin by considering the ei as
the basis vectors and interpret the firing rates ai as the coefficients that encode x. Our
temptation, then, is to decode x as above, where for an ensemble of N neurons

x
?
=

N∑

i

(ei ∙ x)ei (2.10)

?
=

N∑

i

aiei . (2.11)

Unfortunately, this is incorrect. The first problem is that ai ≥ 0 always, since firing rates
are never negative. But even if we paired each aiei with some ajej = −aiei to resolve
negative projections on ei in some way, nothing would restrict the number of neural basis
elements to equal the number of dimensions in the vector space. Assuming a high degree
of representational redundancy, we will have many more neurons in the ensemble than
dimensions in the vector space. Thus, we cannot construct a basis by interpreting neural
activities in this way; that is, we cannot use the encoders as decoders with any reasonable
representational accuracy.

Instead, we can consider the neural activities of an ensemble as an overcomplete
frame—a mathematical structure well-known in signal engineering and functional analy-
sis. The benefit of overcomplete frames is their representational robustness. Indeed, they
perform better than orthonormal bases under noise, and if an element is removed, the
redundancy of the structure means the encoded vector is not severely degraded as would
be the case in an orthonormal basis [48].
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How well the neural ensemble can represent any vector within a given vector space
depends on how we account for noise, the number and distribution of our encoders, and
the impact of linear decoding of vectors encoded in a highly nonlinear manner. The effect
of noise is included in section 2.2.3. The effects of the number of ensemble neurons, N ,
and linear decoding error are addressed in section 2.2.4 but for now we assume N to be
suitably high to give a reasonable estimate of x, denoted x̂.

Following closely the steps provided by Eliasmith and Anderson in [48], to find the
decoding vectors in an overcomplete frame we solve for the set of vectors {di} such that

x̂ =
N∑

i

ai(x)di , (2.12)

where x̂ is of suitably high accuracy. The NEF uses a method of optimal linear estimation
using mean square error minimization to solve for the decoders. For neuron j, the decoder
dj is found by minimizing the the mean square error over a large and diverse sampling of
x, using

E =
1
2

∫ [
x − x̂

]2
dV

=
1
2

∫ [
x −

N∑

i

ai(x)di

]2
dV , (2.13)

where dV is the volume element dx1dx2 . . . dxn. To find the minimum, we take the
derivative of (2.13) with respect to di, set it to 0 and solve for dj :

0 =
d

ddi

(
1
2

∫ [
x −

∑

j

aj(x)dj

]2
dV

)

∫
ai(x)x dV =

∑

j

(∫
ai(x)aj(x)dV

)

dj .

Writing the left side as vector v and the right side integral as matrix Γ isolates the decoder
we seek:

v = Γdj

or dj = Γ−1v

where

vi = 〈x ai(x)〉x
and Γij = 〈ai(x)aj(x)〉x . (2.14)

This technique, along with the encoding scheme from (2.7), provide a method of repre-
senting n-dimensional vectors with ensembles of N rate neurons with minimal error.
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2.2.3 Vector decoding: noise and variability

Characterizing spike rate variability

Until this point we have assumed that the firing rate of a neuron, ai(x), is constant
if the exciting stimulus, x, is constant. However, in vivo measurements of firing rates
of neurons under constant stimulus show a high degree of variability in the inter-spike
interval (ISI) times. There are two general views about this variability. The first assumes
this is noise, a result of stochastic processes, including the uncertainty of vesicle release
in the pre-synaptic neuron; inconsistent timing in the release of neurotransmitters that
open ion gated channels in the post-synaptic neuron [48, 60]; variation in the quantity of
neurotransmitter components contained in the vesicles [61]; and possible effects of large
numbers of interconnected neurons on the ISI for individual neurons [62]. The second view
assumes the variability to be the result of precise timing mechanisms from presynaptic
processes [62] , and thus a carrier of information. The NEF takes the first view, considering
the variability in ISI to be the result of random processes, and where the rate of a neuron
can depend on x̂(t) but is independent of other spike times.

To account for the observed variability of real neurons in our encoding and decoding
scheme, we must first arrive at a reasonable characterization of it. In their work on the
visual cortex of anesthetized cats, Holt, et al, showed that the spike statistics for in vivo
neurons in Brodmann areas 17, 18 and 19 (areas V1-V5) can be adequately modelled as
a Poisson process [63]. Model fitting was applied to experimental data for neurons with
an ISI < 50 ms (i.e. spike rates > 20 Hz), with realistic refractory periods, using stimuli
duration up to five seconds. The work also showed that in vitro spiking under injected
current was highly regular, suggesting the major cause of observed variability in behaving
cats was due to high background noise and not intracellular triggering mechanisms [63].

The Poisson distribution for many discrete, independent events that combine addi-
tively will tend toward a normal (Gaussian) distribution.

Incorporating variability and noise

The NEF assumes that ISI variability, regardless of cause, can be incorporated as a single
noise term in the decoding equation (2.12) [48]. A random value per neuron, ηi, is chosen
from a Gaussian distribution with a mean of zero and added to signal in to affect the
firing rate, ai:

x̂(t) =
∑

i

ai(x(t) + ηi)di . (2.15)

Solving for the decoders is done as before, but to the previous result of (2.14) a noise
term is produced:

Γij = 〈ai(x)aj(x)〉x + σ2δij . (2.16)

In this way we can add an appropriate degree of spike variability, assumed to be noise,
and thus representational uncertainty to neural networks built on NEF principles. Section
2.2.4 describes the relationship between this noise, the size of the ensemble and the use
of linear decoding.
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Figure 2.5. The effect of ensemble size on error. Increasing ensemble size rapidly reduces error. Left : The
effect of increasing N reduces error due to noise by a factor of 1

N
. Right : Increasing N reduces error due to static

distortion by a factor of 1
N4 for low N , and 1

N2 for high N . Used with permission of Eliasmith [48].

2.2.4 Vector decoding: precision

In addition to noise, the effects of ensemble size, N , and the use of a linear decoding
method must be considered in the assessment of representational precision. Figure 2.5
shows logarithmic plots relating N and the square error of the decoded quantity. This
data shows that adding neurons to an ensemble reduces both the effect of noise and the
error due to the linear decoding process. This is provides confidence in the quantifiable
effects of representational error for the large-scale model in this paper and accounts for
the impact of noise in neurobiological systems. As well, it shows that errors due to noise
are dominant in the assumption of linear decoding.

2.2.5 Vector decoding: spiking neurons and time-dependence

To form a biologically plausible description of vector representation we must progress from
rate neurons to time-dependent ones, to account for spiking behaviour. Mathematically,
we must adapt our formalism such that the signal and the decoders depend on time:

x̂(t) =
∑

i

ai(x(t))di(t) (2.17)

=
∑

i,s

δ(t − tis)di(t) , (2.18)

where tis is the time of spike s produced by neuron i. From these expressions we can
interpret the ai as being instantaneous firing rates and the di as having infinitesimal
lifetimes. Since spikes are, by definition, not continuous, the only way to reconstruct a
continuous time signal is through the time-dependence of the decoder. By treating the
spikes as impulse inputs into a linear decoding system, the continuous output we seek can
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be achieved by finding the impulse response in the convolution operation:

x̂(t) = h(t) ∗
∑

i,s

δ(t′ − tis)di (2.19)

=
∫ T

0
h(t − t′)

(∑

i,s

δ(t′ − tis)di

)
dt′ (2.20)

=
∑

i,s

h(t − tis)di . (2.21)

This expression can be interpreted as each spike being decoded by a continuous time
signal contribution to x̂(t), determined by the linear filter h(∙). To find the optimal linear
filter, we minimize the mean square error between x(t) and x̂(t) as before. However, in
real neurons, the life of a spike ends at the synapse, where it causes an ionic current in
the post-synaptic receptor. It is this biologically plausible spike filter—the post-synaptic
current—that we would like to use so long as it can perform comparably with the optimal
decoding filter. The post-synaptic current can be modelled as

hpsc(t) =
1
τ
e−t/τ , (2.22)

where τ is the synaptic time constant. This approximation performs well and is a biologi-
cally plausible use of what was initially a mathematical device [48].2 So with the decoding
filter hpsc(∙) we have a convenient and, with suitably high N , reasonably accurate means
of extracting a time-dependent vector x̂(t) from the spike trains of an ensemble of neurons.

2.3 Vector transformation

2.3.1 Linear transformations

Suppose we have vector quantities x and y, each represented by the activities of a neural
ensemble (Figure 2.6). If our decoding is good, i.e. x̂ ∼= x and ŷ ∼= y, we can use the
formalism we have established to determine the activities of a third neural ensemble that
will represent a linear combination of these vectors. So for z = c1x + c2y, where the c1

and c2 are scalars, the encoding equation for neurons in ensemble sk becomes

sk(c1x + c2y) = Gk

[

αk〈ek, c1x̂ + c2ŷ〉 + Jbias
k

]

= Gk

[

αk

(∑

i

ai(x)c1〈ek,d
x
i 〉 +

∑

j

bj(x)c2〈ek,d
y
j 〉

)

+ Jbias
k

]

= Gk

[∑

i

ωki ai(x) +
∑

j

ωkj bj(y) + Jbias
k

]

,

where ωki ≡ αkc1〈ek,dx
i 〉 and ωkj ≡ αkc2〈ek,d

y
j 〉 are the connection weights between

ensembles. Networks for other linear combinations can be determined in a similar way.

2The function hpsc(t) is also the impulse response for an RC circuit. What makes it biologically plausible is
the approximate exponential decay of most post-synaptic currents, and the ability to change tau to reflect different
kinds of neurotransmitters.
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Figure 2.6. A linear transformation network. The linear transformation z = x + y is computed over three
populations of neurons, ai, bj and sk, with connection weights wkj and wki. Used with permission of Eliasmith [48].

2.3.2 Nonlinear transformations

The method described for the calculation of linear transformations cannot be used for
nonlinear transformations. Achieving such transformations (assuming no dendritic mech-
anisms) requires a middle or hidden layer that encodes a higher dimensional quantity
determined by the inputs, which then projects to a population of lower representational
dimension.

For example, suppose we wish to build a network to multiply two one-dimensional
quantities, x and y. Then we compute the activities of the ensemble pk that will encode
the scalar product z = xy (Figure 2.7). The activities of the two-dimensional middle layer
are given by

ml(v) = Gl

[

αl〈el,v〉 + Jbias
l

]

= Gl

[

αl

(
e
(1)
l x + e

(2)
l y) + Jbias

l

]

= Gl

[∑

i

ωli ai(x) +
∑

i

ωlj bi(y) + Jbias
l

]

,

where the superscripts index the vector components, ensembles ai and bj represent x
and y as before, and where we use a two-dimensional ensemble, ml, to encode the two-
dimensional vector v = (x, y). The ωli ≡ αlxe

(1)
l dx

i and ωlj ≡ αlye
(2)
l dy

j are the connection
weights for the middle layer transformation. Next, the activities of the population pk
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Figure 2.7. A nonlinear transformation network. The nonlinear transformation z = xy is computed over
four populations of neurons, ai, bj , pk and ml with connection weights wlj , wli and wkl. The middle layer holds
the representation of the two-dimensional quantity m = (mx, my). Used with permission of Eliasmith [48].

encoding the product are given by

pk(m) = Gk

[

αk〈ek,m〉 + Jbias
k

]

= Gk

[

αkek

∑

l

ml(v)dm
l + Jbias

k

]

= Gk

[∑

l

ωkl ml(v) + Jbias
k

]

,

where ωkl ≡ αk〈ek,d
m
l 〉. Then pk can be decoded into the product ẑ by

ẑ =
∑

k

pk(m)dz
k , (2.23)

where dz
k is the contribution weight for neuron k in the sum of activities pk that represent

ẑ. Networks for other nonlinear functions can be determined in a similar way.

2.4 Dynamics

Biologically relevant stimuli and neural responses generally depend on time. Since we
have incorporated time dependence in our account of vector representation, the NEF is
able to use the state-space method from control engineering to describe dynamic state
transformations. Since the primary contribution of this thesis relates to the design and im-
plementation of a particular kind of dynamical neural network, a discussion of dynamical
system modelling and the suitability of the state-space method is provided.
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2.4.1 The state-space method: an example using a damped oscillator

Dynamical systems are often described mathematically by differential equations. The or-
der of a particular differential equation is the highest derivative of the dependent variable
with respect to the independent variable. An ordinary differential equation contains one
independent variable. The state-space representation is the description of an nth order
system as a set of n first-order, ordinary differential equations [64]. Unlike the classical fre-
quency domain approach that relates individual system inputs to outputs to determine a
transfer function, the state-space method emphasizes the internal workings of the process
that converts multiple inputs to multiple outputs. The primary benefit of the state-space
approach is the explicit specification of the relations among these independent variables.

The central concept in the analysis is the system state, expressed as the vector x(t) =
(x1(t), x2(t), . . . , xn(t)). It is defined as the minimum set of variables that provide a
complete, but not necessarily unique, quantification of the internal ‘configuration’ of a
system at a given time. Knowledge of the state vector for some initial time along with the
time evolution properties of the system allow for the prediction of any future state and
output for any given input [64]. Systems that can be characterized this way are called
state-determined. Historically, n refers to the number of independent energy storage
elements in the system.

As an illustration of the use of state-space methods and a motivating example of the
velocity computation modelled in Chapter 3, we consider a simple dynamical system: a
mass on a spring under friction, oscillating in one dimension. The mass m is fixed to a
spring with a constant stiffness coefficient, k1, moving in one dimension (see Figure 2.8)
under a constant friction coefficient, k2, but without any driving forces yet. The second-
order differential equation for this system is found by equating Hooke’s law, Fs = −k1x,
with Newton’s second law of motion, Fnet = mẍ, then adding the friction (or viscosity)
term −k2ẋ:

mẍ = −k1x − k2ẋ

ẍ = −
k1

m
x −

k2

m
ẋ (2.24)

where x = x(t), ẋ ≡ dx
dt , ẍ ≡ d2x

dt2
. There are two independent energy storage elements:

the stiffness of the spring, represented by the position x, and the momentum of the mass,
represented by velocity ẋ [65]. Thus, the state-space representation of (2.24) will consist
of two ordinary, first-order, linear differential equations.

Next we impose a change of variables. Letting x1 = x and x2 = ẋ, we see that ẋ1 and
ẋ2 can each be written as linear combinations of x1 and x2. In matrix-vector form this is

(
ẋ1

ẋ2

)

=

(
0 1

−k1
m −k2

m

)(
x1

x2

)

=

(
0 1

−ω2
o −2γ

)(
x1

x2

)

,

written ẋ(t) = Ax , (2.25)
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Figure 2.8. Impulse response of damped, driven oscillator in one dimension. A mass on a spring under
friction is an example of a damped oscillator. Top: The system state, x, is the displacement from the equilibrium
point x = 0. The friction term acts in the direction opposite the restoring force of the spring. Bottom : The time
course of the system showing the extrema. The half-period time, T , is the interval between the first maximum
and following minimum. 1 is the system at rest, just before the initial impulse input. 2 shows the maximum
amplitude after an impulse input. 3 shows the minimum amplitude without further input.

where by convention γ ≡ k2
2m is called the damping factor and ωo ≡

√
k1
m is called the

natural frequency3. A is the dynamics matrix instantiated intrinsically by the system4.
Since the elements of A do not contain x or any of its derivatives, the system is linear.
Also, since A is independent of time, the system will behave the same way whenever the
input is applied. Hence, the system is linear and time-invariant (LTI). Note that the
factors affecting dynamics are contained completely in the dynamics matrix, A.

Next we assume our initial displacement to be x(t0) = 0, so the system does nothing
until we add the input u(t) = [u1(t), u2(t)]. Then (2.25) becomes the first of the two
standard LTI state equations,

ẋ(t) = Ax + Bu, (2.26)

3The damped frequency is typically defined as: ω ≡

√
k1
m

−
k2
2

4m2 =
√

ω2
o − γ2 .

4Notice that due to the redundancy ẋ1 = x2 = ẋ = ẋ1, the state-space representation does not add any
information or dimensionality.
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Figure 2.9. A damped, driven oscillator in one dimension with resonant input. If the frequency of
impulse inputs match the natural frequency of the oscillator, the system behaves as if it were undamped (red trace;
blue trace from Figure 2.8 for comparison); that is, the input force overcomes the force due to friction. The impulse
times are t ∈ {0, T − ε, 2(T − ε)}, where ε is a short duration that allows the force of the input to be absorbed by
the system. The initial phases of the input signal and the oscillator always match since the first input pulse excites
the oscillator from rest at 1 . The maximum at 2 is the same for both scenarios, but the minimum at 3 has a
significantly greater magnitude in this case (black arrow). This strong minima is a local measure of the correlation
between the intrinsic frequency of the oscillator and the frequency of the input pulses for nearby preceding times.
If the input frequency is dissimilar to the oscillator, the interference is destructive, reducing the amplitude. If the
impulses are too frequent, the intrinsic dynamics of the system are overwhelmed and the behaviour follows the
input function in a scenario called over-driving.

where B is a unit conversion and scaling matrix for the input, but in this example is set
to the identity.

If u is an impulse to the damped oscillator system, the behaviour will resemble that
depicted in Figure 2.8. If the input consists of impulses with a frequency equal to the
intrinsic frequency of the oscillator, a resonance response is produced and the system
behaviour will resemble that depicted in Figure 2.9.

The second state equation relates the output of the system, y, to the system state x
and input u:

y = Cx + Du

where C and D are the output and feed-through matrices, respectively. These matrices
are determined by the variables of interest from the output and input. In this example
we are only interested in the system state x without feed-through, so the second state
equation is just y = x. Thus, our discussion is concerned only with the first equation
(2.26), which is the state-space formulation for the damped oscillator system.

The state equations are depicted in the standard block diagram in Figure 2.10. In
linear systems analyzed in the time domain, the central block or plant5 integrates the
continuous changes in state, which depends on linear combinations of the state x(t) itself
and the input u(t). The state variables can always be considered as outputs of integrator
blocks [64].

5Also known as the transfer function in frequency-domain analysis.
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Figure 2.10. The LTI block diagram. The standard depicting the state equations for a linear time-independent
(LTI) system. Elements related to the output equation are greyed as they are not important to the discussion.

2.4.2 Adapting state-space methods to neural ensembles

In order to exploit state-space methods in the design of LTI neural systems, the NEF
provides a mapping of the standard state equations onto neural ones. With this mapping,
we will be able to define the dynamical behaviour we want by choosing suitable elements
for matrix A.

The third NEF principle suggests that the system state vector x can be understood as
a neural representation, just like the decoded signal vector discussed earlier. This means
that it is possible to consider the plant is the neural ensemble itself. This does not mean
that we take n neurons as n independent energy conserving components, since the activity
of any single neuron i does not independently represent any single component xi in x.
But in the representational ensemble where x̂ ∼= x, there exists for each component xi the
linearly independent neural activities that encode xi.

Eliasmith and Anderson argue that the impulse response of the neural ensemble is
dominated by the dynamics of the post-synaptic current, hpsc(t) = 1

τ e−t/τ , which acts as
a spike (impulse) filter [48]. By the linearity condition, the sum of these responses is the
output of the system (weighted by the decoders), x̂(t) ∼= x(t). So the state equation for
the neural ensemble is the convolution

x(t) = hpsc(t) ∗ [A′x(t) + B′u(t)] , (2.27)

which is essentially (2.19) with state feedback plus an input term. The A′ and B′ are the
‘neural versions’ of A and B; relating these quantities is the crucial step that will allow
us to use standard LTI methods to ascribe the dynamics we want in our system.

For convenience, we now work in the Laplace domain, where hpsc(t) → hpsc(s) = 1
1+sτ .

So (2.27) becomes

x(s) =
1

1 + sτ
[A′x(s) + B′u(s)]

=
τ−1

τ−1 + s
[A′x(s) + B′u(s)] .

(τ−1 + s)x(s) = τ−1[A′x(s) + B′u(s)]

sx(s) = τ−1(A′ − I)x(s) + τ−1B′u(s). (2.28)
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Now we can equate the conventional and neural state equations, (2.26) and (2.27) respec-
tively, to express A and B in terms of A′ and B′:

Ax(s) + Bu(s) = τ−1(A′ − I)x(s) + τ−1B′u(s)

⇒ A′ = τA + I (2.29)

⇒ B′ = τB (2.30)

With these conversions of the dynamics and input matrices from conventional LTI systems
to neural ones, we have a simple way to define the desired dynamics of our neural model.

2.4.3 The oscillator interference (OI) concept

Let us consider Figure 2.11 intuitively. Suppose our physical system is a ball tethered to
a post at the origin of a two-dimensional plane with coordinates given by x = (x1, x2).
The tether is a spring-like rope, so that the ball is retracted toward the origin unless hit
with some outward component of force. The ball has a tendency to orbit the post and is
capable of rotation in only one direction. Suppose an initial ‘launching’ input, delivered
at the origin, has radial and tangential components of force such that the initial trajectory
follows the blue path (left) from the origin. The ball begins to move outward and around
the post with an angular frequency dependent on the length of the rope. Without further
hits, the ball returns to rest at the origin.

Figure 2.11. A 2-D damped, driven oscillator. Impulse coordinates are indicated by yellow stars, along with
time-dependent phase angles denoted φ(ti), and order of occurrence (circled numbers). Left : Impulse response
trajectory of the state vector x(t). Right : The same system subject to resonant input shows sustained oscillatory
behaviour. See text for further description.
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Now suppose we wish to keep the oscillation going with the help of a few teammates
standing around a circle. After the launch of the ball, each player must carefully time her
punch (a burst input) of the ball; too early or too late will miss and the ball will begin to
retract toward the origin. If the team’s timing is good, the ball will oscillate indefinitely
and the radius will be large. In other words, hitting the ball at a position (phase φ) and
angular velocity (frequency φ̇ = ω) similar to those inherent to the system cause it to
resonate.

Now if the players hit the ball too weakly, the trajectory will have a smaller radius
but the same frequency. If they hit with ample force, the radius will be extended but the
frequency preserved (assuming the rope behaves linearly with stretching).

Finally, consider the scenario in which we have too many players, each standing within
arms reach of her neighbours. The dynamics of the ball are overwhelmed; the ‘natural’
frequency depends on the input forces alone, without any ‘natural’ behaviour of its own.
The system is overdriven and the players can move the ball around as they please; the
ball does not have enough time and space to demonstrate its own dynamics.

So, if we observe the game at some time and see that the radius is large, we can
infer that there has been a high correlation recently between the phase and frequency of
the players’ hits and those inherent to the system. In all other cases (notwithstanding
overdriving), the radius will be reduced.

We now formalize these notions using state-space methods. The dynamics of the
system are determined by the dynamics matrix A (see section 2.4.1 for details),

A =

(
2γ −ω2

o

ω2
o 2γ

)

, (2.31)

and the system can be described completely by ẋ(t) = Ax + Bu (the second equation is
just y = x), along with the initial conditions x(0) = ẋ(0) = (0, 0). The sign relation of
the anti-diagonal terms in the dynamics matrix A restricts the direction of rotation. The
sequence of input pulses is {u(t) | t ∈ [t0, t1, t2, t3]}.

In the resonant case, each input velocity, u̇(t) = (ẋ1, ẋ2), is similar to the state ve-
locities, ẋ(t), for each time t. Importantly, the magnitude (radius) of the state, ‖x‖, is
greater than it would be in the non-resonant or uncorrelated case.

Since the oscillator is initially at rest, at least two interactions or interference events
are required for correlation. The first acts as the initializer, triggering the oscillation.
Subsequent events interact (linearly) with the system and extend or reduce ‖x‖. Assuming
we are considering only recent times (i.e. since the start of the current cycle), we can use
‖x‖ during the later phases of its time course as a correlation measure between x and u
for earlier times or phases.

To achieve this measure, we take the difference between the radius under test stimulus
conditions, ‖x‖stim, and the radius generated by a single impulse, ‖x‖imp. This gives the
measure R, where

R =

{
‖x‖stim − ‖x‖imp, for ‖x‖stim ≥ ‖x‖imp

0, otherwise.
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Since the proposed model relies on resonant interference between input and oscillator,
we refer to it for convenience as the ‘oscillator interference’ (OI) model. The next chapter
provides details of the OI concept as applied to the problem of velocity selectivity and its
implementation in a large scale neural network simulation.
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Chapter 3

A mechanistic model of motion
processing in the early visual
system

The essential problem for this work is to explain how the observed spatiotemporal filtering
properties of V1 simple cells arise and how such behaviour transforms intensity signals
on the retina into a map of velocities in area MT. In this chapter, a computational model
(‘OI’, oscillator interference) is presented using as its foundation the physiological data
from Chapter 1 and the quantitative principles of Chapter 2. A description of the OI
algorithm is followed by a detailed account of the implementation. The results of the
simulation are provided in Chapter 4.

3.1 Algorithmic description

The computational sequence of the model, depicted in Figure 3.1, is as follows:

1. Spatial decorrelation from RGCs

An input signal of continuous intensity values for a moving stimulus is pre-processed
by convolution with an edge detection filter (see Figure 1.12). This simulates the
response of the retinal ganglion cells (RGCs) [2].

2. Temporal decorrelation from LGN

Changes in the edge signal vector beyond a threshold (super-threshold events) cause
a brief (2 ms) burst of spikes representing the moving edge during that interval. This
simulates the burst output observed in the LGN [9]. See Figure 3.5.

3. Directional filtering of V1 input

The LGN output is projected onto two-dimensional Gabor functions that act as
spatial direction input filters for the V1 oscillators. This ensures that the initial
phase angle of x is φ = 0. Each oscillator has an associated direction angle chosen
from a set of 8, equally spaced between 0 and 2π.
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Figure 3.1. Conceptual diagram of the proposed ‘oscillator interference’ (OI) model. A description of
each processing step is included at right. See text for further description.

4. Interference with damped, driven phase oscillators in V1

The V1 simple cell ensembles are driven and damped two-dimensional oscillators
able to maintain and evolve their state representations over time. They are com-
posed of several hundred neurons tuned to the same Gabor direction, but with phase
tunings distributed from 0 to 2π. Any orthogonal pair of vectors in the phase plane
are separated by 90 degrees.1 The connectivity of the oscillator neurons is specified
such that it has a state oscillation frequency ω and damping factor γ.

The rotation through phase space is restricted to one direction by the dynamics
matrix detailed in section 3.2.5. Since each oscillator is driven by input and exhibits
damping properties, its activity decodes to zero in the absence of stimuli.

1Any of these pairs constitute the ‘quadrature pair’ proposed by Adelson and Bergen in [19].
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An initial burst drives the state vector, x(t), to rotate. Subsequent input adds
vectorially to x(t) and thus interferes with the oscillator state. Constructive in-
terference increases the magnitude of x(t) and furthers its rotation. This occurs
only when the direction and phase of the stimulus is similar to x(t); otherwise, the
interference is destructive and decreases the magnitude of the state vector. In other
words, the V1 neurons coding the state vector will exhibit greater activity when
there is a high correlation between the spatiotemporal frequencies of the stimulus
and the oscillator state. This is the essential mechanism for spatiotemporal filtering
in the model and is precisely a resonance interaction between the input bursts and
oscillator dynamics.2

5. Spatial pooling of V1 afferents in MT

The decoded scalar magnitudes of like-tuned, late-phase (where φ(t) ∈ [π, 2π]; see
Figure 3.1, ‘V1’) oscillator neurons for a number of local patches in the visual
field are summed in an MT ensemble. This value is the contribution weight of the
preferred velocity of the MT ensemble to the map of optical flow.

3.2 Implementation details

3.2.1 The Nengo simulation environment

Nengo is the name of an open-source, cross-platform Java application developed by the
Computational Neuroscience Research Group (CNRG), Centre for Theoretical Neuro-
science at the University of Waterloo in Ontario, Canada. Nengo implements all aspects
of the Neural Engineering Framework (NEF) as described in this thesis. Using the NEF,
Nengo is able to construct spiking neural networks of arbitrary size and function using
biologically constrained single neurons, physiological time constants and realistic levels of
noise. The program solves for necessary synaptic connection weights to achieve desired
linear and nonlinear vector transformations. The Nengo simulator can be downloaded
from http://nengo.ca .

3.2.2 Stimulus movie generation

Stimulus movies for moving bars and sinusoids were coded in Matlab R©. Dot motion
stimulus movies were generated using the Psychtoolbox-3 extensions for Matlab R© [66–68].
The software is freely available at http://psychtoolbox.org .

3.2.3 Basis of representation

Other than the burst output from LGN, the computations required by the model are linear
transformations. As such, the relevant quantities and operators can be represented in a
basis. The difficulty is to find a set of basis functions that can represent small, localized
stimuli as well as larger, delocalized structures like Gabor wavelets.

2Resonance requires a signal to match the frequency and phase of an oscillator. Since ours are driven from rest
by an input already filtered for direction, the initial phase of stimulus and the oscillator is always equal at φ = 0.
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Figure 3.2. Sample of basis functions used. An ordered sample of the orthonormal basis functions (eigen-
vectors). This ‘wavelet’ basis is used to represent a variety of spatial patterns like localized dots, elongated bars
and periodic structures likes Gabors. The dashed circle is the RF aperture. When the Gram-Schmidt orthonor-
malization procedure is applied to pure centre-surround functions like 1 (top left), the results become increasingly
delocalized clusters of decaying, alternating peaks.

Figure 3.3. Representation of structures in the basis. The structures on the left of each pair are represented
as coordinate vectors in the basis and reconstructed on the right. Structures near the edge of the RF aperture do
not reconstruct well due to edge effects.

It is widely believed that the Gabor-like spatial RFs of V1 neurons are determined
by combinations of centre-surround responses (Figure 1.3) from the LGN [18]. While it
is possible to construct a basis from such functions, the number required to adequately
represent small, localized structures as well as large periodic ones used in this work was
found to be about 1000. To ease the implementation requirements of computer memory
and processing time for loading and running the model, a reduced basis of 200 functions
was constructed to suit the stimuli used in these experiments. This was achieved by
using an idealized centre-surround function to seed the Gram-Schmidt orthonormalization
algorithm [69]. This procedure is a recursive linear algorithm in which each successive
candidate basis function is replaced by an orthogonal linear combination of all preceding
functions. A sample of the reduced basis functions is illustrated in Figure 3.2. A sample
of vectors reconstructed from this basis is shown in Figure 3.3.
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Figure 3.4. Stimulus edge extraction, field subsampling and V1 array structure. Top left : An example
image from a dot motion stimulus movie after edge extraction. Top right : Overlapping RF apertures (‘subsamples’
or ‘patches’) cover the stimulus area. Bottom : Each patch contains the field of view for 24 V1 oscillators (8 preferred
directions × 3 preferred speeds each).

3.2.4 Centre-surround edge extraction and subsampling

The first transformation in the model is the extraction of edge information from an in-
tensity image. This is accomplished as follows (see Figure 3.4, top left):

1. The stimulus is a greyscale movie with 1 ms time steps, 400×400 pixels.

2. The movie is filtered with a centre-surround edge (Canny) detection filter in Matlab R©

to approximate the output of RGCs.

3. The movie is partitioned into 49 patches with 50% overlap (see Figure 3.4, top
right).

4. The pixel values from each patch are projected onto the high-dimensional basis
described above to generate the 200 vector coordinates per patch, per time step.
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3.2.5 Spatiotemporal filtering by LGN/V1

Oscillation period as a speed measure

Each oscillator i has a damped frequency, ωi, and an associated period, 2Ti. The half-
period time, Ti, is equal to the time interval between adjacent positive and negative
peaks, and is chosen from five equally spaced intervals: Ti ∈ [20, 35, 50, 65, 80] ms. Each
Ti is associated with only one ωi, which in turn describes the rate of change of represented
Gabor phase (drift speed) and thus the preferred speed of the direction-selective oscillator.
While units of time cannot alone measure speed, we can, for convenience, refer to the
preferred speeds of the oscillators by these Ti without ambiguity.

Pre-processing: LGN burst timing

Dong and Atick (see section 1.2.4 and [10]) argue that a primary function of the LGN is the
temporal decorrelation of an edge signal. The temporal filter kernel they have proposed
(see Figure 1.14, left) can produce a reduced signal with minimal loss of information, but
a biologically plausible mechanism to generate such behaviour in LGN is not provided.
Such a mechanism is also outside the scope of this thesis.

It is an assumption of the OI model that the timing of an initial LGN burst corresponds
to the positive overlap between the stimulus edge signal and a V1 directional filter. Figure
3.5 shows an stimulus moving across a Gabor directional filter. Shortly after the threshold
is crossed (t = t0), a 2 ms sample of the stimulus signal is passed to the associated
oscillator.3 For each oscillator i, a second sample is passed from LGN after duration Ti,
irrespective of the overlap between the stimulus and the directional filter. Thus, the initial
peak overlap between the stimulus and the V1 directional filter triggers the oscillator.

Oscillator design

We take as our starting point a damped oscillator(section 2.4.1), and impose the essential
characteristics of the Dong-Atick temporal filter. These include:

1. The oscillation undergoes approximately one period, suggesting strong but sub-
critical damping.

2. The negative amplitude is between 1
2 and 1

4 of the maximum positive amplitude.

As discussed in section 2.4.1, a linear time-invariant system can be realized by dif-
ferential equations that depend on the system state at each time t, where the dynamical
behaviour is determined completely by the matrix A in the state equation ẋ = Ax + Bu.
Since we have already adapted this equation to the representational state x of a neural
ensemble in which A′ = τA + I and B′ = τB, all that remains is to specify the linear

3This duration is kept short, as the longer the duration, the more the intrinsic dynamics of the oscillator are
suppressed. The work of Butts [9] suggests that a duration closer to ∼ 20 ms. This poses no problem for the OI
model since any burst duration greater than 2 ms is suitable.
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Figure 3.5. LGN burst timing. A stimulus moves across a Gabor directional filter. Shortly after the threshold
is crossed at t = t0, a 2 ms sample of the signal is passed from the LGN ensemble to the associated V1 oscillator.
A second sample is passed after duration Ti, irrespective of the overlap between the stimulus and the directional
filter.

transform A that gives us the dynamics we want. The matrix for the incremental rotation
of a damped two-dimensional vector counter-clockwise about the origin is:

A =

(
2γ −ω2

o

ω2
o 2γ

)

.

The opposing signs of the off-diagonal natural frequency terms, ±ω2
o , guarantee that the

rotation of the state vector occurs in one direction only. Thus, this is the recurrent
connection matrix we want for each V1 oscillator. With the damped frequencies known,
we can determine the decay constant for the desired temporal filter by the logistic function,
shown in Figure 3.7. The input signal is projected onto the oscillators using the associated
directional Gabor filters.

3.2.6 Spatial integration in MT

The two-dimensional outputs from the late-phase neurons (see Figure 3.1) in each oscilla-
tor within a pooling neighbourhood of 1-9 V1 RFs are transformed to a scalar value and
summed in an associated MT ensemble.

Construction of the retinotopic MT velocity field

The construction of the MT velocity field array was achieved by mapping a family of
eight directional MT ensembles of common speed selectivity to their associated spatial
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Figure 3.6. Damped frequency vs half-period time. The half-period times, T , are chosen from equally
spaced intervals.

Figure 3.7. Decay vs damped frequency. Using the damped frequencies, the decay constants can be found
along a logistic function.
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Figure 3.8. MT velocity field configuration. A 7×7 retinotopic array of MT RF centres (dots). Each arrow
represents the maximum velocity associated with an ensemble of MT neurons. The positive scalar weight of each
arrow is determined by the V1 oscillator output. This weight is proportional to the length of the arrow illustrated.
Each of these ensembles pools a variable number of smaller-area V1 ensembles.

location on a grid (Figure 3.8). Each patch overlapped its neighbours by 50%, except
around the edges. The activities of each MT ensemble encode a positive scalar weight for
an associated velocity and location in the stimulus field. This weight is proportional to
the length of the arrow illustrated. Each of these ensembles pools a variable number of
smaller-area V1 ensembles, which in this work ranges from 1 to 9.

3.2.7 Neural ensemble network and parameters

Velocity-selective microcircuit schematic

Figure 3.9. Velocity-selective microcircuit schematic. Each microcircuit or sub-network receives input from
one patch of the visual field. N , dimensionality of the ensemble. d the number of neurons in the ensemble. See
text for details.

Figure 3.9 shows a microcircuit or sub-network of neural ensembles (circle clusters)
associated with each patch i of the stimulus area, for each Gabor direction θi and oscillator
speed Ti. A pre-processed burst signal is passed to an LGN ensemble for representation
only; the neural network here does not implement the temporal filtering behaviour of
LGN.

The total number of ensembles and neurons in the simulations are:
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• V1 ensembles: 49 patches x 8 directions x 3 speeds = 1176

• V1 neurons: 1176 ensembles x 400 neurons each = 4.70×105

• MT ensembles: (1 to 9)×V1 ensembles = 130 to 1176

• MT neurons: (130 to 1176 ensembles)×400 neurons each = 5.2×104 to 4.70×105

• LGN ensembles: = V1 ensembles = 1176

• LGN neurons: = V1 neurons = 4.70×105

Total ensembles (maximum) = 3528

Total neurons (maximum) = 9.41 × 105 + 3.53 × 105 = 1.29×106

3.2.8 Physiological parameters for neural ensembles

Table 3.1 lists the physiological parameters chosen for the proposed model. NOISE?

Ensemble parameters Model Value Biological Value Reference

LGN

RC constant (τ
RC

)(ms) 10 10-20 [70, 71]
Post-synaptic constant (τpsc)(ms) 5.0 ∼ 6.6 [72]
Abs refractory period (τref )(ms) 1 <0.85 [73]
Max firing rate (Hz) 100-250 100-200+ [13, 74,75]

V1 simple cells

RC constant (τ
RC

) 20 10-20 [70, 71]
Post-synaptic constant (τpsc) 5.0 ∼ 6.6 [72]
Abs refractory period (τref ) 2 1† [76]
Max firing rate 100-250 ∼ 70 − 100 [77–79]

MT

RC constant (τ
RC

) 20 10-20 [70, 71]
Post-synaptic constant (τpsc) 5.0 ∼ 6.6 [72]
Abs refractory period (τref ) 5 1†† –
Max firing rate 50-150 100-200 [25, 28,80,81]

Table 3.1. Neural ensemble parameters used in the simulation. Reported biological values are included where
available. †= value is based on a model estimate. ††= using V1 value. (– ) = not available.

Noise allowance

The statistical assumptions of noise and effect of this term on the decoders is detailed in
section 2.2.3. In brief, the noise added to the neural activities represents the aggregate
from all sources, distributed normally about a mean of 0 with a standard deviation of
10% of the maximum firing rate of each neuron.
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Chapter 4

Experimental results

4.1 The generation of velocity selectivity

The simulation results of Figure 4.1 illustrate how velocity selectivity arises in a veloc-
ity microcircuit; a subsystem that responds preferentially to spatiotemporal frequencies
close to its directional Gabor input filter and intrinsic oscillator dynamics. It consists of
connected ensembles in a feedforward pathway from LGN to V1 simple cells to MT. The
stimulus in this test is a moving bar of maximum intensity with preferred direction and
speed for the given V1 oscillator.

The initial burst from LGN drives the damped oscillation of the V1 ensemble.Subsequent
input events interfere with the spatiotemporal time course of the V1 population state by
adding vectorially. If the interference is constructive, a resonance effect is produced, as
seen in the centre plot of Figure 4.1. The burst input frequency can be higher than two
events per cycle, but the oscillator will increasingly become overdriven, losing selectivity.
If the input frequency is any lower (a single burst), speed correlation cannot occur in
this algorithm. Thus, two bursts constitute the minimum number of input bursts from
LGN to the associated V1 oscillator capable of velocity detection. The magnitudes of
the oscillator state vector in each of the two phase-orthogonal axes are summed and fed
forward to MT.

4.2 Predicted impulse response of V1 simple cells

Figure 4.2 shows the decoded component responses of the two-dimensional state vector
over time, from a V1 oscillator under 10 ms of ideal input. The orthogonal directions
represent two Gabor functions with the same direction but 90-degrees out of phase. A
polar plot of the state trajectory around the plane is shown at inset. The time course of
the x1 component strongly resembles those of observed biphasic (separable) V1 RFs [9],
while x2 shows the characteristics of monophasic V1 RFs [9]. Added together, the x1 +x2

time course shows the observed inseparable behaviour of V1 RFs. Figure 4.3 shows these
same results in one-dimensional form.
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Figure 4.1. The velocity selectivity microcircuit. Each trace shows a decoded vector component value for
signals as labelled. The LGN signal is high-dimensional and thus has that number of superimposed traces. Sample
spike rasters are shown above. Left : A moving bar stimulus produces burst signals in LGN. Middle: The initial
input drives the oscillation of a V1 simple cell ensemble. Subsequent input can interfere constructively, as shown
here, or destructively, with the spatiotemporal frequency of the oscillator state. Fewer than two bursts cannot
produce speed correlation in the OI model. Right : The magnitudes of V1 efferents that correspond to phase angles
late in the oscillation period are summed linearly in MT.
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Figure 4.2. Predicted impulse response components of a V1 state phase oscillator. The figure shows
an example of the time evolution of the state vector from a sample V1 oscillator, with Ti = 35 (or ‘T35’). Inset top
right : The two-dimensional trajectory of the state vector around the phase plane, rotating counterclockwise. The
x1 and x2 axes represent Gabor functions of the same direction but orthogonal phases. Top: Dotted trace showing
the time course of the projection of the state vector on x1; dashed trace showing the time course of the projection
of the state vector on x2. Below : The 2-D time courses for x1, x2 and x1 + x2.
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Figure 4.3. Predicted vs actual one-dimensional time courses (‘x-t’ maps) for V1 simple cell RFs.
Each pixel-row is a 1-D slice through the time. Top row : Evolving 2-D RFs for the T35 oscillator. Since the OI
model is scale-invariant, the units of space are relative. Top left : The separable x-t map, also known as the biphasic
component. Top middle : The monophasic component. Top right : The inseparable RF x-t map. Bottom row : x-t
maps from electrophysiological measurements from direction-selective RFs of the separable (left) and inseparable
(right) types from V1 neurons in the cat, rescaled and recoloured from Priebe [47].
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Figure 4.4. Predicted vs actual direction tuning curves for single MT neurons. Each trace is a polar
plot of the firing rate of one neuron for a constant speed stimulus moving in direction θ, where θ = 0 is the rightward
direction. Left : A sample of 5 neurons from an MT ensemble show the approximate range of diversity of direction
tuning curves used in the model. Right : A sample of one ‘large’ and one ‘small’ direction-sensitive tunings curves
for two neurons in macaque MT. Right figure redrawn from, Priebe [82].

4.3 Velocity selectivity in MT

The transformation of the signal from V1 to MT is the sum of the decoded component
magnitudes of responses in V1 from phases angles π to 3π

2 . Since speed and direction
selectivity are spatiotemporal characteristics of the oscillator, each MT ensemble inherits
its velocity selectivity from V1. Each MT ensemble pools output from variable number
of 1 to 9 V1 ensembles.

4.3.1 Distribution of direction responses

A moving bar stimulus is used to demonstrate the directional selectivity of MT. In this
test, eight MT ensembles are tuned to a common speed and one of eight equally spaced
directions around a circle. Figure 4.4 provides a qualitative comparison of individual,
direction-selective neuron tuning curves to those measured in a macaque electrophysiology
study [82]. The results in Figure 4.5 show the highest response in the direction of the
stimulus, lower responses for the adjacent directions, and essentially zero response for all
other directions.

4.3.2 Distribution of speed responses

In this test, five MT ensembles are tuned to a common direction and one of five equally
spaced speeds. The results in Figure 4.6 show the highest response in the ensemble tuned
to the speed of the stimulus, and progressively lower responses for the neighbouring speeds.
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Figure 4.5. Direction selective responses in simulated MT. Each trace shows the decoded scalar response
magnitude of the associated MT ensemble, normalized to the maximum of the direction selectivity trials. Spike
rasters are above or below the traces. The grey arrows indicate the preferred directions of the associated MT
ensemble neurons. The green arrow is the velocity of the moving bar stimulus. The stimulus onset time is t = 0.
The character of the change in response (‘drop-of’) from high to low is related to the shape of the V1 RFs be
pooled, as discussed in Chapter 5.2. Refer to Figure 1.10 for qualitative comparison.
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Figure 4.6. Speed selectivity of MT ensemble responses. The grey arrows indicate the preferred velocity
of the associated MT ensemble, while the labels below indicate the preferred speed. Since the OI model is scale
invariant, the speed value is given in relative spatial units of the visual field, r deg/ms, where r is the chosen RF
aperture size. The green arrow indicates the stimulus velocity, the same for each MT ensemble. In these trials,
each MT ensemble receives input from one V1 oscillator. Both V1 and MT RF aperture sizes are equal. Each
trace shows the decoded value, normalized to the maximum across all speed trials. The MT ensemble tuned to the
stimulus velocity (middle) shows the highest response, while the higher and lower speed-tuned ensembles respond
less strongly. The stimulus onset time is t = 0.
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Figure 4.7. Predicted contrast invariance in MT responses. Each trace shows the decoded MT response for
the rightward-selective ensemble using a moving bar stimulus of variable contrast. Velocities are shown in green with
contrast values noted. The stimulus contrast was varied from 100% to 25%, in quartiles. The rightward-selective
ensemble produced the highest response at each contrast level compared to other direction-selective ensembles.
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4.3.3 Contrast invariance

The purpose of this test was to show the invariance of direction selectivity of MT ensem-
bles under changes in stimulus contrast. The contrast value of the bar stimulus, moving
to the right, was varied from 100% to 25%, in quartiles. The results in Figure 4.7 show the
response for the rightward-selective ensemble only, which produced the highest response
at each contrast level compared to other direction-selective ensembles. The MT ensem-
bles used for these tests received signal from one V1 ensemble only; thus, the contrast
selectivity seen in the model MT is inherited from the spatial properties of the V1 RFs.

4.4 Optical flow maps in MT

The activities of each MT ensemble represent a positive scalar weight for an associated
velocity and location in a 400×400-pixel visual field. This weight is proportional to the
length of the arrow illustrated. Further details are provided with Figure 3.8.

The latency times between stimulus onset and MT response varied from 50-65 ms.
The time values for the velocity field plots shown in Figures 4.8 to 4.10 show times from
80-140 ms to demonstrate the most characteristic response interval for the given stimuli.

4.4.1 Response to sinusoidal gratings

A drifting sinusoidal grating was used as stimulus input for the simulation, with a speed
slightly faster than the preferred speed of the T = 50 ms array (T50). The velocity maps
for times t = 80, 100, 120, 140 ms are shown in Figure 4.8. Overall, the strongest responses
are seen in T50, while weaker responses are seen in the ‘faster’ T35 array and almost zero
response in the ‘slower’ T65 array. As seen at t = 100 ms in the T50 column, there is a
Gaussian-like distribution of responses; i.e. the neighbouring velocities appear but with
lower magnitude than that matching the stimulus velocity.

Importantly, the T35 responses show significant responses in the direction opposite the
stimulus. In this model, this occurs when the spatiotemporal frequencies of a stimulus
are close those those of the V1 oscillators. If this effect were not suppressed by a higher
order process (outside the scope of this model), this result would predict the perceptual
phenomenon of transparent retrograde motion.1

In attempt to enhance this effect, another experiment was performed using a drifting
grating that exactly matched the spatiotemporal frequencies at the θ = 0 components
of the T50 array. The results are shown in Figure 4.9. As expected, the false detection
of simultaneous retrograde motion is magnified. These results are addressed further in
Chapter 5.

1A familiar example is watching a fan or helicopter blades that at certain rotational speeds appear to be
rotating opposite the true direction. The same phenomenon is seen in some patterns in translational motion. This
phenomenon depends on the spatial frequency in relation to the V1 RFs and the speed of motion.
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Figure 4.8. Retinotopic velocity maps in MT. Each box contains a 7×7 array of decoded velocities in MT.
The three different speed selectivities are organized by column and labelled by the half-period time, T , of the
associated oscillator. The stimulus (top) is a sinusoidal grating moving to the right with a spatial frequency slightly
lower than, and a temporal frequency slightly higher than, the ‘medium’ T50 array (centre column). The strongest
response is in T50 as expected, with lower responses in the higher speed array T35. Note that the T35 array shows
some responses contrary to the stimulus direction. The perception of false contrary velocity is known as transparent
retrograde motion [83]. For a description of how the velocity field is constructed, see Figure 3.8.
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Figure 4.9. Velocity maps showing strong transparent retrograde motion. The stimulus was changed to
match the spatiotemporal frequencies of the T50 array. At various times, especially 100 ms, the T50 array shows
strong retrograde motion (to the left) simultaneously with actual rightward velocity.
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Figure 4.10. MT velocity maps for moving dots of varying coherence. Stimulus coherence levels are
categorized by column. The speed selectivity of each array is T = 50 ms. In all columns, the stimulus produces
a distribution of motion responses from MT. Below each integrated array is a distribution diagram showing the
relative weight of each vector in the integration. Left: At 100% coherence, the response is greatest in the stimulus
direction, but with significant responses in the contrary direction, likely due to retrograde motion effect (see Figure
4.9). The minima occur in the directions orthogonal to the stimulus. Middle, right: Decreasing the stimulus
coherence causes the response distribution to spread out, as expected.
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4.4.2 Response to variable coherence dot patterns

The structure of the moving dot stimulus used in these tests is such that there is little
similarity between the spatial frequencies of the stimulus and those of the RFs of the
motion processing circuit. Thus, it is a suitable complement to the sinusoidal grating
test. In this experiment, the dots move at the same speed with coherence levels of 100%
(all moving together, same direction), 75%, and 50% (half moving together, half moving
independently in any direction).

Figure 4.10 shows the results for moving dots translating at the preferred speed of the
T50 array. The velocity maps at t = 100, 120, 140 ms do not show any strong indication
of the stimulus direction. Moreover, the velocity maps at the same times for coherence
levels of 75% and 50% show similar results.

It is only when the MT velocity responses are integrated over the entire stimulus
duration (0–300 ms) that any useful information is gained. Figure 4.10 (bottom) shows
the integration of all vector responses for each coherence level. At 100%, the greatest
responses are in the direction of the stimulus, along with a strong response in the θ =
−π

4 ,−π, 3π
4 directions. As the coherence level decreases, the distribution of integrated

directions spreads out as expected.
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Chapter 5

Discussion and conclusions

The model presented in this thesis has shown through large scale, biologically plausible
simulation a possible mechanism for the V1 simple cells RFs required for velocity selectiv-
ity, and how such signals can be arrayed in MT to produce a retinotopic velocity map in
accord with electrophysiological studies. It has also shown the importance of the temporal
structure of burst-like signals passed from the LGN, while not providing a full account
for their generation.

The OI model is not meant to predict choice probability of behaving animals in psy-
chometric tests. In fact, drifting grating or moving dots experiments of this work, there
was no single ‘winner’ or vector in the velocity map that would strongly indicate the true
direction of stimulus motion. Integration of the V1 signals in MT over time improved
the outcome, but not convincingly so (see Figure 4.10). A recent study has shown that
pooling of neural population activity in MT is a better a predictor of choice probability
than single or multi-neuron measurements [84], but the prediction value is still weak. Pu-
rushothaman and Bradley have demonstrated that fine discrimination motion decisions
based depend on the activities of most informative neurons, not just pools [85]. Thus, the
use of the OI model as a perceptual one is limited, but may serve as the foundation or a
component of subsequent processing more directly related to perception and behaviour.

Some important predictions and strengths of the OI model are discussed below, along
with some immediate weaknesses and possible extensions.

5.1 Strengths of the model

1. A mechanism for the generation of observed spatiotemporal receptive
fields for V1 simple cells. The dynamical properties of V1 simple cell RFs are a
prediction of the OI model rather than an assumption, as is the case with the other
models described in Chapter 1. The OI model shows the separable/inseparable time
courses to be one- and two-dimensional aspects of a state vector rotating in phase
space. The assumed summation of monophasic and biphasic components in the
inseparable time course is shown to be the summation of orthogonal projections of
the two-dimensional oscillator state vector.
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It is worth stressing that this mechanism is at once both spatial and temporal.
While it is not intended to fully address the generation of Gabor-like spatial RFs in
V1, it does explain how the velocity-selective characteristics of simple cell RFs are
generated.

2. LGN/V1 interference. The model explains how LGN signals interfere dynam-
ically with V1 oscillators and how resonance conditions correspond to preferred
velocities in the stimulus.

3. Generation of optical flow/velocity maps in MT. Using a simple sum of the
magnitudes of late-phase responses from a pool of V1 oscillators, the production of
retinotopic velocity maps is achieved.

4. Reasonable latency times for MT responses. The latencies for MT responses
in the simulations occurred between 50-65 ms. Studies of macaque MT indicate
that >69% of MT latencies are between 50-100 ms for directional stimuli (see Figure
1.11) [24].

5. Fundamental limit to speed selectivity by lower bound on half-period
time. The shortest half-period time of any oscillator that still produced velocity
selectivity was 20 ms. If the neural processes that generate speed perception are
limited by the speed sensitivity of V1 simple cells, then the OI predicts that no
perception of translational speeds faster than 20 ms (for any unit of length, since
the OI model is scale-invariant) is possible.

6. Prediction of contrast invariance. This result comes directly from the inner
product of convolution of stimulus and direction-selective V1 simple cell RFs and is
not a constant of proportionality determined by local population parameters, as in
the Simoncelli-Heeger model [44].

7. Fully specified. All neural connection weights, time constants and spatiotemporal
frequencies required by the model are biologically plausible and/or determined by
physiological experiments.

5.2 Weaknesses of the model

1. No LGN/V1 reciprocal connections. Since 85-90% of the connections in LGN
are from the visual cortex and brainstem [8], the possibility that the oscillators
proposed in this work are recurrent networks of LGN+V1 is important. If true,
the anatomical correspondence of the model would change, but the algorithm would
not.

2. No account of role of V1 complex cells. The model does not address the
function of complex RFs in V1 or the possible consequences of such to the motion
processing circuit.

3. No integration over scales. While the intent of the model has been to show
a scale-invariant mechanism for velocity selection, integration over different levels

68



in a scale pyramid could reduce or cancel the velocity maps for some stimuli. For
example, the retrograde motion that appears in Figure 4.9 may integrate to 0 and
thus provide no contribution to the motion percept in higher order visual processing
and decision structures, such as the lateral intraparietal area (LIP) [86].

4. No account of effect of spatial variability in V1 RFs. As shown in Figure
1.6, V1 RFs have diverse spatial characteristics. In convolution, the spatial struc-
ture of the RF has a significant impact on the transformed signal. A conceptual
demonstration of this is included in Figure 5.1. The V1 RFs used in this study are
relatively simple and idealized; a more diverse and thus more realistic set of RFs
would benefit the implementation.

5. No account of binocular disparity. The effects of displaced visual signals and
potential problems, such as image registration, has not been addressed [25,82].

5.3 Extensions of the model

5.3.1 Decision threshold mechanism by integration of MT responses
over time

An immediate and fruitful extension to the model would be the integration of MT signals
in LIP to provide a cumulative measure of motion ‘evidence’ over time. This hypothesis
has strong experimental support [87] and is known as the ‘integrate-to-threshold’ mecha-
nism of visual decision. As shown in results of Figure 4.10, integration provides additional
information not available in an instantaneous reading of the velocity maps in MT.

5.3.2 Integration of MT responses over scale space

As mentioned, the construction of a scale pyramid containing several resolutions of MT
velocity maps may provide important insights into the effects of cancellation of vector
representations.

5.3.3 Burst/derivative mechanisms in LGN/V1

The model uses a pre-processed burst signal to simulate output from LGN. As mentioned
in section 5.2, the strong projections from V1 to LGN may play an important role in
determining the value of edge signal derivatives. The calculation of when an edge signal
most strongly overlaps a particular V1 RF is not likely achieved in LGN alone and would
require feedback connections from V1 simple cells. The inclusion of some type of derivative
pathway would provide a more complete picture and support a crucial assumption of the
model.
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Figure 5.1. The spatial structure of RFs affects convolution or correlation responses significantly.
The shape of the RF plays a significant role in convolution with an edge signal. Top half : Translational motion of
an edge stimulus over time across three different RFs. The plots at right show the results of convolution. The top
RF is similar in shape to the stimulus, resulting in a sharp peak response at the time of peak spatial overlap. As
the RF becomes less eccentric (more round), the response becomes less peaked for the given stimulus. Bottom half :
Rotational motion of the stimulus around an axial centre point shows convolution responses that are quite different
compared to translational motion, but the eccentricity of the RF affects the sharpness of the response peaks.
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