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Abstract

Modern machine learning models are beginning to rival human performance on some re-
alistic object recognition tasks, but we still lack a full understanding of how the human
brain solves this same problem. This thesis combines knowledge from machine learning
and computational neuroscience to create models of human object recognition that are
increasingly realistic both in their treatment of low-level neural mechanisms and in their
reproduction of high-level human behaviour.

First, I present extensions to the Neural Engineering Framework to make its preferred
type of model—the “fixed-encoding” network—more accurate for object recognition tasks.
These extensions include better distributions—such as Gabor filters—for the encoding
weights, and better loss functions—namely weighted squared loss, softmax loss, and hinge
loss—to solve for decoding weights.

Second, I introduce increased biological realism into deep convolutional neural networks
trained with backpropagation, by training them to run using spiking leaky integrate-and-
fire (LIF) neurons. Convolutional neural networks have been successful in machine learn-
ing, and I am able to convert them to spiking networks while retaining similar levels of
performance. I present a novel method to smooth the LIF rate response function in order
to avoid the common problems associated with differentiating spiking neurons in general
and LIF neurons in particular. I also derive a number of novel characterizations of spiking
variability, and use these to train spiking networks to be more robust to this variability.

Finally, to address the problems with implementing backpropagation in a biological
system, I train spiking deep neural networks using the more biological Feedback Alignment
algorithm. I examine this algorithm in depth, including many variations on the core
algorithm, methods to train using non-differentiable spiking neurons, and some of the
limitations of the algorithm. Using these findings, I construct a spiking model that learns
online in a biologically realistic manner.

The models developed in this thesis help to explain both how spiking neurons in the
brain work together to allow us to recognize complex objects, and how the brain may learn
this behaviour. Their spiking nature allows them to be implemented on highly efficient
neuromorphic hardware, opening the door to object recognition on energy-limited devices
such as cell phones and mobile robots.
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Chapter 1

Introduction

Vision is the process of making sense of the world based on light that bounces off objects
and into our eyes. From these ever-changing two-dimensional patterns of light, the visual
brain has to infer the structure of a three-dimensional world composed of distinct objects
interacting in a myriad of ways.

Unlike some mental processes—for example, mentally computing a percentage tip and
adding it to a bill, or trying to reason out the best move in a game of chess—visual
inference is a mental ability that we are not often consciously aware of. Not only does it
come naturally to the vast majority of people, it is a process that we do not have much
conscious access to. Our conscious mind perceives the world in terms of objects and their
locations and patterns of motion, leaving us unaware of all the computation and inference
required to get us there.

Due to this lack of conscious awareness of visual inference problems, people—including
experienced researchers—often underestimate their difficulty. In 1966, Marvin Minsky and
Seymour Papert famously assigned Gerald Sussman and other students the summer project
of developing an object recognition system (Papert, 1966). Yet it has taken researchers
almost 50 years to develop a system that can recognize anywhere near as many types of
objects in real-world situations as an average person can. Over the past five years, the field
of machine learning has succeeded on tasks that ten years ago seemed insurmountable,
identifying a wide variety of objects such as animals, household objects, and faces in
realistic situations and contexts.1 The key to their success has been to harness ideas from

1This task of attaching a category label to an object in the world is referred to as object recognition,
object classification, or object categorization. Object classification refers specifically to determining a
category label for an object. Object categorization is a less common term for the same problem. Object

1



the field of neuroscience about how neurons connect, learn, and work together to process
our visual environment. The brains of humans, mammals, and other animals were the only
systems that we knew could solve these difficult problems, so it stands to reason that they
should be the main source of information about how to solve them with machines.

This thesis continues that dialogue between neuroscience and machine learning, but
with a slightly different goal in mind. I want to understand how the brain solves these
problems, by creating functional brain models that can solve difficult object recognition
tasks in a biologically plausible manner.2 To do so, I start with machine learning models,
since these are currently the best artificial systems at reproducing the high-level object
recognition abilities exhibited by people. I then try to make them better brain models
by adding biological detail, while maintaining the accurate object recognition abilities of
the original machine learning model. Through this process, I hope to develop a better
understanding of how the brain might work, and what kinds of processes might be going
on to facilitate the high-level behaviours that seem so intuitive to us. I also hope to
continue to inspire machine learning research by bringing in more ideas from neuroscience.
One of the main engineering applications of the work in this thesis is to what is known
as neuromorphic engineering. This field constructs computer hardware that more closely
resembles the mechanisms and structures seen in the brain. The models in this thesis are
potential software for this hardware. By making computer implementations more similar
to the brain, we can better understand and simulate how low-level brain function gives rise
to high-level behaviour. We also bring the high-level behaviour of computers more in line
with brains, both in terms of increased performance in real-world situations, and in terms
of the energy required to achieve this performance.

recognition is more general; while it has traditionally been used to refer to the same problem as the other
two terms, it can also include other problems such as generating a sentence to describe a multi-object
image (see Section 3.1.2).

2I will often use the term “biologically plausible” in this thesis. It refers to a mechanism that the brain
could reasonably implement, given what we know about physical and biological constraints. Biological
plausibility is a continuum, with some mechanisms being more plausible than others. There are also limits
to how precisely we can estimate biological plausibility, particularly if we are only describing the system
down to a particular level of resolution. For example, we might describe a neuron model that qualitatively
captures the high-level characteristics of neuron input-output relations as biologically plausible; that does
not mean the model fully describes everything going on in the biology. Thus biologically plausible does not
mean biologically detailed, though models that are more detailed should offer a more plausible description,
since they are more constrained by the biology (assuming the details are accurate, and that the model is
still able to accurately reproduce the high-level behaviour that the simpler model captured).

2



1.1 Outline

The first two chapters of this thesis provide general background from the fields of computa-
tional neuroscience (Chapter 2) and machine learning (Chapter 3), as they pertain to this
thesis. Readers familiar with either field should feel free to skip the corresponding chapter
entirely, and refer back to it only as needed. More specific background will be provided at
the start of each content chapter.

There are three content chapters in this thesis, each investigating a different method
of constructing spiking networks for object classification, and each with different success
criteria. Each content chapter begins by providing a background literature review specific
to the chapter, before presenting the methods used, the results, and discussion. Each
content chapter is thus meant to act like a stand-alone paper, and can be read indepen-
dently, though occasionally they will reference details from the background chapters or
other content chapters.

The first content chapter (Chapter 4) examines single-layer feedforward networks with
fixed encoding; that is, the connection weights from the inputs to the hidden neurons are
fixed, and only the connections from the hidden neurons to the outputs are optimized. This
technique allows for rapid training of simple object-classification networks. The chapter
explores a number of methods both for choosing encoding weights and decoding weights in
these networks, and shows that they translate well to spiking neurons. The main drawback
of these methods is that they are not powerful enough to address larger, more difficult
object-classification problems.

The second content chapter (Chapter 5) addresses this shortcoming by looking into deep
(multiple hidden layer) spiking networks. These networks require much more training, but
are able to perform well on large and difficult object-classification problems. They have
been well-studied by the machine learning community, and this chapter examines how
they can be trained for and run in spiking neurons, as opposed to traditional rate-based
neurons. It proposes novel methods both for making spiking neurons differentiable for
training, and for adding noise during training to make the final network more robust to
the variability caused by spiking neurons. It then demonstrates that these methods can
scale to large and difficult problems. One drawback to these methods is that they are a
poor hypothesis for how the brain might learn to solve the object classification problem,
since they use a learning mechanism—the backpropagation algorithm—not believed to be
feasible in neurons. This shortcoming motivates the third and final content chapter.

The third content chapter (Chapter 6) investigates how the brain might learn deep
spiking networks for object classification. It focuses on the question of how neurons may
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implement supervised learning. Neither of the methods examined in the previous chapters
provides a suitable answer: the method of Chapter 4 only addresses shallow learning, it
does not allow learning on the earlier connection weights; the method of Chapter 5 uses
backpropagation for deep learning, a method that relies on running synapses backwards
in addition to forwards, for which there is no known biological mechanism. This chapter
explores a recently established method—Feedback Alignment—that uses random feedback
weights for deep learning. It examines in detail what this method both is and is not capable
of, and addresses challenges to produce a fully spiking model in LIF neurons.

Finally, this thesis concludes with a summary of the key contributions and an outline
of some possible areas of future work (Chapter 7).

Links to the source code used to generate all the work in this thesis are available in
Appendix C.
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Chapter 2

Computational Neuroscience

The field of computational neuroscience takes a computational approach to understanding
the brain, by seeking to understand both what computations the brain performs, and
how elements in the brain (i.e., neurons and synapses) work together to facilitate these
computations.

Computational neuroscience has traditionally, as a field, taken a bottom-up approach,
beginning by studying individual neurons, and then looking at how neurons can be com-
bined into successively larger and larger networks until meaningful behaviour emerges.
Contrast this with psychology and cognitive science, which have taken a more top-down
approach, beginning by studying the behaviours of creatures, and then trying to under-
stand how the brain facilitates these behaviours in terms of the higher-level functions of
large brain areas. This difference means that historically, the bulk of the work in computa-
tional neuroscience has focused on developing detailed mathematical models of individual
neurons, then small- to medium-sized networks. It is only recently that these fields have
begun to meet, resulting in neurally-detailed models that can reproduce organism-level
behaviours.

This chapter provides both a brief summary of the relevant biological details, as well
as the concepts and models from computational neuroscience that are used or expanded
on in this thesis.
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Figure 2.1: Cartoon of a neuron. A neuron receives input from other neurons via
synapses on its dendrites. The dendrites transmit current to the soma, where electrical
charge is integrated. If the neuron membrane becomes sufficiently polarized, it transmits an
action potential (a.k.a. spike) down its axon. This causes neurotransmitter to be released
at the synapses, which then initiate currents in the dendrites of postsynaptic neurons.
Image c©Blausen.com (2014) with modification, licensed under CC BY 3.0.

2.1 Biology

In this thesis, I am specifically interested in how the human visual system functions. This
section provides some relevant biological details, both at the neural level and at the network
level. It is important to note that the models developed in this thesis are still relatively
basic when compared with all the individual facts that have been documented about the
visual system (particularly those of monkeys and cats, from which most of our neural data
about these areas comes). Thus, this section provides only the most basic biological facts as
are relevant to this thesis; for a more comprehensive overview of the biology of the brain,
both at the single-neuron and network level, see Kandel, Schwartz, Jessell, Siegelbaum,
and Hudspeth (2012).
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2.1.1 Neuron physiology

Neurons are only one of the many types of cells in the brain, but they are the most discussed,
because they are the main computational entities. Their basic function is simple: neurons
receive input from other neurons, and if that input excites them sufficiently, they will fire
an action potential (a.k.a. spike) which propagates to other neurons.

A basic cartoon of a neuron is shown in Figure 2.1. Neurons can be divided into
three parts: the dendrites, the soma, and the axon. Neurons receive input currents via
their dendrites, which the dendrites then transmit or channel into the cell body, called the
soma. When a neuron spikes, it sends current down its axon, causing neurotransmitter(s)
to release at the synapses, which are connections from a neuron’s axon to the dendrites of
other neurons. This neurotransmitter release results in dendritic input currents in these
other connected neurons.

The soma is the main body of the neuron. Computationally, it is where all the incoming
currents from dendrites are integrated, and where the process of creating an action potential
begins (Figure 2.2). When a neuron is at rest, the soma has a negative charge; this
is called the resting voltage, and is maintained by ion pumps that maintain a particular
concentration of ions (mostly sodium Na+, potassium K+, and calcium Ca+2) inside the cell.
As currents arrive from the dendrites, they begin to depolarize the cell. When the voltage
in the soma becomes high enough, it begins to trigger voltage-activated sodium channels,
which allow sodium ions to enter the cell, further depolarizing it. This process continues
until the electrical gradient due to the increase in sodium ions opposes the chemical gradient
due to the imbalance of sodium inside and outside the cell. This gives the neuron a much
more positive charge than when it is at its resting voltage.

This large depolarization also triggers voltage-gated potassium channels, which begin
to let potassium ions out of the cell, helping to repolarize it. At the same time, the sodium
channels inactivate. The open potassium channels eventually bring the cell to below its
resting voltage, called the hyperpolarized state. The sodium channels remain inactivated
and the potassium channels remain open for a while after the spike. The combination of
these factors makes it almost impossible for the neuron to fire during this time; this is
called the absolute refractory period. The change in ionic concentrations inside the cell is
quite small during a single spike, but over the course of many spikes, the ion pumps are
needed to maintain the proper concentrations of sodium and potassium. Other currents,
most significantly calcium currents, are present in some neurons.

The rapid depolarization associated with an action potential not only causes the somatic
voltage potential to increase, but also causes some depolarization in the parts of the axon

7



0.00
0.02
0.04
0.06
0.08

in
pu

t c
ur

re
nt

 [µ
A]

80

60

40

20

0

20

40

m
em

br
an

e 
vo

lta
ge

 [m
V]

0 2 4 6 8 10 12 14 16
time [ms]

10
8
6
4
2
0
2
4
6
8

cu
rr

en
t [
µ
A]

Na
K
Na + K

Figure 2.2: Spiking dynamics of a neuron. An external input current is applied at
the soma of a neuron. It causes a slight (∼10 mV) increase in the membrane voltage,
which triggers a sufficient number of voltage-gated sodium channels to initiate a spike.
The incoming sodium current increases the membrane voltage, which opens more sodium
channels, causing an exponential increase in the membrane voltage (the leading edge of
the spike). As the voltage nears its peak, it also triggers voltage-gated potassium channels,
letting potassium ions out of the neuron and repolarizing it. The neuron then enters
a hyperpolarized state (below its resting voltage) where the potassium channels slowly
close and the sodium channels are inactivated. Only after a period of time (the absolute
refractory period) can the neuron fire another spike.
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nearer to the soma. This triggers sodium channels in that part of the axon, resulting
in more depolarization and triggering sodium channels farther down the axon. In this
manner, the somatic spike triggers a voltage wave that travels down the axon, eventually
triggering the synaptic vesicles near the ends of the axon and causing them to release
neurotransmitter(s).

Axons are responsible for transmitting long-range signals in the brain, and thus vary
widely in length, depending on whether a particular neuron connects to nearby neurons or
to neurons in another brain area. To facilitate long-range transmission, axons are coated
in myelin, a substance composed mainly of lipids and thus a good electrical insulator.
This helps current to propagate down the axon. The high proportion of fat makes myelin
white; bundles of axons are responsible for the “white matter” parts of the brain. The
“grey matter” on the other hand is composed mainly of neuron dendrites, somas, and
short-range axons.

Dendrites are thin processes that extend away from the soma to connect to the axons
of other neurons. Their role is to transmit current from synapses with other neurons to
the soma. They were originally believed to only conduct current passively, but research
has shown that they have active conductance mechanisms similar to those involved in
spike generation and propagation down an axon (Mel, 1994; Johnston, Magee, Colbert, &
Christie, 1996). Dendrites are also traditionally believed to act linearly, summing together
inputs from many synapses across time and space, and many computational models still
treat them as such. More recent studies (e.g., Polsky, Mel, & Schiller, 2004) show that
signal summation in dendrites is more complex, combining linear and nonlinear (sigmoidal)
elements.

Neurons are connected to one another by synapses, connecting the axon of the presynap-
tic neuron to a dendrite of the postsynaptic neuron. When the presynaptic neuron spikes,
an electrical pulse travels down its axon to the presynaptic terminals of all synapses on the
axon. These terminals contain synaptic vesicles filled with neurotransmitter; the electrical
pulse causes the vesicles to release neurotransmitter into the synaptic cleft, which is the
small area between the presynaptic terminal and the postsynaptic terminal. This neuro-
transmitter activates receptors on the postsynaptic terminal, which open, allowing current
to flow into the postsynaptic cell. The type of neurotransmitter used by the synapse
depends on the presynaptic neuron. All synapses on a neuron’s axon release the same
neurotransmitter or combination of neurotransmitters; this is known as Dale’s principle.1

1When Dale’s principle was developed, it was believed that each neuron only produced one type of
neurotransmitter. It was only around 1976 that evidence of cotransmission was discovered (Burnstock,
2004). Nevertheless, Dale’s principle remains a good guideline. For example, neurons are either exclusively
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2.1.2 Visual system anatomy

The human visual system performs many functions; it is not limited to object recognition.
Other functions include estimating object shape, depth, motion (tracking), and physical
characteristics (e.g., smoothness, hardness) for tasks like grasping, as well as identifying
landmarks and estimating ego-motion for navigation. The way that many researchers think
of the visual system has been shaped by what is known as the “two-streams” hypothesis
(Goodale & Milner, 1992). The hypothesis is that the visual system can be roughly divided
into two streams, known as the dorsal and ventral streams. The ventral stream is sometimes
called the “what” pathway, and is associated with object and landmark recognition. The
dorsal stream is sometimes called the “where” or “how” pathway, and provides information
to inform motor actions related to objects, such as grasping an object or avoiding an
obstacle.

Figure 2.3 is reproduced from Felleman and Van Essen (1991), a famous paper examin-
ing connectivity in the visual cortices of macaques, which are known to have similar visual
system organization to humans. The input to the system is at the bottom: the retinal gan-
glion cells (RGC). They are already a few steps in from the photoreceptors that transduce
light into neural signals, and represent a compressed version of the raw photoreceptor input
(Nassi & Callaway, 2009). The RGCs relay their information through the lateral geniculate
nucleus (LGN), a part of the thalamus. While some authors do not discuss computational
properties of the LGN, treating it simply as a relay station (e.g., Nassi & Callaway, 2009),
others have found that some LGN cells introduce temporal lags into the signal (Vigeland,
Contreras, & Palmer, 2013), which would be useful for representing motion information
(Adelson & Bergen, 1985).

The next step in visual processing is primary visual cortex (V1). V1 neurons begin to
separate stimuli in a number of ways, being tuned for changes in contrast (edges), depth,
motion, colour, and other properties. V2 is the next visual layer, it plays a significant
role in image segmentation, specifically representing object contours and border ownership
(Krüger et al., 2013). It is at this point that the visual system begins to separate into
dorsal and ventral streams. The ventral pathway continues to V4 and then on to inferior
temporal (IT) cortex, by which point neurons are responsive to object categories. The
dorsal pathway continues to MT and MST—both very involved in motion processing—
before continuing on to intraparietal (IP) cortex which localizes objects in 3-D space and
informs motor planning for actions like grasping. Krüger et al. (2013) provides a review of
the key visual areas and their role in computation.

excitatory or inhibitory based on the neurotransmitter(s) they release; no neurons play both an excitatory
and inhibitory role to different postsynaptic cells.
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Figure 2.3: Hierarchy of the visual cortex of a macaque. Reproduced from Felleman
and Van Essen (1991), depicting connectivity between brain areas in macaque visual cortex.
Most of the connections have been demonstrated to be reciprocal. The ventral stream is
on the right, culminating in the inferior temporal (IT) areas (AIT, CIT, PIT). The dorsal
stream is on the left, culminating in the intraparietal (IP) areas (VIP, LIP). This figure
does not show the strength of connections.
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Figure 2.3 illustrates how interconnected the visual areas are. While the dorsal and ven-
tral streams are visible on the left and right, respectively—with a high level of connectivity
within the streams—there is also significant connectivity between the streams. The func-
tional role of the connections between the streams remains largely unclear. Computational
models of object recognition—including those examined throughout this thesis—rarely ac-
count for these connections.

2.2 Neuron models

Many of the seminal results in computational neuroscience are mathematically detailed
models of how neurons operate. Perhaps the most famous of these is the Hodgkin-Huxley
model of the squid giant axon (Hodgkin & Huxley, 1952). More recently, the numbers of
available neuron models has blossomed, and current models used in literature range from
simple binary threshold units (Stocks, 2001) (the simplest possible rate-neuron model),
to complex multi-compartmental models that account for detailed dendritic morphologies
(e.g., Markram et al., 2015).

For large models of neural systems that hope to reproduce high-level behaviour, single-
compartment neuron models are still the norm. These models treat the neuron as a single
electrical compartment, combining the dendrites, soma, and axon. Multi-compartmental
models, on the other hand, model different parts of the neuron as different electrical com-
partments, and include equations how the activities of different compartments affect each
other. Models can range from having two compartments (typically one for the dendrites
and one for the soma), to having thousands of compartments. The more compartments a
model has, the more computing power it takes to simulate it, and the more complex its
behaviour becomes. For these reasons, models that seek to reproduce behaviour predom-
inantly use either single-compartment neurons, or simpler models that do not model the
electrical activity of the neuron at all. These models are what I will discuss here, and use
throughout the thesis.

Single-compartmental neuron models can be divided along two dichotomies: 1) the rate-
based versus spike-based dichotomy; and 2) the static versus dynamic dichotomy. The rate
versus spiking distinction has to do with whether the output of the neuron model is a
continuous value (a firing rate) or a discrete value (a spike). Most neurons in mammalian
cortex communicate via spikes, so spiking neuron models are typically considered more
physiologically realistic.2

2There are limited places in the mammalian brain—for example horizontal cells in retina—where neu-
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Rate Spiking
Static Sigmoid Poisson spiking

Rate LIF
Dynamic Adapting rate LIF LIF

Sigmoid with state Hodgkin-Huxley

Table 2.1: Rate vs. Spiking and Static vs. Dynamic neuron model dichotomies.
Neuron models can either transmit information via continuous firing rates (rate-based), or
via discrete spikes (spike-based). They can either have no internal state (static), or have
their response affected by internal dynamical systems (dynamic).

The static versus dynamic distinction denotes whether the model has internal dynamics,
such that the output at the current point in time is conditional in some respect on the
time history of the neuron, or static, such that the output is completely independent of
the past and only dependent on the instantaneous neuron input. Dynamic neuron models
have some form of state, that is internal variables that evolve over time, and are not
directly computable from the present input to the model. They are typically expressed
using differential equations. For static models, the output is a function of the current input
only, and thus they do not require differential equations to express them.

It is important to note that the static/dynamic dichotomy does not necessarily refer
to whether the neuron is being used as a static nonlinearity (evaluated at a single point
in time on an input value) or as a dynamic nonlinearity (evaluated over a period of time
on an input signal). Static neurons can be evaluated dynamically, simply by evaluating
them (independently) on the input value at each successive point in time. For dynamic
neurons, however, there is no general way to evaluate them statically, since their input at
any point in time depends on their internal state, which is a dynamic process that evolves
over time. For some dynamic neuron models, we can determine a firing rate response curve
(a.k.a. I-F response curve, rate response function), which maps every constant value for
the input current to a constant firing rate output. This can be determined analytically
(e.g., Equation 2.7), or empirically by applying a constant input current and measuring
the rate of the output spikes (this can even be done in real neurons in vitro). Many neuron
models will not output spikes at a constant rate, even for a constant input, due to changing
internal dynamics. For these neuron models, the rate-response function only captures part
of the model, and will be different depending on the state of the model and how it is
measured or calculated.

rons communicate via gap junctions, and thus could transmit something more akin to a continuous value
than a discrete spike.
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Table 2.1 shows how a few example neuron models fall across these dichotomies. In
the static rate category, we have models that take in a continuous value and output a
continuous function of that continuous value. This includes most of the nonlinearities used
in machine learning (such as sigmoids or rectified linear units), as well as the analytic firing
rate for the LIF neuron model (see Section 2.2.2). In the static spiking category, we have
models that output a discrete (binary) function of their continuous input. This is mainly
Poisson-spiking neurons, which fire probabilistically based on their instantaneous firing
rate, such that the probability of firing at the current time is independent of past firings.3

Dynamic rate models have an internal state that also affects their continuous output, in
addition to the input. This includes the analytic LIF rate model with adaptation, which
has an internal adaptation parameter that grows when the neuron is active and discounts
the firing rate. It also includes sigmoid neuron models that have an underlying voltage that
is dynamically related to the neuron inputs; such models have recently been applied by
Guergiuev, Lillicrap, and Richards (2017) when learning deep networks subject to biological
constraints. Finally, the dynamic spiking category includes the LIF neuron model, as well
as the Hodgkin-Huxley model, as well as more complex multi-compartmental models.

Within the category of spiking models, we can further distinguish between models that
output instantaneous spikes (e.g., LIF), and models that output spikes which vary across
time (e.g., Hodgkin-Huxley). Another possible distinction would be between models that
output stereotyped spikes, where the size of each spike is exactly the same, and those that
output variable-sized spikes. Models of cortical neurons that output instantaneous spikes
(e.g., LIF) almost always output stereotyped spikes. This is because spikes in cortical
neurons are nearly identical in terms of magnitude, duration, and shape, and it is widely
believed that none of these factors carry information. Even among models that have spikes
that vary across time (e.g., Hodgkin-Huxley), the spike magnitude, duration, and shape
are quite consistent between spikes. Therefore, most spiking cortical neuron models have
stereotyped spikes. Modelling the spike separately from the rest of the neural dynamics
allows for a separation of time scales; the result is that extra computational resources are
not required to model the spike trajectory, the details of which are stereotyped and thus
of little interest (Abbott, 1999).

2.2.1 The integrate-and-fire neuron model

The integrate-and-fire (IF) neuron (Lapicque, 1907) was one of the first computational
models of a neuron. This model was developed before researchers were able to measure

3Poisson spiking can also be applied to a dynamic rate model, such that the probability of spiking is
independent, but the spike rate is a dynamic process (e.g., Lillicrap, Cownden, Tweed, & Akerman, 2016).
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the electrical and chemical changes happening in a behaving neuron, and is based simply
on the idea that the neuron membrane can be modelled as a capacitor that stores charge
over time (Abbott, 1999). As the name implies, the IF model has two main behaviours:
1) it integrates current over time (by means of the capacitor); and 2) when the voltage has
reached a threshold, it fires. Additionally, the model may or may not include a leak term:
a resistor in parallel with the capacitor that allows charge to “leak” out over time. The
model with leak term is typically referred to as the leaky integrate-and-fire (LIF) model.
While “integrate-and-fire (IF) model” can refer to either the leaky or non-leaky model, in
this thesis I will use it to refer specifically to the non-leaky version of the model.

The non-leaky integrate-and-fire (IF) model

We wish to identify how the neuron’s membrane voltage evolves over time, and from this
identify when the neuron spikes. The charge Q across a capacitor is given by Q = V C,
where V is the voltage across the capacitor and C is the capacitance. Differentiating this
with respect to time, we find that the membrane voltage V (t) of the neuron is governed by

C
dV (t)

dt
= J(t) (2.1)

where J(t) is the input current to the neuron over time, and C is the membrane capacitance.
(Remember that current is the time derivative of charge.)

Equation 2.1 shows that the IF neuron simply integrates the input current over time.
We still need to identify when the neuron spikes. To do this, we define a threshold voltage
Vth. When the voltage passes this threshold, the neuron fires. This comes from a key fact
in neurophysiology: once the neuron voltage passes a threshold, the neuron begins firing a
spike, and once this firing process begins, it is almost impossible to reverse.

Finally, we define a reset procedure: once the neuron has fired a spike, the membrane
voltage is reset to the resting potential Vrest. This again comes from physiology: after a
neuron spikes, other ionic currents (typically potassium) kick in and bring the membrane
voltage back towards the resting potential.

Some integrate-and-fire models may also model an absolute refractory period: a time
tref for which the voltage is held at the resting potential Vrest after a spike. In cortical
neurons, post-spike potassium currents are strong enough that it is practically impossible
for the neuron to fire another spike for a period of time. This time is called the absolute
refractory period. We model this by holding the membrane voltage at Vrest for a length of
time tref.
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2.2.2 The leaky integrate-and-fire (LIF) model

The leaky integrate-and-fire (LIF) model (Lapicque, 1907; Knight, 1972; Koch, 1999)
takes one additional physiological factor into account: Neuron membranes are not perfect
capacitors, rather they slowly leak current over time, pulling the membrane voltage back to
its resting potential. Thus, we model the membrane as a capacitor and resistor in parallel.
This gives the neuron some “forgetting”: in the absence of any input, the membrane voltage
will return to its resting potential.

The LIF dynamics are captured by the following equation:

C
dV

dt
= − 1

R
(V − Vrest) + J(t) (2.2)

where R is the membrane resistance, and the other parameters are the same as in the IF
model. The resetting procedure is also identical to the IF model.

Normalized model

The LIF model has a number of parameters: C, R, Vrest, Vth. We can normalize the model
to reduce the number of parameters, while keeping the full dynamics of the original model.
Specifically, we manipulate the model so that the normalized voltage lies in the range [0, 1],
with a normalized resting potential of zero and normalized firing threshold of one.

First, we multiply Equation 2.2 through by R:

τRC
dV

dt
= −V + Vrest +RJ(t) (2.3)

where τRC = RC. Then, letting V̄ = (V − Vrest)/(Vth − Vrest) and ¯Vrest = Vrest/Vth:

τRC(Vth − Vrest)
dV̄

dt
= −(Vth − Vrest)V̄ +RJ(t)

τRC
dV̄

dt
= −V̄ +

R

Vth − Vrest

J(t)

τRC
dV̄

dt
= −V̄ + J̄(t) (2.4)

where the firing threshold for the new equation is V̄th = 1, the voltage is reset to ¯Vrest = 0,
and J̄(t) = R

Vth−Vrest
J(t). Observe that J̄(t) is simply a linear transformation of J(t). Thus,
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Equation 2.4 retains all the dynamics of Equation 2.2 for a scaled input, but with only one
parameter τRC.

Note that V̄ and J̄ are both unitless quantities. In this thesis, we work exclusively in
this unitless space, and often refer to V̄ and J̄ simply as V and J , despite the fact that
these quantities are not actually voltages or currents. This simplifies the mathematics,
without limiting the generality of our models.

Rate equation

Equation 2.4 describes exactly when the model neuron will spike for a given input current
J(t). However, sometimes we only care about the spike rate, that is, how many times per
second the neuron will spike for the given input current.

For the LIF model, we can determine the analytical firing rate for a constant input
current. We do this by determining the inter-spike interval (ISI), that is the time between
one spike and the next. Then, the firing rate is given by the inverse of the ISI.

Given a constant input current J(t) = j, we can solve Equation 2.4 to find the neuron
voltage over time:

V (t) = (V (0)− j)e−t/τRC + j (2.5)

assuming no spikes are fired. We want to know how long it takes for the voltage to rise
from V (0) = 0 to V (t) = 1. This will only occur if j > 1. Substituting into Equation 2.5
and solving for t:

t = −τRC log

(
−1

j

)
. (2.6)

Adding in the refractory period and inverting, the spike rate r for the LIF neuron is given
by

r =
1

tref − τRC log
(

1− 1
j

) (2.7)

if j > 1, and zero otherwise (since the neuron is silent).

17



2.3 Synapse models

In addition to modelling internal neural dynamics, it is also important to model the dynam-
ics of the synapses that connect neurons to one another. The most significant functional
effect of synapses is as a low-pass filter on the spikes passing through them. A spike in
the presynaptic neuron elicits an extended current pulse in the postsynaptic neuron. This
pulse can be viewed as a low-pass-filtered version of the presynaptic spike.

The simplest model of a synapse is as a first-order lowpass filter. The impulse response
of a filter describes how the filter responds to an infinitesimally short input of unit integral,
called an impulse. This idealized impulse is also reasonable model of a spike, thus the
impulse response also describes what the postsynaptic current will look like in response to
a presynaptic spike. The impulse response of the first-order lowpass filter is:

h(t) =
1

τs

et/τs (2.8)

where τs is called the synaptic time constant, and relates to the length of time the postsy-
naptic current is spread over. Since the impulse response is an exponential function, it is
known as the exponential synapse model.

Mainen and Sejnowski (1995) found that a second-order lowpass filter is a better model
of a synapse. The impulse response of this filter is given by

h(t) =
t

τ 2
s

et/τs . (2.9)

This function is known as the alpha function, and thus the model is called the alpha
synapse model.

Both of these models are current-based synapse models, meaning that they explicitly
model the current that results from a spike in the postsynaptic neuron. Other current-based
synapse models exist; a popular one is the double-exponential model, which is similar to the
alpha synapse but with two time constants, allowing more control over the rise and fall of
the impulse response.4 Many of the other, more realistic synapse models are conductance-
based, meaning that they model the conductance of the neural membrane at the synapse.
The current into the neuron depends on both the conductance and the voltage across the
membrane; the latter changes as the synapse becomes active.

4The double-exponential model with both time constants set to the same value reduces to the alpha
synapse.
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2.4 Rate codes, population codes, and timing codes

One of the aims of computational neuroscience has been to determine how the brain
represents—or encodes—information. To this end, researchers have proposed a number
of different coding schemes that neurons could use to encode information.

Rate versus timing codes

One dichotomy differentiates between rate coding and temporal coding. In a rate code,
only the firing rate (i.e., number of spikes) of a neuron over a period of time matters. An
archetypal example of a rate code is motor neurons in the peripheral nervous system. A
muscle’s contraction is based on the number of spikes per unit time, thus only the rate
of motor neuron spikes is important (Gerstner, Kreiter, Markram, & Herz, 1997). In a
temporal code, the time of individual spikes is also important. An archetypal example of
a timing code is in the early auditory system (Gerstner et al., 1997), where precise spike
timing helps to localize sounds (Chase & Young, 2006).

The exact definitions of rate and temporal codes are not clear, and vary from author
to author (Dayan & Abbott, 2001). For example, a neuron may fire a number of spikes
in quick succession, and then be silent. Compare this with a second neuron, that fires the
same number of spikes, but spread evenly over a given period. One way to view this is
that both neurons have the same firing rate, but the one has all its spikes near the start
of the period, in which case the timing of the spikes is important. An alternative view
says that the instantaneous firing rate of the first neuron changes over the period, whereas
that of the second neuron remains constant, and it is only this instantaneous firing rate
that matters. This points to one problem with only looking at the overall firing rate (i.e.,
number of spikes) of a neuron over a period: it is not clear what period we should count
over. In real neurons, the period of time that matters for counting spikes depends on
parameters like the membrane time constant τRC of the postsynaptic neuron.

For this reason, neuroscientists will often distinguish between rate and timing codes
based on the frequency of the changes in the instantaneous firing rate. If the rate fluctuates
rapidly, and these fluctuations contain information about the stimulus (they are not simply
spurious variation or “noise”), then the code is said to be temporal; otherwise it is a
rate code. Again, there is ambiguity as to how fast the firing rates must fluctuate to be
considered temporal. One way to define this is relative to the stimulus. Fast-changing
stimuli can trigger fast changes in the firing rate of neurons, whether they are using a
rate code or a temporal code. If we define a temporal code as having meaningful firing
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rate fluctuations at a faster time scale than changes in the stimulus, we can differentiate
between codes that have fluctuations because they are using them for coding, and those
that simply have fluctuations triggered by the stimulus. By this definition, neurons using a
temporal code will have a fluctuating firing rate in response to a constant stimulus, whereas
neurons using a rate code will have a non-fluctuating firing rate.

Population coding

Both rate codes and temporal codes describe the encoding properties of individual neurons.
We can also ask about the coding properties of a group (a.k.a. population) of neurons. The
concept of population coding describes when a representation is distributed across many
neurons in a population, such that the represented value cannot be decoded from only the
activities of a few neurons.

To illustrate, the simplest way of extrapolating the idea of rate or temporal coding to
more than one neuron would be to have many neurons all implementing the same code.
That is, all neurons will fire similarly when representing a given value (they have similar
tuning). This creates a large degree of redundancy between neurons. Instead, population
coding has each neuron represent a different aspect of the represented value. For example,
if we want to represent head direction, we have neurons that represent the head fully turned
to the left, others that represent fully turned to the right, and still others for centred, and
others for values in between. The direction that a neuron is most active for is called its
preferred direction. Each neuron has some variance, that is, it will fire for head directions
close to its preferred direction, as well. The farther the actual head direction is from a
neuron’s preferred direction, the less it will fire. By using the activities of all neurons in
the population, we can decode the head direction quite accurately.

At the population level, we can distinguish between codes that take advantage of syn-
chrony between neurons and those that do not. This can be facilitated for example by
coincidence detection, where a postsynaptic neuron will only fire if the spikes of two of its
input neurons are coincident, that is, they fall within the same (small) temporal window.
Here, we see another distinction between temporal and rate coding schemes: Only tem-
poral codes can take advantage of correlations between individual spikes of neurons. Rate
coding schemes, on the other hand, can only take advantage of synchrony between neurons
in terms of synchronized fluctuations of their instantaneous firing rates, since they do not
have the temporal precision to co-ordinate individual spikes.
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2.5 The Neural Engineering Framework (NEF)

The Neural Engineering Framework (NEF, Eliasmith and Anderson (2003) is a theory that
connects neural-level computations with higher-level algorithmic descriptions. Specifically,
it describes how neurons can perform vector computations, which can then be built upon
to create increasingly complex systems, for example Spaun (Eliasmith et al., 2012). It
has three main tenets: 1) representation, how neurons represent a real-world value; 2)
transformation, how neurons compute (static) functions on represented values; and 3)
dynamics, how neurons can implement dynamical systems or functions.

The core of the Neural Engineering Framework is based on population coding. Specif-
ically, it extends a method proposed by Salinas and Abbott (1994) on how linear least-
squares can be used to find linear decoders for a population of neurons. This idea can be
summarized succinctly as “nonlinear encoding, linear decoding”. Here, we will focus on
the first two tenets: representation and transformation.

Representation

The core idea behind the NEF is that a “population” of neurons can be viewed as repre-
senting some value. This could either be a value in the real world (such as an animal’s
current head direction) or a purely internal value (such as the sum of three and seven when
mentally computing 4× (3 + 7)). In the core NEF, each population represents a vector x,
but this can be extended to representing things like scalar- and vector-fields, too.

Each neural population has a set of encoders E, which map from the space of values
that the population can represent (called the state space, of dimension d) to the space of
neural activities (called the neuron space, of dimension n). The mapping is nonlinear:

aj(x) = Gj

(
αj
∑
i

Ejixi + βj

)
(2.10)

where x is the vector value that the population is encoding, aj is the activity of neuron
j, Gj(·) is a rate-based neural nonlinearity transforming input currents into firing rates, E
is a n × d matrix of encoders, and αj and βj are scalar gain and bias terms, respectively.
Often, neurons in the NEF are modelled as LIF neurons, in which case Gj is given by
Equation 2.7 for all neurons.

To decode information from the population, we find linear decoders D, which when
multiplied by the neural activities a(x), will yield our state-space value x. Typically, we
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choose decoders that minimize the squared error ‖Da(x)−x‖2
2. Ideally, we would minimize

this across all possible values of x; in practice, we sample the space of x at m points, called
evaluation points. Given our m× d matrix of evaluation points X, and the corresponding
neural activities at each evaluation point A, we can find the least-squares optimal decoders
as

D = (ATA)−1ATX . (2.11)

In practice, some neurons may have similar activity patterns, making this an ill-conditioned
problem. Additionally, we typically want to put a penalty on large decoders to reduce
the effects of variability in the spiking neurons on the decoded value. To address these
problems, we typically regularize the problem (see Section 4.3.5).

Transformation

Since the number of neurons in the population n is typically much larger than the number of
dimensions d in the encoded vector x, the neural population not only contains information
about x, but also about possible functions of x. We can decode a function f(x) from the
population by finding decoders Df that minimize the squared error ‖Dfa(x)−f(x)‖2

2. This
results in a similar least-squares optimization problem as before, but replacing the matrix
of evaluation points X with a matrix of targets Y. This method can be used to decode
arbitrary functions from the population. The accuracy with which a given function can
be decoded depends on the characteristics of the function (e.g., higher frequency changes
are more difficult to decode), the tuning curves of the neurons, and how these two factors
relate.

Discussion

One observation about the encoding model is that it is rate-based. To find the decoders,
we use the rate response function of the neurons. This does not mean that NEF models use
traditional rate coding; firing rates can vary quite quickly, and one can design models—
for example an oscillator—where neurons fire in quick bursts, for which the timing is
important. NEF networks cannot take advantage of synchrony between neurons; any
correlations between neural firing will only result in increased variability (noise) in the
decoded output. Furthermore, NEF networks function equally well or better when rate-
based neurons are used instead of spiking neurons. This suggests that these networks use
what is fundamentally a rate code, albeit one that can change quickly.

22



An important aspect of NEF networks is that neurons are heterogeneous in terms of
their encoders and biases, and thus respond differently to input stimuli. This heterogeneity
is what allows neurons to not only encode different aspects of their input signals (some-
thing that can also be done with noisy homogeneous neurons, see Hunsberger, Scott, and
Eliasmith (2014)), but compute nonlinear transformations of these signals. The exact na-
ture of this heterogeneity has a significant effect both on what signals can be represented,
and what transformations can be computed. Representation and transformation do not
always go hand in hand; for example, a population whose neurons are all tuned to the
sum of two inputs is not able to represent the individual signals, but is able to compute a
transformation such as the square of their sum. What types of heterogeneity are best for
computing particular functions has not been well examined. Section 4.2 will look at what
types of encoders are good for performing object classification tasks.

2.6 Neuromorphic hardware

Neuromorphic engineering is broadly concerned with creating artificial systems that work
like biological neural systems, particularly in terms of their physical implementation. The
term was coined by Carver Mead in the late 1980’s, and refers to both digital and ana-
log hardware that is organized in a more brain-like manner than traditional computer
hardware (Mead, 1990). One of the core ideas behind neuromorphic systems is paral-
lel distributed processing; neuromorphic systems organize computations at a neural level,
and pay particular attention to facilitating fast communication between neural processing
units. This differs from other parallel distributed systems like graphics processing units
(GPUs), which are typically optimized for independent parallel computations and have
poor communication between units.

Neuromorphic systems can be either digital or analog. Digital systems, such as SpiN-
Naker (Furber et al., 2013) and TrueNorth (Merolla et al., 2014), use the same basic com-
ponents as traditional computers (even using the same chips in some cases), but optimize
connectivity and communication for neural systems.

Analog systems embrace the fundamental analog nature of electrical systems, and con-
struct systems using core components that are analog instead of digital. On some systems
(e.g., NeuroGrid, Benjamin et al. (2014)), neurons are modelled using analog circuits. This
is extremely energy efficient compared with digital circuits, since as little as one RC cir-
cuit can represent and update a neuron membrane voltage with leak, which would require
multiple bits and multiple updates per time step on digital hardware.
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Chapter 3

Machine Learning

The field of machine learning (ML) is concerned with how computers can learn to perform
various tasks, and is a sub-branch of the field of artificial intelligence (AI). AI addresses the
problem of how to get machines to do “intelligent” things. Initial approaches were focused
on how to program this desired intelligence, and grew out of fields like optimization and
control theory. One drawback to this initial approach is that the programmer would need
to be able to formulate specific instructions telling the machine how to act in different
circumstances. This led to rule based systems, which are successful at some tasks, but for
other tasks it is incredibly difficult to determine an explicit set of rules to guide behaviour.
For example, how would you choose rules to differentiate between the visual stimuli of a
cat and a dog? You can begin by trying to make rules to distinguish between different
characteristic features; for example, differences in the appearances of ears, noses, mouths,
and so on. However, it is very hard to come up with rules that cover even the majority
of situations, and promising rules may prove to be fragile to changes in viewing angle,
viewing distance, or environment. The reason it is so difficult to come up with rules for
this situation is that recognizing objects is something that people do subconsciously. We
cannot think of explicit rules because we do not have them, not in the same way that
we have rules for doing mental math, for example. Rather, our visual system has been
bombarded over time with millions of seconds of ever-changing stimuli, and learned to
process these stimuli in such a way that we can do everything from distinguishing different
types of objects, to judging the depths of obstacles in our environment.

Machine learning was born when researchers started asking whether we can get ma-
chines to learn these implicit ways of operating, too. Rather than programming in a set
of rules or commands, can we have the machine learn its own program, so to speak. This
is often described as a data-driven approach: give the machine a general structure for the
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problem, and a lot of data, and let it learn a way to solve the problem. Empirically, there
is no general structure that works well across different types of problems, and much of the
research in machine learning goes into what kinds of structures, and what kinds of learning
procedures, work best for a particular problem or group of problems.

One of the most prolific sub-fields in machine learning has been that of artificial neural
networks (ANNs). ANNs take inspiration from the brain by defining a “neuron” (or node)
as the fundamental unit of computation. Typically in an ANN, a neuron will take a
(linearly) weighted set of inputs, and then pass this through a (static) function to obtain
the neuron’s output. An ANN can have many such neurons, and much of machine learning
is concerned with how to adjust the parameters of the model (typically the weights on each
neuron’s inputs) such that the model as a whole obtains the desired output. Additional
difficulty comes from the fact that we do not want our system to only perform well on the
stimuli that we train it on, but also on stimuli that it has not seen before. It is relatively
easy to memorize a set of desired input and output pairs, and given one input produce
the desired output. It is much more difficult to generalize what has been learned to new
stimuli in an “intelligent” manner, and this generalization problem is the core problem of
machine learning.

This chapter will summarize the ANN sub-field of machine learning, particularly those
aspects concerned with solving object classification problems, which have been one of the
core problems used to demonstrate the abilities of ANNs. I will briefly summarize the
development of ANNs, before focusing on some of the key pieces related to their modern
practice.

3.1 Machine learning basics

Early efforts in artificial intelligence were driven by theory: Researchers would take what
they knew about the problem and use it to develop algorithms and rules to address that
specific problem. It soon became clear that for many problems, it was extremely hard
to explicitly write out all the rules that would be needed to solve that problem. For
example, traditional computer vision approaches have relied on detecting specific hand-
defined features in an image. This can work reasonably well for problems like tracking
moving objects, where simple features can be combined with the principles of motion to
keep track of an object from one frame to the next. For problems like object recognition,
however, it is almost impossible to explicitly define good features and rules. To tell a cat
from a dog from a boat from a truck, one would need to design feature detectors for things
like ears, eyes, sails, wheels, and so on, and then define rules about how these relate for
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different types of objects. One would quickly have hundreds of features and rules, and
would have to hand-tune each one to work properly on the data.

3.1.1 Goal

Machine learning takes a data-driven approach. Rather than explicitly define good features
and rules, the goal of machine learning is to learn them from the data. Specifically, we want
to learn a function that is able to perform the desired computation on new data points (i.e.,
different from the ones used for learning). This is called generalization, and is what allows
a machine-learning system to be deployed in the world. If the system only performed well
on stimuli that it has already seen, then unless we can show it every possible stimulus it
will ever see (which is impossible for high-dimensional stimuli, such as images), the system
will always perform poorly on new stimuli. If, however, the system is able to generalize
from the training stimuli to similar stimuli, then it can perform well on novel stimuli too.

The desired computation of a machine learning system is defined implicitly both by the
available training data, and by the learning paradigm. The latter is the focus of the next
section.

3.1.2 Learning paradigms

The learning paradigm defines both what information we have available to learn from,
and what the desired output of the system is. There are three main paradigms: super-
vised learning, unsupervised learning, and reinforcement learning. The main way these
paradigms differ is in terms of what type of error signal is provided to the learner.

In supervised learning, we have both the desired inputs and outputs to the system, and
we wish to learn an input-output mapping. It can be separated into regression problems,
which have continuous outputs, and classification problems, which have binary outputs
(representing membership in different categories). The error signal is defined based on
how far the system’s output is from the desired output.

In unsupervised learning, we have input data (e.g., images), but no desired outputs.
Rather, we implicitly define an output based on the input data. Types of unsupervised
learning include clustering, which attempts to group the input data into sets, and dimen-
sionality reduction, which attempts to represent the data using fewer dimensions than the
original representation. The error signal is defined based only on the input. For example,
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for dimensionality reduction, we wish to create a system that can take an input and rep-
resent it with fewer dimensions, but still re-create the input from this representation. In
this case, the error signal could be how far this re-creation is from the original input.

Finally, reinforcement learning has a more temporal aspect: given a current state of
the environment, the system must choose an action, which determines (perhaps proba-
bilistically) the next state of the environment. Certain environmental states are rewarded,
while others are punished (negative reward) or neutral (no reward). The system wants to
achieve maximum total reward over time.

While these are the main categories of learning problems typically studied in ML,
this is not an exhaustive list. Other paradigms exist, such as semi-supervised learning,
where some data points are labelled and others are not (thus falling between supervised
and unsupervised learning). Supervised learning is still the dominant paradigm in object
recognition. As datasets grow larger and thus the cost of having fully labelled datasets
is higher, object recognition will likely move to incorporate more semi-supervised and
unsupervised methods, and even reinforcement learning (e.g., when object recognition is
part of a larger problem, such as winning at video games (Mnih et al., 2013)). That said,
this thesis focuses only on supervised learning.

Within supervised learning, there are two traditional kinds of problems: regression
problems and classification problems. The difference is in the output of the system. Re-
gression systems output one or more continuous values (computing a vector-valued function
on the input), whereas classification systems compute a single discrete-valued output (rep-
resenting the class-label of the input). More recently, there has been increased interest in
problems that go beyond these two categories. One example is predicting multiple labels
for an image—for example corresponding to many objects in an image—or determining
verb-like correspondences between objects (Karpathy & Li, 2015). This can be expanded
to generating captions for images, where the model output is a sentence describing the
image (Karpathy & Li, 2015; Xu et al., 2015). This thesis will focus on classification
problems, which is the typical paradigm used when performing object classification.

3.1.3 Basic components

Each machine learning system can be described in terms of four components:

1. Dataset/Problem: The set of data that is available to learn from, which implicitly
defines the problem. In the case of supervised learning, this is a set of input/output
pairs; in unsupervised learning, it is only inputs; in reinforcement learning, it is an
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environment that defines the set of possible states and which states produce which
rewards.

2. Architecture: How our learner is constructed, namely what are the parameters being
learned, and how is the system output determined given these parameters and an
input value.

3. Objective function: The metric by which we evaluate a particular set of parameters.
In supervised learning, two such functions are often used, one for training and one for
testing (evaluation). The training objective function is called a loss function, where
zero loss indicates “perfect” performance, and any positive loss indicates how far we
are from perfect performance.

4. Optimization algorithm: The algorithm by which we minimize the loss function.
Ideally, this algorithm will find the set of parameters that result in the smallest
possible loss value (i.e., the global minimum) on the given dataset (in a reasonable
amount of time).

These four components completely characterize the learning problem: if one describes all
these components in full detail, then any other person should be able to perfectly reproduce
the result. Since the choice of these components completely determines the capabilities of a
learner, all machine learning research looks at at least one of them. Typically, to compare
between different ML systems, researchers will fix the dataset and evaluation objective
function, and vary the architecture, loss function, and optimization algorithm. This allows
a system to obtain a score on a particular dataset relative to other systems. Of course,
each dataset may only provide a limited view of the capabilities of a particular system
(some more than others), and it is common to test systems on multiple datasets.

3.1.4 Overfitting and underfitting

Given our goal of generalizing well to new data, there are two main pitfalls in ML: under-
fitting the data and overfitting the data. Underfitting the data occurs when our system
is not able to capture the (implicit) function we are trying to learn. One way this can
happen is if the architecture is not powerful enough to represent the function. A simple
example of this would be if we have linear network, but are trying to learn a nonlinear
regression function: no matter how good our learning methods are, there is no set of model
parameters with which our chosen architecture will be able to compute the desired func-
tion. Another way that this can happen is if our learning methods are not able to find good
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parameters for our chosen architecture, even though they do exist. Recent work has shown
that shallow networks can often perform as well as deep networks, but deep networks are
still preferred in most cases because it can be difficult or impossible to learn the shallow
networks directly from the data (Ba & Caruana, 2014).1 This is an example of a situation
where the architecture (in this case the shallow network) is theoretically powerful enough
to represent the desired function, but it cannot be trained well using traditional learning
methods (it can only be trained by trying to mimic the deep network).

Overfitting occurs when our model begins to learn relationships in the training data
that are not useful for the problem at hand. This happens because the architecture is
too powerful for the dataset in some way, and rather than learning general features about
the data (that will apply to new stimuli), it learns idiosyncratic features about specific
stimuli that apply only in the case of those examples. An extreme example is a learner
that simply memorizes every training example, returning the correct answer for all training
examples (as provided during the supervised training), but outputs a random output for
all other stimuli. This learner will perform perfectly on the training set, but is simply
guessing on all other stimuli, and thus has not learned to generalize at all to new examples.
Characteristics of this extreme behaviour can be seen in otherwise successful learners, where
some parameters in the model may adjust to accommodate idiosyncrasies in particular
stimuli; in this way, the model has memorized features about these stimuli to be able to
identify them, but in a way that will not generalize to other similar stimuli.

Overfitting is relatively simple to detect: it occurs when the model performs signifi-
cantly worse on novel stimuli than on training stimuli. The presence of such a generalization
error indicates that the model has learned features about the training set that do not apply
outside the training set.

Detecting underfitting is not as straightforward. The simplest measure is that if the
network is not achieving zero training error, then it is not able to fully model the desired
function, and is underfitting to some degree. However, that assumes that the training
data is perfect, in that all of the labels are correct and unambiguous. It also relies on
current architectures being powerful enough to fully capture all the nuances of the target
function, which is often not the case. Another way to detect underfitting is by assuming
that any model that is not overfitting is underfitting. This is a good assumption, because
there is a very limited window in which a model is perfectly capturing a relationship; it
is almost always either underfitting or overfitting. Furthermore, overfitting is not entirely

1The way that the shallow networks were learned was to first learn a deep network, then to train a
shallow network to reproduce the outputs of the penultimate layer of the deep network (i.e., the inputs to
the softmax layer).
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bad; improving the training performance on a model that is already overfitting can still
improve the performance on new examples. Overfitting simply means that the model is
beginning to pick up spurious relationships in the training data. Further training may still
help it pick up some true relationships, in addition to more spurious relationships.

To address underfitting, we either want to make the architecture more powerful (e.g.,
increase the number of parameters), or improve the learning methods so that we can find
better parameter values. Early machine learning was often unsuccessful on even relatively
simple datasets because computers were simply not powerful enough to allow for the larger
models needed. Convolutional neural networks have been successful because they make
the parameters easier to learn.

To address overfitting, we need to limit the architecture in some way, such that it
learns more good patterns within the data and fewer spurious ones, or expand the dataset
such that learning spurious correlations is less advantageous. In simple cases, where the
model is much too large for the dataset, simply reducing the number of parameters can
help, particularly if done in a way that incorporates some prior knowledge of the problem.2

However, the number of parameters can only be reduced so much before the model begins
underfitting. At that point, we need to begin limiting the values of parameters in some
way: this is called regularization. Simpler forms of regularization simply put a cost on
having larger parameter values, which prevents the learner from putting too much weight
on some correlations over others, and thus relying too heavily on any one feature. Dropout
is a newer form of regularization for neural networks that probabilistically silences neurons,
again preventing the learner from only relying on a few features (see Section 3.4.6). Finally,
expanding the dataset (see Section 3.1.5) can help with overfitting, since the learner has to
perform well on more training examples, thus putting more constraints on the parameters.

3.1.5 Dataset usage

The dataset has two uses: training the system (finding the optimal parameter values),
and testing the system (evaluating the parameter values). Ultimately, we are interested in
determining how well a learner generalizes, that is, how well it performs when exposed to
stimuli it has never seen before. In supervised learning, datasets are typically divided into
distinct training and testing subsets. This way, the learner can be tested exclusively on
examples it has never seen during training.

2For example, in visual recognition problems, having local connectivity in the first layer of a deep
neural network can improve performance. This is because low-level visual features are local, and limiting
connectivity pushes the network to pick up on true short-range correlations rather than spurious long-range
ones.

30



There are many parameters related to the architecture, loss function, and optimization
method that are not learned, but rather must be chosen a priori ; these are known as
hyperparameters (examples include learning rates, the size of the model, and the initial
values of the learned parameters). Since the choice of these parameters can have a great
effect on the generalization error, it is important to choose them without knowledge of the
test set. Otherwise, one may end up tuning the hyperparameters to the specific test set
being used, such that it becomes a poor estimator of generalization error since the learner
will perform less well on examples outside the test set. To account for this, it is common to
hold another subset of the data out of training, called the validation set. This subset can
be used to help tune hyperparameters; for example, a simple scheme to find the optimal
learning rate might try many possible learning rates and pick the one that results in the
best performance on the validation set. The resulting learner would then be applied to the
test set, and the performance on that set would be a good estimate of generalization error.

Just as the brain has many synapses to allow it to solve difficult problems, modern
ML methods have many parameters to make them powerful enough to solve real-world
problems. To tune this many parameters, it is important that datasets are sufficiently
large, providing a wide range of stimuli such as one might encounter in the world.3 Given
a core dataset, one can expand the number of training images by creating variations on
each image: this is called dataset augmentation. For example, one might include small
translations (shifts) of each image, as well as left-right flips. This can significantly help
reduce the chances of overfitting by increasing the diversity of the dataset, helping it to
better characterize the stimulus space.

3.1.6 Objective functions

In supervised learning, the objective function or loss function of a network defines the
quantity that we wish to optimize, relating the actual outputs of the network y to the
desired outputs of the network y∗. It is often described as a cost or loss that we wish to
minimize. This cost, in simple terms, describes how poorly our network performs on the
training data set. Some common loss functions for classification are described in Section 4.3.

One important distinction is between loss functions and error functions; for regression
problems, these functions are often one and the same, but in classification problems, they

3As an example, try to imagine all the images that one might take with even a small, low-resolution
camera (e.g., 256 × 256 pixel), This would include every sort of variation on every common object, seen
from any angle in any lighting condition. Then, since each object would only take up maybe a quarter of
the frame, one could include all possible combinations of these objects. The total number of such images
is astronomical.
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are typically different. An error function quantifies how much error a network makes; for
classification, this is typically the number of examples incorrectly classified divided by the
total number of examples. An example is considered incorrectly classified if the output
with the highest value is not the correct output. The classification loss, on the other hand,
depends on the values of the outputs. For example, a loss function might penalize (i.e.,
have non-zero loss) for an example if the network output for the correct class is not as
high as desired, or if the margin between the correct output and next most active output
is not as large as desired. This means that many examples that are correctly classified
will still have non-zero loss. Overall, this pushes the classifier to not only get the answer
correct, but to get it correct by a significant margin, which ideally makes the classifier more
robust and better able to generalize to new inputs. The loss function is also continuous
and differentiable, whereas the error function can be discrete; this makes the loss function
more easily optimizable, since the derivative(s) can be used in the optimization.

3.1.7 Datasets

Collecting and annotating datasets for supervised learning of object classification is not a
trivial task. To support development of new machine learning models and methods, and
to facilitate comparison between models and methods, there are a number of standard
datasets publicly available and commonly used in the machine learning community. Here,
I summarize all the datasets that are used at some point in this thesis (see Table 3.1),
which are five of the most common object classification datasets.

The MNIST dataset (LeCun, Bottou, Bengio, & Haffner, 1998) is a collection of hand-
written digits (taken from US zip codes written on envelopes). The digits have been heav-
ily preprocessed such that each image contains exactly one centred digit in high contrast
greyscale (essentially black and white). Optical classification of handwritten characters is
a challenging problem, and the first true success on this problem by LeCun et al. (1998)
marked a turning point in machine learning. While the dataset is no longer challenging for
state-of-the-art methods, it is still commonly used as a first benchmark for novel models
and methods. Its relatively small size (by modern standards) allows for expedient training
even with slower methods (e.g., online learning and spike-based methods).

The SVHN dataset (Netzer et al., 2011) is also composed of digits, taken from images of
house numbers on Google Street View. They show large variation in the styles of digits, as
well as in the backgrounds, lighting, colours, and contrast. They have been preprocessed
such that each image is centred on a digit (the target digit for classification), however
images often contain whole or partial digits to the sides (distractor digits). This makes the
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Figure 3.1: Example images from datasets used in this thesis.

34



dataset considerably harder than MNIST, but still relatively easy compared to datasets
composed of objects. State-of-the-art algorithms achieve under 2% error, which is better
than the estimated human error of 2% (Netzer et al., 2011).

The CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009) consist of small (32 × 32
pixel) images from 10 or 100 different categories, respectively. All the images are taken
from the Tiny Images Dataset (Torralba, Fergus, & Freeman, 2008), and are in full colour.
Despite being the same size as the SVHN dataset, these datasets are considerably harder:
Human performance on CIFAR-10 has been estimated at 94% accuracy (Karpathy, 2011),
and state-of-the-art algorithms get around 96% accuracy (Springenberg, Dosovitskiy, Brox,
& Riedmiller, 2015; Graham, 2015). CIFAR-100 is even more difficult, with state-of-the-
art accuracy around 75% (Graham, 2014; Clevert, Unterthiner, & Hochreiter, 2016). The
main reason for the increased difficulty is that the object categories are simply more diverse,
with members of each category encompassing a wide range of visual features, and with a
larger variety of object poses in each category. For example, one category in CIFAR-10 is
“dog”; the dataset includes images of many different breeds of dogs, with a wide range of
appearances, taken from many different angles. With CIFAR-100 there is the additional
problem that there are more categories, thus greatly reducing the probability of guessing the
correct category by chance. Furthermore, many of the categories are similar—for example
“shrew” and “mouse”—and it is difficult to consistently differentiate these categories using
small images taken from a variety of angles.

The ILSVRC-2012 dataset (ImageNet Large Scale Visual Recognition Challenge 2012
dataset, Russakovsky et al. (2015)) more colloquially known as the ImageNet dataset,
is a dataset of images drawn from the ImageNet database.4 The ImageNet database is
a set of medium to high resolution images, organized into hierarchical categories called
synsets (for “synonym set”). It contains millions of labelled images. The ILSVRC-2012
dataset is a subset of these images, used for the ImageNet Large Scale Visual Recognition
Challenge contest in 2012. This subset has images labelled with 1000 different categories,
predominated by animal species, plants, household objects, vehicles, and building/room
types (both exterior and interior).5 The images are not all exactly the same size, and

4http://www.image-net.org/
5To give an illustration of the diversity of the classes, here are some examples: Great Dane, gazelle,

titi monkey, hartebeest, panda, llama, forklift, snowplow, fire truck, pool table, throne, seashore, volcano,
hummingbird, box turtle, mud turtle, guillotine, barometer, stove, cannon, car wheel, screw, jellyfish,
toaster, waffle iron, vacuum, library, planetarium, church, restaurant, butcher shop, sock, CD player,
bubble. For the building types, the categories vary as to whether the images are from inside or outside
the building. For example, “library”, “restaurant”, and “butcher shop” all predominantly contain images
from inside those buildings, whereas “planetarium” consists of images from outside planetariums; “church”
contains images from both inside and outside churches.
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preprocessing often consists of scaling and cropping the images to be 256 × 256 pixels,
though some researchers have experimented with varying sizes (e.g., Simonyan & Zisser-
man, 2015). This dataset is considerably harder than the previous ones, not only because
there are many more categories, but also because images often contain a number of ob-
jects, and it is sometimes a bit ambiguous which object is the “focus” of the image (see
Figure 3.1).

Considering these challenges, modern machine learning algorithms have performed quite
well. Since there are so many categories, many algorithms have published both top-5 and
top-1 results: top-5 means that if the actual label for the test image is in any of the top five
categories predicted by the algorithm, then the image is considered correctly classified; top-
1 means that the top prediction has to match the correct label. Top-5 classification helps
accommodate the fact that there are ambiguous images with multiple featured objects, and
that there are some categories that appear quite similar and would be difficult even for a
human to distinguish from all angles (e.g., some breeds of dogs). Krizhevsky, Sutskever,
and Hinton (2012) won the inaugural competition in 2012 with a top-5 score of 15.3%; since
then there have been many significant improvements, notably Simonyan and Zisserman
(2015) who achieved 6.8% top-5 error using multi-crop evaluation (8.0% using standard
single-scale evaluation), and Szegedy, Ioffe, Vanhoucke, and Alemi (2016) who achieved
3.1% top-5 error using a combination of four of their Inception models with multi-cropping
(any of the individual models achieves 5% top-5 error without multi-cropping).

3.2 Backpropagation

The backpropagation (BP) algorithm (short for “backwards propagation of gradients”,
a.k.a. “backprop”) is the algorithm chiefly responsible for the recent success of machines
on object recognition tasks. Though the algorithm was brought to wider attention in
the 1980’s by Rumelhart, Hinton, and Williams (1985), it was only mildly successful at
the time, largely due to lack of computational resources. As computers developed, and
some of the finer points of machine learning became better understood, backpropagation
became increasingly useful, culminating in LeNet (LeCun et al., 1998), a deep convolutional
network that marked the first significant success on the MNIST handwritten digit dataset,
and a seminal success of neural networks in general.

Since that time, the algorithm has continued to gain traction. In the 2000’s, backprop-
agation was used to “fine-tune” many types of deep networks: it was used at the end of a
training algorithm to make moderate adjustments to network weights that would provide a
significant decrease in error at the end of a training regime. Other algorithms were used for
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“pretraining”, that is, determining initial weights that could be moderately successful at
a task and provide a starting point for backpropagation. One such method was layer-wise
pretraining, where each layer in a deep network was trained as an autoencoder or restricted
Boltzmann machine (RBM), to be able to represent well the information in the previous
layer. This unsupervised training would initialize the network to a state where the final
hidden layer retained a significant amount of information about the inputs. Backpropa-
gation could then be used to train the output classifier, as well as fine-tune the weights
of the previous layers. It is only more recently, since around 2010, that backpropagation
has been used to train networks from scratch.6 Currently, backpropagation is the main
workhorse used for training almost all deep networks.

Backpropagation is a method for determining the gradients of the network parameters
with regards to an objective function. It solves what is known as the spatial credit assign-
ment problem: given a particular error at the output of the network, which hidden units
are responsible for that error, and by extension which parameters should be changed to
most quickly decrease the error? Put another way, how do we assign credit (or blame) to
the hidden units for their role in the network output? This was a significant problem for
early neural network researchers.

If we have a single-layer linear network, it is easy to take the derivative of the objective
function with respect to the parameters. For example, if we have a network y = Wx, and
objective function O = 1

2
‖y − y∗‖2

2, then

dO

dW
=

d

dW
‖Wx− y∗‖2

2

= (Wx− y∗)dWx

dW
= (Wx− y∗)xT . (3.1)

This becomes less straightforward when we have layers of nonlinear hidden neurons. If
we have a network y = Wf(Vx) (where f(·) is an elementwise nonlinearity), how do we
determine dO

dV
?

This is the problem that the backpropagation algorithm solves. It does this by suc-
cessively applying the chain rule of calculus, to pass error information from the output of

6There are three main factors that converged to make this possible. Increasing computation power—
specifically using GPUs—allowed for training larger models on larger datasets in a reasonable amount of
time. Rectified linear units (ReLUs, see Section 3.4.3) made training less sensitive to the initial weights,
since they are scale-invariant and make vanishing and exploding gradient problems less likely. Convo-
lutional networks, while already used successfully a decade earlier, were combined with these methods,
greatly reducing the number of parameters as compared with fully connected methods like RBMs.
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the network backwards to previous hidden layers of the network. The algorithm begins by
first computing the activations of all neurons in the network for one or more inputs (this is
known as the forward pass). The algorithm then successively computes the derivatives of
all parameters in the network, starting with the parameters of the final hidden layer (right
before the output layer), and working backwards through the network. This is known as
the backwards pass.

Assume we have two successive hidden layers in a neural network, hn−1 and hn, con-
nected with a full set of weights and a nonlinearity such that

hnj = f
(
anj
)

= f

(∑
i

W n
ijh

n−1
i + bnj

)
(3.2)

where W n
ij is the weight connecting hidden unit hn−1

i and hnj , bnj is the bias for hidden unit

hnj , and anj ≡
∑

iW
n
ijh

n−1
i + bnj is the input activity to the nonlinearity f(·) for hnj . For

simplicity, I assume the same nonlinearity for all hidden neurons, but it is easy to relax
this assumption.

We can now take the derivative across this hidden layer pair. Let eni ≡ dO
dhni

, that is en

is the error gradient of the nth hidden layer. Using the chain rule of calculus, we can find
the error of the previous layer en−1 in terms of the error of the current layer en:

en−1
i =

∑
j

dO

dhnj

dhnj

dhn−1
i

=
∑
j

enj
df(anj )

danj

danj

dhn−1
i

=
∑
j

enj f
′(anj )W n

ij . (3.3)

This equation can be used to recursively calculate the error at each layer, starting from the
error at the top layer (which is determined by differentiating the objective function with
respect to the network outputs). From this error, we can calculate the derivatives of the
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objective function with respect to each of the parameters:

dO

dW n
ij

=
dO

dhnj

dhnj
danj

danj
dW n

ij

= enj
df(anj )

danj

danj
dW n

ij

= enj f
′(anj )hn−1

i (3.4)

dO

dbnj
=
dO

dhnj

dhnj
danj

danj
dbnj

= enj
df(anj )

danj

danj
dbnj

= enj f
′(anj ) . (3.5)

These derivatives can then be used to update the parameters, using an optimization method
like the one discussed below (SGD, Section 3.3).

The above derivation shows how to differentiate an objective function based on one
example; real objective functions often sum across many examples. Since differentiation is
a linear operator, the derivative of a cost function that sums across many examples is equal
to the sum of the derivatives for each of the individual examples. Thus, we can compute
the derivatives for each example separately, and sum them together at the end.

3.3 Stochastic gradient descent (SGD)

Backpropagation provides a method to take the first-order derivative (gradient) of the
cost function with respect to the network parameters. It does not define how to use that
gradient to minimize the cost; there are a number of potential methods to do this.

The most basic method is adjusting the parameters in the direction of the negative
gradient;7 this is known as gradient descent. By definition, only an infinitesimally small
step in this direction will decrease the cost, since the function may only decrease for
an arbitrarily short distance before starting to increase again. In practice, however, we
must take a significant step in the gradient direction. The step size is modulated by
the learning rate, which is multiplied by the gradient to determine the step. There is a

7The gradient points in the direction in which the cost increases most quickly. Thus to decrease the
cost most quickly, we move in the direction of the negative gradient.
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tradeoff between a large learning rate, which will allow us to converge more quickly for
smooth (well-conditioned) objectives, and a small learning rate, which will ensure stability
(convergence) on more ill-conditioned problems. As long as the learning rate is small
enough, then gradient descent can converge for any problem.

When performing gradient descent, we compute the gradient across all training ex-
amples (called the batch) for each parameter update; this is computationally expensive.
Stochastic gradient descent (SGD) solves this problem by simply using part of the training
set to estimate the gradient at each iteration, accepting the risk that this may sometimes
increase the overall cost. At each iteration, we are computing a noisy or stochastic estimate
of the gradient. As long as the corresponding parameter updates are beneficial on average,
the overall cost should decrease. The examples used to estimate the gradient are called
the mini-batch.

The size of each mini-batch is an important parameter in SGD. Having more examples
in the mini-batch means that we get a better estimate of the gradient, but it also means
more computation per mini-batch. Choosing the mini-batch size is a tradeoff between these
two criteria; in practice, typical sizes are around 20 to 100 examples.

SGD is a popular method because it is relatively simple to implement, and can work well
on a wide variety of problems. Most neural networks are sufficiently large and complicated
that second-order methods (which require the explicit computation of second-order deriva-
tives, called the Hessian) are not tractable. Even methods that estimate the second-order
derivatives—such as L-BFGS (Liu & Nocedal, 1989)—cannot deal with the size of modern
neural networks, since the number of elements in the Hessian equals the number possible
of pairs of parameters in the model. Hessian-free optimization (Martens, 2010) is able to
avoid this problem, and has been applied to neural networks, most commonly recurrent
neural networks for which the vanishing and exploding gradient problems (Section 3.3.2)
are particularly potent.

3.3.1 Extensions

Momentum (Polyak, 1964) is a simple addition to SGD updates; it is inspired and named
because of its similarity to physical inertial momentum. Given the current parameters θt
and their corresponding gradient on the current mini-batch ∇f(θt), standard SGD com-
putes the new parameters θt+1 as

θt+1 = θt − α∇f(θt) . (3.6)
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To compute the same update with momentum µ ∈ [0, 1], we introduce the intermediate
variable vt that accumulates a running total of past gradients:

vt+1 = µvt − α∇f(θt) (3.7)

θt+1 = θt + vt+1 . (3.8)

This is quite similar to a running estimate of the first moment (i.e., mean) of the gradient,
and has a similar effect to averaging: it smooths over high-frequency fluctuations in the
gradient due to the imprecise nature of computing it on a small set of samples, and focuses
movement to address the persistent, low-frequency errors. Another way to view this is if
you have a long narrow valley in the cost function parameter space, momentum helps to
reduce the movement side-to-side across the valley (the high-frequency errors) and focuses
movement down the valley (the low-frequency errors). This can help the optimization
to move more quickly through flat regions in the optimization space (i.e., saddle-points),
which are quite prevalent in the high-dimensional optimization problems faced by ANNs
(Dauphin et al., 2014).

Nesterov momentum (Sutskever, Martens, Dahl, & Hinton, 2013) is an important vari-
ant. Rather than computing the gradient on the parameters, and using this to update
vt which then updates the parameters, Nesterov momentum applies the momentum up-
date to the parameters first, such that the gradient is computed on the parameters with
momentum:

vt+1 = µvt − α∇f(θt + µvt) (3.9)

θt+1 = θt + vt+1 . (3.10)

This results in a more accurate gradient estimate, since it is computed at the location (in
parameter space) where we apply it.

There are a number of other extensions to SGD, many of which are concerned with
automatically adjusting learning rates for individual parameters. To do this, these meth-
ods divide by some measure of the average gradient magnitude over time (e.g., a running
average of the RMS value or the second moment). This helps improve convergence when
parameters are on different scales (for example, if different layers have different magni-
tude weights), as well as other situations when derivatives for different parameters have
consistently different magnitudes. Ruder (2016) provides a good overview of the most com-
mon methods, and compares their performance on a few demonstration problems. Adam
(Kingma & Ba, 2015) is one of the best-performing. It keeps running estimates of both
the first moment of the gradient (just as momentum does) and the second moment (which
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is a measure of the gradient magnitude for each parameter). Parameter updates are pro-
portional to the first moment divided by the square root of the second moment. Nadam
(Dozat, 2016) adapts Adam to use Nesterov momentum instead of classical momentum.

3.3.2 Gradients and initialization

Two common problems faced during ANN optimization are what are known as the vanish-
ing and exploding gradient problems. These problems become more prevalent as networks
get deeper (or recurrent, since recurrent networks are often optimized like deep networks
with tied parameters between layers). The vanishing gradient problem occurs when the
magnitude of the gradient becomes near zero, and the optimization becomes very slow.
This indicates a saddle-point in the parameter space, a prevalent problem when optimizing
ANNs (Dauphin et al., 2014). If the gradient of one layer prematurely approaches zero, for
example if almost all neurons in a layer have become silent, then the gradients for other
layers will quickly approach zero as well, because the cost can only be reduced so much
when one layer is not functioning.

The exploding gradient problem occurs when gradients quickly become too large. This
is typically caused by instability in the SGD algorithm when the learning rate is too large.
Once the algorithm becomes even slightly unstable, it is difficult for it to regain stability.
For example, a high learning rate can make the algorithm step well past the minimum
in the gradient direction to an area of higher cost; this higher cost results in the next
gradient—and thus the next step—being too large, resulting in an even higher cost, and
the algorithm spirals out of control.

The vanishing and exploding gradient problems can stem from the initialization of the
network. Layers with parameters that are too large or too small can cause problems (espe-
cially with sigmoid nonlinearities, since these have zero derivative for both large negative
and positive values). A number of initialization schemes have been developed to help
counteract these problems. The idea behind these methods is that the variance informa-
tion passing both forwards (activations) and backwards (derivatives) through the network
should remain the same. Glorot and Bengio (2010) and He, Zhang, Ren, and Sun (2015)
both present formulae for choosing initial Gaussian weight magnitudes, based on the as-
sumptions that neurons have linear or rectified-linear activation functions, respectively.
Mishkin and Matas (2016) proposes a more general method that iteratively adjusts ini-
tial weight magnitudes based on a sample of the training data; this method can work for
networks with arbitrary nonlinearities, as well as networks that include max-pooling and
contrast normalization layers, among others.
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3.4 Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs) have become the mainstay of neural networks for
object recognition. Unlike many other types of networks, CNNs have shown that they are
able to scale to large datasets containing many images with many pixels each. This is be-
cause CNNs use a convolution operation, which greatly reduces the number of parameters
used by the model. Fewer parameters means less training time and fewer labelled exam-
ples are needed to adjust the parameters, making much larger datasets tractable. This
idea takes inspiration from neuroscience: primary visual cortex (V1) neurons have similar
tunings (filters) that are repeated across the whole visual space. In this section, I describe
the main components of CNNs.

3.4.1 Convolution operation

The basic idea of convolution is used heavily in engineering, particularly signal processing,
where a filter (specifically its impulse response) is convolved with a signal to produce a
filtered version of the signal. In the case of CNNs for object recognition in static images,
convolution almost always refers to a 2-D convolution across the x- and y-dimensions of
the image.8 In basic image processing, an example of a convolution would be convolving
a 2-D Gaussian kernel with an image, to produce a smoothed version of the image. Edge
detection can be performed by convolving an edge detecting filter (e.g., the Sobel operator)
with an image.

The 2-D image convolution operation describes how a set (a.k.a. bank) of filters (a.k.a.
kernels) acts on a multi-channel image, to produce another multi-channel image. The term
“image” is used loosely, here, since the number of channels nc may be large (greater than
three), and thus the image may not be visualizable in a normal way. Each filter has the
same number of channels nc as the input image, and convolving it with the input image
produces one channel of the output image. Thus, the number of channels in the output
image is the same as the number of filters nf .

Let X(i, j, c) be an image where i ∈ [0, ni) and j ∈ [0, nj) index the vertical and hori-
zontal positions, respectively, and c ∈ [0, nc) indexes the channel (all indices are integers).
We filter the image using a filter bank F (p, q, c, k), where u ∈ [0, si) and v ∈ [0, sj) index
the vertical and horizontal positions in the filter, respectively, c again indexes the channel,

8CNNs for processing video sometimes use 3-D convolutions, with the third dimension as time. CNNs
for processing time signals (e.g., auditory waveforms) can use 1-D filters. We will only treat the 2-D case
here.

43



and k ∈ [0, nf ) indexes the filter itself. Therefore, we have a bank of nf filters, where each
filter is si × sj pixels with nc channels. The convolution is given by

Y (i, j, k) =

si∑
u=0

sj∑
v=0

nc∑
c=0

X(i+ u, j + v, c)F (si − u− 1, sj − v − 1, c, k). (3.11)

For some i+ u and j + v, these indices will be outside the domain of the image, in which
case the value of the image is assumed to be zero. Note that the indices for the filter are
“flipped” versions of the indices u and v. This is because convolution flips the filter before
applying it (cf. correlation, which is the same operation but without a flip). That said,
some deep learning libraries do not implement the flip, because this aspect of convolution
typically has no effect on learning algorithms.

For more explicit control over the application of the filters to the image, many deep
learning libraries implement strides and padding. The stride of a convolution refers to
the spacing at which the filter is applied. For example, a stride of three means the filter
is applied every third pixel (instead of every pixel as in Equation 3.11). The padding of
a convolution describes how many rows and columns of zeros are added to the outside
of the image before applying the filter. (Often, these zeros are not explicitly added, but
rather dealt with implicitly.) Let qi and qj denote the strides in the vertical and horizontal
directions, respectively, and pi and pj denote the padding along either side, again in the
vertical and horizontal directions, respectively. The strided, padded convolution is given
by

Y (i, j, k) =

si∑
u=0

sj∑
v=0

nc∑
c=0

X(qii+ u− pi, qjj + v − pj, c)F (si − u− 1, sj − v − 1, c, k) .

(3.12)

Again, the image X is assumed to be zero for any indices outside its domain. This provides
the implicit padding. We also need to address the allowable range of values for i and j.
Often, for padded convolutions, only i and j such that the filter falls entirely in the padded
image are used. This is referred to as a “valid” convolution.9 For Equation 3.12 to be a
valid convolution vertically, we need qi(mi − 1)− pi + si ≤ ni + pi where mi is the height
of the output image (i.e., i ∈ [0,mi)). Solving for mi we find that

mi = 1 +

⌊
ni + 2pi − si

qi

⌋
(3.13)

9When not using padding, the term “valid” refers to convolutions in which all filter positions fall entirely
in the image proper.
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where b·c is the floor operation (i.e., round down to the nearest integer). Substituting the
index j for i will give a similar formula for the horizontal direction. One downside to this
formulation is that depending on the strides and padding used, some pixels in the input
image may not be used in computing the output image. To remedy this, some libraries
(e.g., cuda-convnet2) take the ceiling d·e instead of the floor, ensuring that all input pixels
are used. If the stride divides evenly into the image size plus padding minus filter size,
then no rounding is required and both methods are the same.

3.4.2 Convolutional layer

The core element of CNNs is the convolutional layer. A convolutional layer performs a lin-
ear convolution operation (Equation 3.12). It is typically followed by a neural nonlinearity.
Compared to a fully connected layer, a convolutional layer has two main differences: 1)
the connectivity is local; and 2) the weights are shared between units.

Local connectivity means that each unit only connects to a subset of the input units in
a particular region of the input. This region is called the receptive field (RF), in analogy
to the concept in neuroscience. With CNNs, this is almost always a rectangular region,
and most often a square region. For example, one output unit may take input from a 9×9
region of the input image in the top left corner, and another from a similarly sized region in
the bottom right. One advantage of local filters are that they greatly reduce the number of
parameters in the model. If we assume a realistic image size such as 256× 256, even using
a relatively large RF size of 32 × 32 yields ∼ 1.5% the parameters of a fully connected
model, and using 11 × 11 RFs yields less than 0.2% as many parameters. This helps
reduce overfitting. An additional advantage is that since output units are receiving input
from different parts of the image, their activities are less correlated. Typically, correlation
between units is undesirable, since it reduces the amount of unique information contained
in each signal.

Shared weights means that each unit applies the same weights to its designated RF.
As described in Section 3.4.1, this can be thought of as taking a filter and passing it
across the image, evaluating the response at each filter position. For this weight sharing to
work, all output units must have RFs that are the same size. Furthermore, it is common
practice to have the RFs of output units be spaced at regular intervals (called the stride, see
Section 3.4.1). While this regularity is not strictly necessary, it makes the implementation
easier. The advantage of shared weights is that it further reduces the number of parameters.
It allows the same parameters to be tuned using all parts of the image simultaneously, thus
expediting the learning process. It is also an example of a brain-inspired architecture, since

45



the tuning of neurons in early visual cortex (V1) has been found to have similar statistics
across the visual field. It should be noted, however, that this does rely on the assumption
that image statistics are similar across the whole image. Otherwise, the same filter will
not be ideal for all areas of the image. Krizhevsky et al. (2012) found that the statistics
at the edges of the image are different than in the centre (due to the padding used for
convolution), and they used separate filters for dealing with the image edges.

3.4.3 Nonlinearities

The nonlinearity is essential to any deep network, since it provides the power to go beyond
the capabilities of a a linear perceptron and compute nonlinear functions of the inputs.

Typically, a layer of nonlinearities will always follow some form of weight layer (e.g.,
a convolutional layer or a fully connected layer). These layers rarely appear separately
for two reasons: First, having two weight layers without some nonlinearity in between is
redundant, since weight layers are linear, and two linear operations in a row cannot compute
any functions that a single linear operation cannot compute.10 In fact, chaining weight
layers without a nonlinearity in between can be problematic for the optimization, since it
overparametrizes the system (i.e., there are many combinations of parameters that produce
the same results). Second, each nonlinearity is preceded by a weight (parametrized) layer
because this gives the optimizer control over how that layer is used. Having two nonlinearity
layers separated by a non-parametrized layer (e.g., a pooling layer) would force the system
to use that combination of three layers without having any control over what (complex)
function they are computing. Having nonlinearity layers always preceded by weight layers
gives the system much more flexibility.

In a nonlinearity layer, the nonlinearity is almost always element-wise: it is defined by
a function with scalar input and output (the nonlinearity), which is applied independently
to each element of the input image. The question, then, is what nonlinearity to use.

Classical neural networks often used sigmoid nonlinearities. These nonlinearities, most
commonly either the hyperbolic tangent or logistic sigmoid function, have an “S” shape.
They were often deemed desirable because they are what are called compressive nonlin-
earities: their domain is the whole set of reals, and they compress this space into values
in a limited range (typically either (−1, 1) or (0, 1)). They are also easily differentiable,
making them suitable for use with algorithms like backpropagation, and vaguely resemble
the rate response functions of cortical neurons.

10This is not strictly true for a CNN, since convolutional layers have limited receptive fields, thus chaining
them increases the effective receptive field.
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Currently, most CNNs use rectified linear units (ReLUs), given by f(x) = max(x, 0)
(Nair & Hinton, 2010). These units output zero for all inputs below zero, and are linear
(specifically, the identity function) for all inputs above zero. This function is desirable
because of its derivative, which is the step (a.k.a. Heaviside) function (zero for inputs below
zero, one for inputs above zero). The advantage of this derivative is that it maintains the
magnitude of the derivative from previous layers for all units that are active. This helps
avoid both the vanishing and exploding gradient problems. Another way to think of this
is we have a linear optimization problem among the units that are active, and ignore the
units that are inactive. Since linear optimization problems are typically better behaved
than nonlinear ones, this makes the optimization easier.

These benefits also relate to the fact that ReLUs are scale-invariant:

f(αx) = αf(x)

max(αx, 0) = αmax(x, 0) , (3.14)

where α is a scalar. This means that scaling the input weights of a ReLU layer by a
constant scales the outputs of the layer by that same constant, which makes ReLU layers
much easier to initialize. With sigmoid layers, if the input weights are too large or too
small, all outputs will be near one or zero respectively, which in both cases lead to a
derivative of zero and loss of information through the network. With ReLUs, on the other
hand, the relative spacing between inputs is preserved for inputs above zero.

The maxout nonlinearity was introduced by Goodfellow, Warde-Farley, Mirza, Courville,
and Bengio (2013) as a natural companion to the dropout regularization technique (Sec-
tion 3.4.6). As discussed above, nonlinearities typically follow weight layers. The previous
nonlinearities presented here can each be thought of as having a weight vector that is
multiplied by the inputs to produce a scalar value, which is then passed through the non-
linearity to produce the output (when we discuss a whole layer, then we have a weight
matrix, which is the collection of the vectors for the individual hidden units). With the
maxout nonlinearity, each hidden unit has multiple vectors (a matrix), which when multi-
plied by the inputs generates a vector input to the nonlinearity. The maxout nonlinearity
then returns the maximum element of this vector.11 The resulting effect is that the maxout
nonlinearity can implement a wide range of simpler nonlinearities (including ReLU, abso-
lute value, and quadratic) depending on the input weights. This gives maxout networks
choice over what nonlinearities to use, and where. For unregularized networks, this could

11This procedure is equivalent to using cross-channel max-pooling across a number of ReLU units, but
without including zero in the max. Goodfellow et al. (2013) finds that this is a significant difference, and
that including zero is detrimental to performance compared to maxout.
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easily provide too much power, and result in overfitting and poor generalization. When
combined with dropout, maxout works quite well, performing better than standard (ReLU
and tanh) nonlinearities, particularly for deeper networks.

3.4.4 Pooling layer

Pooling layers combine information across space in a convolutional network. They take an
input image, and output an image with a reduced width and height, but leave the number
of channels unchanged. Pooling across channels (feature maps) is also possible, but is not
common, and is not addressed here.

The motivation behind pooling is to add translation invariance to networks. Inspiration
comes from simple and complex cells in the brain. When shown a sinusoidal grating,
simple cells are sensitive to the phase of the grating, whereas complex cells are not. Thus,
complex cells are invariant to translations of the grating. Since CNNs learn features that are
computed at various translations across the image, they provide an opportunity for building
in translation invariance that is not available with fully or locally connected networks. By
pooling across the output of the same feature, at adjacent locations, the output of the
pooling layer should be (somewhat) invariant to translations of that feature.

For a general pooling layer, each output value is a function on some neighbourhood
of points in the input image. That is, we can think of each output pixel as having a
target point in the input image, and the output value is a function on all points close to
that target point, called the pooling region. To retain all data, the pooling regions should
completely cover the input image space. There are two common types of pooling: non-
overlapping pooling, in which pooling regions tile the input space, but no two overlap; and
overlapping pooling, where adjacent pooling regions overlap. As with the receptive fields
in a convolutional layer, we can fully define the size and spacing of pooling regions with
size s and stride q hyperparameters, in both directions. For non-overlapping pooling, size
s = 2 and stride q = 2 is by far the most common configuration. For overlapping pooling,
size s = 3 and stride q = 2 is typical. Larger pooling regions are theoretically possible, but
in practice they are rarely used, because they result in more information being lost and
thus poorer performance.

The most common pooling operation is max-pooling. It computes the maximum value
across the pooling region for each output pixel:

Y (i, j, c) =
si,sj
max
u,v=0

X(iqi + u, jqj + v, c) (3.15)
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where si and sj are the height and width of the pooling region, and qi and qj are the
strides in the vertical and horizontal directions, respectively. This provides good translation
invariance because if a feature has maximum value at a particular point in the image, then
shifting the image such that that maximum remains in the same pooling region will result
in the same output value for that pooling region.

To use a max-pooling layer in a network trained by a gradient-based method, we must
be able to compute the gradient of the inputs with respect to the cost. If X(u, v, c) is in
the pooling region of Y (i, j, c), then:

dC

dX(u, v, c)
=

{
dC

dY (i,j,c)
if X(u, v, c) == Y (i, j, c)

0 otherwise
. (3.16)

That is, if X(u, v, c) is the maximum value in its pooling region, then its gradient is one
times the gradient of its output (i.e., the gradient passes through), otherwise the gradient
is zero. This makes sense, since if X(u, v, c) is the maximum value in its pooling region,
then only changes to it will change the output value (unless of course it changes enough
that it is no longer the maximum value). When we have overlapping pooling, such that
X(u, v, c) falls in multiple pooling regions, then its gradient is the sum of the gradients
computed for each constituent pooling region.

An alternative pooling operation is average-pooling. It computes the average value
across the pooling region for each output pixel:

Y (i, j, c) =
1

sisj

si∑
u=0

sj∑
v=0

X(qii+ u, qjj + v, c) (3.17)

where again si and sj are the height and width of the pooling region, and qi and qj are
the strides in the vertical and horizontal directions, respectively. Computing the gradient
straightforward, since it is a linear operator: the gradient dC/dX(u, v, c) is simply the
sum of all gradients dC/dY (i, j, c) for which X(u, v, c) is in the pooling region of Y (i, j, c),
scaled by 1/(sisj). This pooling method was used in many earlier CNNs (e.g., LeCun
et al., 1998). In standard CNNs, it has largely been replaced by max-pooling, which seems
to perform better for most image recognition tasks. It is still commonly used in spiking
neural networks (e.g., Diehl et al., 2015), because it is much easier to implement in spiking
neurons.
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3.4.5 Local response normalization layer

CNNs often include some sort of local response normalization, referring to normalizing
the output of a layer in a local (rather than global) manner. The core idea is that for
each pixel in the layer, we compute a normalization factor based on the responses of
nearby (local) pixels, and use this factor to normalize that pixel. Nearby pixels are usually
defined as either being of the same channel and nearby spatially, or from the same spatial
location but from different feature channels, or both. There are also two methods of
applying the normalization factor: either by subtracting it from the input value (subtractive
normalization), or by dividing the input value by it (divisive normalization).

Jarrett and Kavukcuoglu (2009) helped popularize the idea of local response normal-
ization. They used a combination of subtractive normalization and divisive normalization
across both space and feature maps:

X ′(i, j, c) = X(i, j, c)−
∑
pqr

wpqX(p, q, r) (3.18)

σij =

(∑
pqr

wpqX
′(p, q, r)2

)1/2

(3.19)

Y (i, j, c) = X ′(i, j, c)/max (c, σij) (3.20)

where c is the mean σij across all images and locations. What makes this computation local
is that wpq is a Gaussian weighting function centred around (i, j) for the output pixel being
computed. Therefore, both the subtractive and divisive normalization only normalize over
local regions. They termed this method “local contrast normalization”.

Krizhevsky et al. (2012) used only a divisive normalization across the N feature maps
of the layer:

Y (i, j, c) = X(i, j, c)/

γ + α

minN−1,c+s/2∑
k=max(0,c−s/2)

X(i, j, k)2

β

(3.21)

At pixel (i, j), feature map c is normalized by the values of adjacent feature maps, within
a window of width s. Rather than using a standard Euclidean norm, Equation 3.21 uses
a more general norm. They chose the hyperparameters using cross-validation: n = 5,
γ = 2, α = 10−4, and β = 0.75. In their code, they refer to this as cross-map response
normalization.
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3.4.6 Dropout layer

Dropout (Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012) is a regular-
ization technique designed to prevent overfitting in ANNs. By randomly silencing some
percentage (e.g., 50%) of neurons in a layer for each stimulus presentation, one can prevent
networks from learning correlated features that are only useful together, and instead learn
features that independently contribute to the classification (Hinton et al., 2012). These
simpler independent features are less likely to fit spurious correlations in the data than
complex co-dependent combinations of features, thus reducing the chances of overfitting.
When the trained network is run on testing images, all hidden neurons are used (no silenc-
ing), with their activities scaled such that the collective output of the hidden neurons is
the same magnitude as during training.

Theoretically, dropout approximates averaging over many simpler models, each of which
share model parameters (Baldi & Sadowski, 2013; Warde-Farley, Goodfellow, Courville, &
Bengio, 2013). Averaging across many separately-trained models has yielded some of the
best results on datasets like MNIST (e.g., Cireşan, Meier, & Schmidhuber, 2012). Being
able to harness some of this generalization ability without the need to explicitly train many
networks (which is time consuming for both training and testing) makes dropout a powerful
technique. Additionally, when looking at dropout in the context of averaging many simple
models, dropout shares weights between these theoretical models, while traditional multi-
model techniques do not. Warde-Farley et al. (2013) find that this gives dropout an
advantage over traditional methods, specifically bagging.

Dropout has become a very common tool for regularizing deep networks. The fact that
it can be applied to many architectures— including convolutional, locally connected and
fully connected layers—makes it a straightforward addition to most networks. The origi-
nal dropout paper by Hinton et al. (2012) reports significant gains across many different
datasets. Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014) demon-
strate that convolutional layers also benefit from dropout, which they speculate is because
it provides noisy inputs to subsequent layers thus preventing them from overfitting.
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Chapter 4

Fixed-Encoding Networks

The first type of deep network I examine in this thesis is what I call fixed-encoding networks.
These networks are so-named because all weights going into hidden units—that is, all the
weights that define the network’s encoding of the input—are fixed. The only weights that
are learned are the decoding weights, that is the weights that map from the final layer to
the output units.

Specifically, I focus on single-layer feedforward networks (SLFNs) with a linear →
nonlinear→ linear structure. That is, these networks have a multilayer perceptron (MLP)
structure, with a linear input layer, a single nonlinear hidden layer, and a linear output
layer. Unlike most ANNs, however, they have the additional qualification that the weights
from the input layer to the hidden layer—which I call the encoders—are fixed. Only the
weights from the hidden layer to the output—the decoders—are learned. This specific type
of network has often gone by the name “flat network” (Pao & Takefuji, 1992; Chen & Wan,
1999).

This specific type of network is of interest to me because it is at the core of the Neural
Engineering Framework (NEF) (Eliasmith & Anderson, 2003). The NEF describes how
such single-layer networks can be combined to create very large multilayer networks of
spiking neurons. This chapter expands on two aspects of these networks that have not
been well covered by Eliasmith and Anderson (2003) or subsequent works with the NEF:
how the choice of encoders and the methods used to find decoders affect the performance
of the network, as applied to object classification.
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4.1 Background

According to Wang and Wan (2008), the idea of a fixed (nonlinear) encoding began with
Broomhead and Lowe (1988). They used a radial basis function network with fixed centres
to provide novel methods for solving the XOR problem. They found that when the encoding
is fixed, there is a linear solution for the decoders. This is a linear least-squares regression
over a fixed set of basis vectors. The existence of such a linear solution when using a
squared error metric makes the problem easier to solve than those that require nonlinear
methods, since fast linear-algebra methods apply. The simplicity of the solution is one of
the main features that has continued to attract researchers to fixed-encoding networks.

Pao (1989) proposed a multilayer perceptron (MLP) network with fixed encoding
weights, which is the first network to fit the description of fixed-encoding SLFN (as de-
scribed above). (See Wang and Wan (2008) for a summary of the many follow-up works.)
Pao and Takefuji (1992) present an iterative solution for the least-squares problem, likely
since this was more efficient on computers of that era. Schmidt, Kraaijveld, and Duin
(1992) proposed the type of random network around the same time, but showing the di-
rect solution method.

More recently, fixed-encoding networks have again become popular. The Neural En-
gineering Framework (NEF) (Eliasmith & Anderson, 1999, 2003) approaches the problem
from a computational-neuroscience perspective, and uses layers of fixed-encoding networks
to construct biologically-plausible brain models with spiking neurons. The Extreme Learn-
ing Machine (ELM) (Huang, Zhu, & Siew, 2006) community, on the other hand, takes a
machine learning approach. Both methods use the same fundamental network structure
and mathematics to solve the problem. The applications tend to be quite different, with
the NEF targeting dynamic systems performing behavioural tasks (e.g., Eliasmith et al.,
2012), while the ELM community has focused more on machine learning datasets, namely
MNIST (e.g., McDonnell, Tissera, Vladusich, Van Schaik, & Tapson, 2015).

4.1.1 The Neural Engineering Framework

The Neural Engineering Framework (NEF) (Eliasmith & Anderson, 1999, 2003) has used
fixed-encoding networks as a basis for constructing large biologically-plausible spiking brain
models (e.g., Eliasmith et al., 2012). (See Section 2.5 for a more detailed description.) The
key idea behind the NEF is that the combination of a fixed nonlinear encoding and linear
decoding can be used to represent states, compute functions (transformations) on these
states, and implement dynamical systems.
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One of the strengths of the NEF is that it describes in detail how a neural system could
implement such networks. First of all, fixed-encoding SLFNs are often chained together,
to create networks with multiple hidden layers. Since the input and output “neurons” of
SLFNs are linear, when chaining them, the decoding weights from the presynaptic layer and
encoding weights from the postsynaptic layer can be combined, to define direct connection
weights between the two layers. Specifically, the connection weight Wij from presynaptic
neuron i (in the first hidden layer) to postsynaptic neuron j (in the second hidden layer)
is given by

Wij =
d∑
k

ΩikEkj (4.1)

where Ω is the matrix of decoding weights for the first layer, E is the matrix of encoding
weights for the second layer, and d is the “dimensionality” of the connection. This allows
deep networks to be built from many shallow networks, with each subsequent layer building
on the computation done by the previous layers. A layer can even be recurrently connected
to itself in this manner.

Another strength of the NEF is that it typically uses more biologically plausible neuron
models than machine learning applications, the most common being the spiking LIF model.
It demonstrates how networks can be trained with rate neurons, but run in spiking neurons,
and also describes how regularization can improve spiking network performance.

One limitation of the current literature surrounding the NEF is that classification tasks
have not been well examined. Some NEF models (e.g., Eliasmith et al., 2012) have used
classification components as part of the system, but these have been trained separately
using deep learning methods (Tang, 2010). One goal of this chapter is to allow classification
functions to be computed in a similar manner to regression functions in the NEF.

4.1.2 Extreme Learning Machines

Extreme Learning Machines (ELMs) (Huang et al., 2006) are another framework that
use fixed-encoding with SLFNs. The methods and ideas they use are not novel, having
been previously developed by Broomhead and Lowe (1988), Pao and Takefuji (1992), and
Eliasmith and Anderson (1999). This habit of presenting old wine in new wineskins, so to
speak, has made the ELM authors increasingly controversial, as more recent publications
of theirs still fail to acknowledge the many papers that come before (e.g., Huang, Zhou,
Ding, & Zhang, 2012). Nevertheless, they have brought about an increased awareness
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of some of the capabilities of fixed-encoding networks, unfortunately under a new name
without citing the original sources, leading to considerable consternation and confusion
among other researchers (Wang & Wan, 2008). Here, I focus on the unique contributions
from this body of work.

One interesting direction taken by some of the ELM-related literature is basing the
fixed encoding weights on the data, rather than simply choosing them randomly.1 Tapson,
Chazal, and Van Schaik (2015) pioneered a method called computed input weights. In this
method, each hidden neuron targets a particular class: Given all data points from that
class, the encoding weights for the hidden neuron are given by those data points times a
random sign vector where each element equals +1 or −1. This makes each hidden unit
excited by some subset of examples from the target class, and inhibited by other examples
from that class. By having hidden units targeting each of the different classes in the dataset,
the representation of the dataset by the hidden units is ideally more easily separable by
class.

Zhu, Miao, and Qing (2015) proposed an alternative method for generating encoding
weights based on the dataset. Their method takes pairs of examples from the dataset,
where the examples in the pair come from different classes. By making the input weights
for each hidden neuron equal to the difference of one of these pairs, each hidden neuron
(ideally) becomes excited by one class (or a subset of examples in that class) and inhibited
by another class. The idea is that this will push the population of hidden neurons to dis-
tinguishing between all pairs of classes. They call this method the Constrained Difference
(CD) method.

McDonnell et al. (2015) surveys the CIW and CD techniques for encoder generation,
as well as a few others, and evaluates them on the MNIST dataset, setting records on this
dataset for SLFNs with fixed encoders.

The ELM literature has focused much less on how to choose the decoding weights, that
is, the output weights that map from the hidden neurons to the output categories. One
notable exception is Toh (2008), who proposes a weighted least-squares method. Despite
clear advantages of this method, it has not yet been adopted by most researchers in the
ELM field, who continue to use the traditional least-squares ELM approach.

More recently, there has been interest in using fixed-encoding methods to create deeper
networks with multiple hidden layers. McDonnell and Vladusich (2015) passed images
through a set of convolutional filters, pooled the output, and then ran the result through

1While data-driven encoding weights are new to the ELM community, it is common practice with other
types of fixed-encoding networks, for example the radial basis function (RBF) network.
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a SLFN with random encoders. The convolutional filters were chosen either as corner and
edge filters, as features from the initial layer of a deep network trained on ImageNet, or
as patches from the centres of the training images. Using this method, they are able to
achieve very strong results on the MNIST dataset (0.37% error), and reasonable results on
SVHN (3.96% error) and CIFAR-10 (24.14% error), all without data augmentation.

4.2 Encoding methods

The choice of encoding method has a large influence on the accuracy of fixed-encoding
methods. The optimal encoding method will map the input images to a space where they
are easily linearly separable.

While there are a wide variety of encoding methods available, here I focus on methods
that pass a linear transform of inputs through an elementwise nonlinearity. This is the type
of architecture most frequently encountered for a single layer in an ANN: each hidden unit
takes a weighted sum of the inputs, then passes this through a static nonlinearity. One
reason for the popularity of this type of architecture is that it seems to map well onto how
the brain is organized, where the dendrites sum inputs into the soma, which then performs
a nonlinear computation.

I also adopt the common assumption that each hidden unit has the same nonlinearity.
This assumption embodies the idea that each neuron works more-or-less the same, except
with different inputs. The response (firing rate) of the hidden units is therefore given by

hi = f

(∑
j

Eijxj + bi

)
(4.2)

Here, E is the matrix of input weights, which I call encoders, and b is a vector of offsets
(one per hidden unit), which I call biases. The function f(·) can be any static nonlinearity;
however, since I wish to run these networks in spiking neurons, I use the LIF response
function (Equation 2.7).

The parameters that define the encoding are E and b, the encoders and biases. The
choice of encoders can theoretically range from completely random to completely data-
driven. In practice, there is typically some random component to encoder selection, even
for methods that are predominantly data-driven. The following sections outline a number
of possible methods.
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4.2.1 Independent-element random encoders

The most general option for encoder selection is to pick encoders from a random distribution
that is independent for each input element; that is, there are no correlations between
individual elements of an encoder. This encoder distribution is ideal if the input (images)
are also randomly distributed with no correlation between elements (pixels); of course,
with real images, this is never the case.

The NEF typically uses this method, choosing encoders from a Gaussian distribution
and normalizing them, such that they uniformly cover the surface of a hypersphere. ELMs
have often used this method as well, picking encoders from a uniform distribution (Huang
et al., 2012).

4.2.2 Receptive fields

One difficulty with independent random encoders is that they are global. That is, each
encoder is sensitive to all regions of the image. In natural images, pixel-to-pixel correlations
decrease as the pixels become farther from one another. Therefore, global encoders are not
necessary to capture the important statistics in images.

In fact, having global encoders is detrimental to the encoding process for images. This
is because when all encoders are global, changing one region of the image will be picked
up by all encoders, potentially resulting in a very significant change on the hidden-layer
representation. This sensitivity means that two similar looking images can have potentially
quite different encodings, and that individual hidden units are not independent.

A straightforward way to correct this is to give each hidden unit a limited, local receptive
field. This idea is inspired by the brain, where neurons in primary visual cortex are only
sensitive to parts of the visual field.

This idea can be combined with other encoder-generating methods, to create local
rather than global encoders. When combined with the independent random encoder
method, this amounts to generating a mask, where each hidden unit is only allowed non-
zero weights for a si × sj region of the image. The centres of the receptive fields for each
hidden unit are chosen randomly.

4.2.3 Gabor filters

Gabor filters are linear filters typically used for detecting edges in images. Each two-
dimensional filter has an orientation, frequency, and phase. They are often used as a basic
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model of processing in early primate visual cortex.

Mathematically, a Gabor filter is defined by a Gaussian envelope multiplied by a si-
nusoidal grating. That is, it is a grating with a limited spatial field. Gabor filters are
often created in pairs, where one pair uses a sine grating and the other a cosine, such that
they are 90◦ out of phase with each other. A Gabor pair can be defined with a complex
exponential:

G = exp

[
−1

2

((
u

σu

)2

+

(
v

σv

)2
)

+ (2πfu+ p) i

]
(4.3)

where <(G) is the cosine filter in the pair and =(G) is the sine filter. The variables
u = x cos θ + y sin θ and v = −x sin θ + y cos θ represent the longitudinal and transverse
axes of the wave, respectively, where x ∈ (−1, 1) and y ∈ (−1, 1) are the horizontal and
vertical coordinates of the receptive field space. The parameter θ is the orientation of the
filter, f is its frequency, p is its phase, and σu and σv are the extents of the filter in the
longitudinal and transverse directions. Equation 4.3 is composed of two parts: The first
part is an exponential with purely real exponent, and the second part is an exponential
with purely imaginary exponent. Thus, the first factor modulates the amplitude of the
filter spatially, and the second modulates the phase.

Figure 4.1 shows a collection of Gabor filters. Note that the filters vary in frequency
and orientation, such that each one is suited for detecting edges of a particular width at a
particular orientation.

Gabor filters can be combined with receptive fields, such that each filter targets a local
region of the image. In fact, this is necessary with Gabor filters, since edges are local
features, and Gabor filters that cover the whole image will be poorly suited to detecting
them. It is important to note that the RFs in this case should not be thought of as a
mask, however; that is, I do not generate full-field Gabor filters, then use a RF mask to
make them local. Rather, I generate Gabor filters of the desired RF size, and centre each
of these on random points in the image. Note that the parameters for the Gabor filters
are in terms of the coordinates x and y, which are on the interval (−1, 1) independent of
the size of the receptive field. Changing the receptive field for the Gabor filter encoders
will scale all filters, thus changing the statistics relative to the image size.

4.2.4 Computed Input Weights (CIW)

Computed Input Weights (CIW) is a technique developed by Tapson et al. (2015) for
generating the input weights (encoders) for a SLFN. Unlike the previous methods presented
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Figure 4.1: A collection of Gabor filters. Filters vary in frequency, orientation, and
phase. log f ∈ U(log 0.5, log 1.5), θ ∈ U(−π, π), p ∈ U(−π, π), σu = 0.45, σv = 0.45.
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here, which are independent of the training data (aside from hyperparameters which can be
tuned to the data), this method generates encoders based directly on the training dataset.
Each encoder is chosen as a weighted sum of all the examples belonging to a particular
class, where weights are randomly chosen from the set of {+1,−1}. Thus, each encoder
targets a particular class, but is sensitive only to some examples in that class, and inversely
sensitive to others. Encoders are chosen to target all the classes in the dataset. Since the
weights on the in-class examples are randomly chosen, this technique has elements of both
random and data-driven encoder generation.

Given X, an M ×D matrix of training examples, where each example belongs to one
of nc classes c ∈ C, perform the following steps to generate the N ×D encoder matrix E:

1. For generating the encoders, use a normalized version of the training data with the
mean over all examples and dimensions subtracted out, and divided by the standard
deviation over all examples and dimensions.

2. For each class in the dataset, generate Nc = N/nc encoders, using the following
procedure:

(a) Select Xc, an Mc ×D matrix of the set of examples that belong to the current
class c.

(b) Generate a Mc ×Nc random matrix Rc where each element is either +1 or −1
with equal probability.

(c) Generate the encoders for the class as Ec = RT
c Xc. The full set of encoders E is

the concatenation of Ec for all classes c ∈ C.

3. Normalize the encoders E by dividing by each row (each encoder) by its L2 (Eu-
clidean) norm.

4.2.5 Constrained Difference weights (CD)

The Constrained Difference (CD) algorithm (Zhu et al., 2015) is another recent technique
for generating SLFN encoders using both data-driven and random elements. Each encoder
is formed as the difference between two training examples from different classes. Thus,
each encoder tries to separate between two classes.

Given X, an M ×D matrix of training examples, where each example belongs to one
of nc classes c ∈ C, perform the following steps N times to generate the N × D encoder
matrix E and bias vector b:
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1. Pick two different classes a, b ∈ C randomly.

2. Pick two random examples xa and xb, belonging to the classes a and b respectively.

3. Let the encoder weight w = 2(xa − xb)/‖xa − xb‖2, and bias b = (xa − xb)T (xa +
xb)/‖xa − xb‖2.

4.3 Decoding methods

Another key question with fixed-encoding methods is how to find decoding weights.

At the core of this question is the choice of loss function, which defines the objective that
we wish to minimize (see Section 3.1.6 for an overview of loss functions). For classification,
we ultimately wish to minimize the classification error, that is, the number of examples
incorrectly classified. However, the classification error is a discrete value, prohibiting us
from using it directly (Toh, 2008). For example, if we make a small change to our model, it
may not change how any example in our training set is classified, and thus the classification
error does not change. Yet, we need to know whether this change is an improvement or
not; it may move some incorrectly classified examples closer to being correctly classified,
and many changes in that same direction may lead to better classification error. The idea
behind loss functions for classification is to find a continuous value—the loss—which when
minimized will also minimize the classification error.

Many classification loss functions were originally formulated for binary classification,
where we have only two output classes. In object classification, there are typically many
different classes, since there are many types of objects in the world. Thus, we are interested
in loss functions for multiclass classification, where we have more than two classes.

I focus on loss functions that result in a linear classifier. Given an M × N matrix of
hidden node activations A (found by applying the encoders and neural nonlinearity to the
training data points), we wish to find an N × C matrix of decoding weights Ω that map
the hidden neuron activations to outputs Y:

Y = AΩ . (4.4)

yk represents one row of Y, that is, the output of the system for training example k; ωi
represents one column of Ω, that is, the decoders for one of the C output dimensions. In
training this classifier we use either the vector of labels l for the M training examples, or
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the equivalent one-hot representations T, an M × C matrix where

Tki =

{
1 if i = c(k)

0 otherwise
, (4.5)

c(k) is the correct class (label) for example k, and tk is one row of this matrix (i.e., the
one-hot encoding of example k).

My main reason for using a linear classifier is that it can be directly mapped onto neural
connection weights. Note that this does not mean we are limited to linear optimization
methods; two of the loss functions examined here (softmax loss and hinge loss) require
nonlinear optimization, yet result in a linear classifier. Also, when used as part of a larger
neural system, the classifier may connect directly into nonlinear components, such that the
entire system forms a type of nonlinear classifier. For example, the classifier may connect
into a system like the basal ganglia, which chooses the maximum output of the classifier
and routes information accordingly.

Loss functions have been explored extensively in machine learning (e.g., Rosasco, De
Vito, Caponnetto, Piana, & Verri, 2004), and it is known that squared loss is not optimal
for classification (Bishop, 2006, p. 186). Yet, these loss functions are typically not used
in the ELM literature (e.g., McDonnell et al., 2015). A notable exception is the work of
Toh (2008), who introduces weighted squared loss for ELMs. This section explores loss
functions in the context of SLFNs, to bring more awareness of the benefits of alternative
loss functions to researchers working with SLFNs and other fixed-encoding networks.

4.3.1 Squared loss

Squared loss, also known as the least-squares technique, is common for solving regression
problems. It minimizes the sum of squared errors between each predicted point and the
corresponding target point. In the multiclass case it uses a one-hot encoding of the target
class T as the target point.

The squared loss across all M examples is given by

Osquared =
M∑
k

‖yk − tk‖2
2 . (4.6)

This amounts to training a one-vs-all classifier for each class. We wish to find the linear
decoders Ω, a matrix mapping the N hidden neuron activities to the C categories. The
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solution to this problem, in matrix form, is

Ω = (ATA)−1ATT. (4.7)

This is found by taking the derivative of Equation 4.6 and setting it equal to zero to find
the stationary points. Because the objective function is quadratic, the single stationary
point is necessarily a minimum.

Squared loss is not ideal for classification, since it leads to slower convergence than soft-
max loss and hinge loss (Rosasco et al., 2004), and often results in sub-optimal classification
boundaries (Bishop, 2006, p. 187). Part of the reason for this is that it penalizes outliers
heavily, such that larger errors are much more costly than smaller ones (e.g., Bishop, 2006,
p. 186). For example, consider a classifier that has two outputs, corresponding to two
different classes. Say we have two examples that are both labeled as the first class: their
one-hot target vectors will both be y∗ = [1, 0]. If the classifier outputs y1 = [1, 0.9] for
the first example, it has correctly classified it by a margin of 0.1 (the difference between
the correct category output and the next highest output). The loss on this example is
‖y1− y∗‖2

2 = (0.9)2 = 0.81. Say for the other example (of the same category), the classifier
outputs y2 = [0.4, 0.6]. It has incorrectly classified this example by a margin of 0.2. The
loss on this example is ‖y1 − y∗‖2

2 = (−0.6)2 + (0.6)2 = 0.72. Therefore, the classifier
does better on the first example, but the loss is lower on the second example. This is the
opposite of what we want!

Another related problem becomes apparent as we move to more classes. This problem is
that the loss function over-penalizes when there are multiple competing classes. Consider
a classifier that has three outputs; again, we look at two examples from the first class,
thus with one-hot target vector y∗ = [1, 0, 0]. If the output for the first example is y1 =
[1, 0.8, 0.8], and for the second example is y2 = [0.8, 1, 0], the loss for the first example
is 2(0.8)2 = 1.28 and for the second example (−0.2)2 + (1)2 = 1.04. The first example
is correctly classified by a margin of 0.2, whereas the second is incorrectly classified by a
margin of 0.2, but the second example has the smaller loss. The difference between the
two examples is that the first has significant errors in two outputs (outputs two and three),
whereas the second only has a significant error in the second output. The loss function
penalizes the case where many classes have significant errors, even though this is often not
a problem as long as the correct class is beating all other classes by a significant margin.

These problems both occur because the classifier is treating each element of the target
vector as an independent regression variable. To achieve better results requires some sort
of dependence between the outputs for these regression variables.

63



4.3.2 Weighted squared loss

To address the problem that linear least squares over-penalizes multiple competing classes,
I investigated weighting errors on examples of the target class (positive examples) more
heavily than those of other classes (negative examples). If we view each output dimension
of the classifier as an independent one-vs-all classifier—which is how linear least squares
treats the problem—then it is intuitive that for each one-vs-all classifier, we want a balance
between positive and negative examples. Re-weighting the examples achieves this balance.

Toh (2008) came to a similar conclusion, from a more theoretical basis. They derived
the same weighted least squares solution by approximating the discontinuous classification
error as best possible with a quadratic function. Despite this significant result, many
modern SLFNs still use unweighted linear least squares (McDonnell et al., 2015).

Weighted least squares is a popular variant of least squares whereby different residuals
can be given different weights. If there is measurement uncertainty (error) associated
with each of the regression points, and this uncertainty varies between points and can
be quantified, weighted least squares allows one to account for this uncertainty (Fieguth,
2010).

Linear weighted least squares is defined by a similar objective function to ordinary
linear least squares (Equation 4.6), except with scalar weights wk on each error:

[Ow-squared]i =
M∑
k

wk(Yki − Tki)2. (4.8)

It is defined here for the one-dimensional case (i.e., for output dimension i), to allow
for separate weights for each dimension of the output, based on whether that dimension
represents the correct or incorrect class for each example (see below).

Taking the derivative and setting it equal to zero, as before, we find that:

Ω = (ATWA)−1ATWT ·i (4.9)

where W is a square diagonal matrix of the weights wk and T ·i is column i of T. This
system can be solved using the same solution as for unweighted least squares, including
SVD if the system is ill-conditioned, and Cholesky decomposition if it is well-conditioned.

We can weight examples based on their frequency, such that the (typically less frequent)
positive examples receive the same total weight as the negative examples:

n+w+ = n−w− (4.10)
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where n+ and n− are the numbers of positive and negative examples, and w+ and w− are
the weights on the positive and negative examples. We also wish the total weight to sum
to the number of examples:

n+w+ + n−w− = n+ + n− . (4.11)

This results in weights

w+ =
1

2p+
(4.12)

w− =
1

2(1− p+)
(4.13)

where p+ ≡ n+/(n+ + n−) is the fraction of positive examples. If both categories appear
equally frequently (i.e., p+ = 0.5), then w+ = w− = 1, and the method is equivalent to
unweighted least squares.

The key to this method is that this weighting is different for each one-vs-all classifier,
such that each one requires solving a different linear system. Specifically, in the case of
unweighted least squares, we can solve Ω = (ATA)−1ATT simultaneously for all columns
of T. With weighted least squares method we must solve

Ω·,i = (ATWiA)−1ATWkT·,i (4.14)

where Ω·,i and T·,i are the ith columns of Ω and T, and Wi is a unique set of weights for each
value of i. Luckily, structure in the weights allows us to solve these systems with the same
order of computation as solving the unweighted least squares system (see Appendix A).

4.3.3 Softmax loss

The softmax loss (also known as the logistic loss or cross-entropy loss) allows us to better
model the max function that our classifier output passes through when determining the
classification error. In the multiclass case, we pass the linear classifier output through
the softmax function, which normalizes the outputs relative to one another. The softmax
function is so named because it is a differentiable (“soft”) version of the max function.

The softmax loss is given by

Olog = −
M∑
k

[log(σ(yk))]c(k) (4.15)
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where c(k) is the label index of the kth example, and σ is the softmax function

σ(y) =
ey∑
i e
yi

. (4.16)

The derivative of the softmax loss function is surprisingly simple: It is simply the error
difference between the output of the softmax function and the target one-hot representa-
tion:

dOlog

dyk
= σ(yk)− tk (4.17)

dOlog

dΩ
= AT dOlog

dY
. (4.18)

Despite the simplicity of this derivative, it is still nonlinear, due to the softmax function.
Therefore, we have to solve using nonlinear optimization techniques. The L-BFGS method
(Liu & Nocedal, 1989) works quite well.2

The softmax loss is closely related to the classification error. If an example is correctly
classified, then the softmax loss is necessarily lower on that example than if it is incorrectly
classified. That is, the softmax loss can never be higher for a correctly classified example
than for an incorrectly classified one. Compare this with squared loss, which we saw by
example in the previous section could have lower loss for incorrectly classified examples
than for correctly classified ones. This does not mean, however, that minimizing the
softmax loss will necessarily result in the best possible linear classifier. For example, if
one example is misclassified by the classifier by a huge margin, resulting in a huge loss,
this could be a higher total loss than a number of examples that are only misclassified by
a small margin. Such a situation can happen with outliers, where one training example
looks very different than other members of its class, or with incorrectly labeled data (i.e.,
noisy labels). Thus, even with softmax loss, the lowest loss does not result in the lowest
training-set classification error. However, the relationship between loss and classification
error is much closer than with squared loss.

4.3.4 Hinge loss

Hinge loss maximizes the margins between the correct class and incorrect class for all the
training examples, with a maximum margin at which we consider two examples perfectly
distinguished. This is the loss traditionally associated with support vector machines.

2Using the implementation in Scipy: http://www.scipy.org
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There is no unique way to generalize hinge loss to the multiclass problem. One choice
is to maximize the margin of the correct class over the next highest class (Crammer &
Singer, 2001).3 For example k, the margin mk is given by:

mk = Ykc −max
i 6=c

Yki (4.19)

where c is the correct class for example k, Ykc is the classifier output for the correct class,
and Yki is the classifier output for one of the incorrect classes i. Of course, this margin
can be negative if the correct class c does not have the highest response (in which case the
classifier is incorrectly classifying example k). Our objective function is

Ohinge =
∑
k

max (0, 1−mk) . (4.20)

Any example that has a margin ≥ 1 is considered ideally classified, and has zero loss. The
loss for all other examples is one minus the margin.

The derivative of this hinge loss with respect to the classifier output is

dOhinge

dYki
=


−1 if i = c

1 if i = a

0 otherwise

(4.21)

That is, increasing Ykc will decrease the loss, and increasing Yka will increase the loss, where
a = arg maxi 6=c Yki is the highest response not of the correct class. We can then find the
derivative with respect to the classifier weights by using the chain rule:

dOhinge

dΩ
= AT dOhinge

dY
. (4.22)

One important aspect of the hinge loss is that it is very dependent on the magnitude
of the classifier outputs Y, and by extension the decoding weights Ω. For example, if the
classifier has many examples correct by a given margin, doubling the classifier weights
will double that margin for all correct examples. For this reason, most support vector
machines that use hinge loss also use a constraint on the magnitude of the weight vector,
typically an equality constraint ensuring it has a norm of one. I have not employed such a
constraint, but rather used regularization on the weight magnitude to a similar effect (see

3This is the formulation used here. A comparison of formulations of hinge loss is beyond the scope of
this thesis.
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Section 4.3.5). Though other loss functions (e.g., softmax loss) can also be vulnerable to
situations where larger magnitudes yield lower loss, this effect seems the most prominent
with hinge loss (see Figure 4.4), and thus regularization is particularly important with this
loss function.

Like the softmax loss, the hinge loss function has the benefit that it is closely related
to the classification error. If an example is correctly classified, then the hinge loss for that
example is necessarily lower than if the example is incorrectly classified. This makes it a
better loss function than the squared loss.

4.3.5 Weight norm regularization

Adding a cost on the magnitude of the weights can both help with overfitting, and can help
reduce noise when using spiking neurons (Eliasmith & Anderson, 2003). This is not a cost
or loss function by itself, but rather a term that can be added to any other loss function.

Given an objective function O, we can create a regularized version Oreg:

Oreg = O + λ‖ΓΩ‖p (4.23)

where Ω is the set of parameters (weights) being learned. Thus, we are taking the Lp norm
on a linear projection Γ of our weights. Often, we take Γ to be a scalar multiple of the
identity matrix, such that we are simply minimizing the norm of the weights themselves.

If we also take the norm to be the L2 (Euclidean) norm, we get ridge regression:

O2 = O +
λ

2
‖Ω‖2

2. (4.24)

This penalizes the sum of squared elements of Ω. It is particularly useful when combined
with linear least squares, since its derivative is also linear, thus still allowing a linear
solution.

If we instead take the norm to be the L1 (Manhattan) norm, we get the lasso:

O1 = O + λ‖Ω‖1. (4.25)

This results in sparse Ω, where many elements are zero.

Here, I focus on L2 norm regularization, mainly because it can be used with squared loss
functions and still allow analytic solutions (thus accelerating the decoder-finding process).
The L2 norm was also used by Eliasmith and Anderson (2003) to reduce the amount of
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variance from spikes in the output of a spiking network, and thus has benefits specific to
spiking networks.

The effect that regularization will have depends on the scale of the activity matrix A.
Because I have written my loss functions as taking the sum of the losses on all points,
rather than the mean, the effect of regularization also depends on the number of points
M . Thus, I scale the regularization constant ρ by both the maximum activity ‖A‖∞ and
by M , to yield the total regularization parameter λ:

σ = ρ‖A‖∞ (4.26)

λ = Mσ2 (4.27)

By squaring σ, this equation is tuned for use with an L2 norm.

Determining the regularization parameter ρ is not trivial. Cross-validation techniques
estimate the generalization error of a method on a dataset; by applying the cross-validation
technique for many different ρ values, one can determine a near-optimal choice for ρ. Leave-
one-out (LOO) cross-validation computes the classifier on all data points except one, then
computes the classification error on the excluded data point. Repeating this for all data
points yields a robust estimate of the generalization error. Unfortunately, it scales linearly
with the number of training data points, making it very costly for our application (where
solving for the classifier is costly). Other possible cross-validation methods include using a
number of randomly-selected subsets from the dataset for each ρ value, or taking a single
subset of the training data and holding it aside as a validation set.

Rifkin and Lippert (2007) demonstrated that the regularization parameter can be found
using leave-one-out (LOO) cross-validation at little extra cost when using direct least-
squares solution methods. They derived an expression for the LOO error that depends
only on the eigendecomposition of the covariance matrix (ATA) of the system (they also
derive the same result using the singular value decomposition of A). Using this method, the
effect of different values of ρ on the LOO error to be tested without re-solving the system
itself, and a good value for the regularization parameter can be found at (theoretically)
little extra cost.

The core of the method is the fact that for a linear least-squares problem, as formulated
in Equation 4.7 (with regularization), the vector of LOO errors eLOO for each training
sample is given by

eLOO =
Y − A(ATA + λI)−1ATY

diag(I − A(ATA + λI)−1AT )
(4.28)
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where diag(X) is the vector of diagonal elements of matrix X, and the division is performed
elementwise. The covariance matrix can be factored using an eigendecomposition, i.e.,
ATA = QΛQT , where Q is an orthogonal matrix and Λ is a diagonal matrix. Thus,
(ATA + λI)−1 = Q(Λ + λ)−1QT . This allows us to re-write Equation 4.28 as

eLOO =
Y − AQ(Λ + λI)−1QTATY

diag(I − AQ(Λ + λI)−1QTAT )
(4.29)

=
Y − P(Λ + λI)−1PTY

diag(I − P(Λ + λI)−1PT )
(4.30)

where P = AQ. The denominator d of this expression can be calculated efficiently as

di =
N∑
j

PijPij
Λjj + λ

. (4.31)

Unfortunately, this computation still involves computing the matrix product P = AQ,
which is O(MN2). Using the form of Equation 4.29 is no better: while the numerator can
be computed as four successive O(MNC) products with the matrix Y, the denominator
involves an unavoidable O(MN2) matrix-matrix product, which is more expensive since
C � N . Furthermore, when using this method with the weighted squared loss, we need to
form P again for each weighting, since the weighting affects the value of Q. Thus, the cost
of this method is O(CMN2) for weighted least squares. Unfortunately, this method only
works for squared loss functions, and does not generalize to softmax loss or hinge loss.

4.4 Spiking methods

Simulating a network with spiking neurons is different than running an ANN with rate
neurons. Spiking neurons are dynamic and must be run online, with each stimulus (image)
presented for a period of time such that the spiking neurons have time to respond with a
spike train signal. ANNs—on the other hand—are almost always run offline, presenting
as many images to the network at a time as desired, and responses for all images gener-
ated with a single forward pass through the network.4 This change from offline to online
introduces a number of new design decisions.

One of the most important design decisions is how the classification is performed. In
biological systems, when we examine the macro-level behaviour of the system, we are

4This assumes the networks are fully feedforward, as are all the networks presented and discussed in
this thesis. Recurrent networks require presenting inputs over a span of time.
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always looking at the full system, from the external stimulus (image) to the physical
response (motor movement or speech). The network presented here does not include a
motor system to close this behaviour loop, so when we evaluate it based on its output, we
do not get the full picture of how it would operate in a closed-loop system.

For the evaluation of the spiking networks in this thesis, the category selected by the
classifier is the category with the maximum average response during the presentation of
each stimulus. The advantages of this approach are that it is simple, it captures how
the system would perform on a neuromorphic chip, and it allows for a fair comparison
with current machine-learning approaches. The main disadvantage is that selecting the
maximum of a number of values is not a function that can be computed perfectly or easily
in neurons, particularly when there are multiple values near the maximum. The Spaun
brain model (Eliasmith et al., 2012) uses a detailed model of the basal ganglia to compute
this operation. Such a basal ganglia model could be included as part of the networks
presented here, to get a better idea of how they might function as part of an end-to-end
system.

There are three new hyperparameters associated with running our network online in
spiking neurons, that do not appear in the offline network:

1. The presentation time tp that each stimulus is shown for,

2. the classification start time tc, which determines how long after the stimulus is first
presented the averaging for classification starts, and

3. the time constants τs of any synapses in the network.

In terms of accuracy, a longer presentation time is always better, since it allows more
time for any transient dynamics in the network to settle and for the output to average
across a larger time window, thus reducing some of the variability associated with spiking
neurons. In practice, choosing the presentation time is always a tradeoff between accuracy
and throughput, where shorter presentation times allow more stimuli to be classified per
unit time, at the cost of accuracy.

The classification start time determines at what point after each stimulus is shown
do we begin averaging the network outputs for classification. This allows the classifier to
ignore the initial transient output of the network. It is important because I test these
networks continuously over the whole series of test inputs, preserving the network state
from one input to the next. Some other works (e.g., Cao, Chen, & Khosla, 2014; Diehl
et al., 2015) present each stimulus separately, resetting the state of the network between
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presentations; in that setup, there is no transient state from previous presentations, so
using the whole presentation time for classification is not problematic.

Finally, the synapse time constants determine the amount of filtering applied to the
output of each neuron. For the networks in this chapter, which only have a single hidden
layer, then this is equivalent to filtering on the output (since the classifier is linear). For
the deep networks examined in later chapters, the filtering is applied to the output of each
neuron layer. All networks in this thesis use alpha synapses (Equation 2.9). The time
constants of the synapses affect the amount of time required for information to propagate
through the network, and thus the value of the time constant (combined with the network
depth) should be the main factor determining the choice of the classification start time tc.

For the networks in this chapter, I chose tp = 70 ms, tc = 5 ms, and τs = 0 ms.
This allows sufficient time to classify each input accurately while still allowing the network
to process images quickly. Since the networks only have a single hidden layer and the
classification method already averages over their output, I found that synaptic filtering
was unnecessary.

All simulations were performed using the Nengo neural simulator (Bekolay et al., 2014).

4.5 Results

To assess the performance of the encoding and decoding methods described in this chapter,
I used the MNIST dataset as a benchmark.

4.5.1 Encoding

Figure 4.2 shows detailed results for each of the four methods examined. In the figure,
“full” refers to fully connected, independent and identically distributed (i.i.d.) random
encoders, which generally perform the worst. Adding a receptive field (RF) mask to i.i.d.
random encoders (“mask-#”), such that each encoder is only connected to a limited local
region of the image, improves performance. There are some receptive field sizes, such as
3 × 3 (not shown), for which the RF i.i.d. encoders perform worse than fully connected
ones. Other, non-i.i.d. methods of generating encoders can be combined with receptive
fields to improve performance. With Gabor filters, using a RF size of 13× 13 works best.
Full-field Gabor filters perform poorly (not shown), because edges are local features, and
thus filters for detecting them must also be local. Finally, the RF method can be combined
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Figure 4.2: Different choices of encoders for SLFNs. Top left: Using limited recep-
tive fields (“mask-#”) reduces test-set error vs fully-connected random encoders (“full”).
RFs around the 9× 9 size perform the best. Top right: Using Gabor filters with varying
sizes of RFs (“gabor-#”) also reduces test-set error, with 13 × 13 RF size working best.
The Gabor filter parameters are: f ∈ U(0.2, 2.0), θ ∈ U(−π, π), p ∈ U(−π, π), σu = 0.45,
σv = 0.45. Bottom left: CIW encoders also improve performance, with a 11× 11 RF size
working best. Bottom right: CD encoders also follow the trend, again with 11× 11 RF
size working best.
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Figure 4.3: Encoder choices for SLFNs with optimal RF size. Training-set error
(dotted line) and test-set error (solid line) for the five encoding methods, using the optimal
RF sizes as determined by Figure 4.2. The number in each label indicates the RF size.

with the CIW and CD methods to improve their performance; this supports the results of
McDonnell et al. (2015).

Figure 4.3 shows the result of testing a number of different methods of choosing en-
coders. Encoder choice has a significant effect on test error rates. Using i.i.d. encoders
with limited receptive fields (RFs), results in significantly better performance than fully
connected i.i.d. encoders, if the size of the RFs is chosen well. The data-driven CIW
and CD methods again offer some improvement, though surprisingly it is the Gabor filter
encoders that perform the best.

It is not surprising that Gabor filters perform better than the i.i.d. methods. Gabor
filters are good at sparsely representing natural images (Olshausen & Field, 1996), and
most deep networks that perform well on real-world object classification tasks have been
found to have something like Gabor filters in the first layer (e.g., Krizhevsky et al., 2012).
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These results show that the Gabor filters do not have to be individually tuned to the data;
a wide range of filters covering the frequencies and orientations observed in the input data
is able to achieve high levels of accuracy on MNIST. It is surprising is that Gabor filter
encoders outperform the CIW and CD methods, despite the latter being tuned specifically
to the MNIST dataset.

The optimal size of receptive field (RF) varied depending on whether the encoders were
i.i.d. or Gabor filters. Larger RFs worked better with Gabor filters. This could be because
Gabor filters already have a windowing aspect to them, since they are multiplied spatially
by a Gaussian amplitude function. This creates an effective RF for the Gabor filters that
is smaller than the full RF of the filters; that is, the pixels at the edges of the filters have
low weights, and have little effect on the filter response. The effective RF for the Gabor
filters is thus closer to the optimal i.i.d. RF than the full RF of the Gabor filters indicates.
An additional factor is that the frequency range of the Gabor filters was not optimized in
any rigorous way. Since the frequencies are set relative to the RF size, varying the RF size
varies the frequency spectrum of the filters. Thus, the optimality of the 13 × 13 Gabor
filters might also have to do with the frequency content of those filters.

4.5.2 Decoding

The amount of regularization has a significant effect on decoding accuracy, such that
comparing different loss functions is only informative if the amount of regularization is
also accounted for. Figure 4.4 shows the effects of the amount of regularization on both
the training- and test-set classification errors for different loss functions. As the figure
shows, some loss functions (least-squares and weighted least-squares) are optimal with no
regularization. Adding regularization in small amounts has no affect on performance, and
large amounts of regularization decrease performance. For other loss functions (softmax
and hinge loss), a moderate amount of regularization results in the best performance. This
is most evident with hinge loss, because with hinge loss it is very easy to increase the
margins on the training data simply by increasing the magnitude of the weights, without
helping with generalization, as discussed in Section 4.3.4. The reason that hinge loss and
softmax benefit from moderate amounts of regularization is possibly because they are also
the most powerful loss functions. As shown in Figure 4.4, these loss functions are able
to completely fit the training data, achieving zero loss with low levels of regularization.
Adding regularization helps to reduce this overfitting, leading to better generalization.

The optimal amounts of regularization for softmax loss (∼ 4.6 × 10−3) and hinge loss
(∼ 2.2× 10−2) are quite different. This is because these loss functions use different units.
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Figure 4.4: Effects of regularization on different loss functions. Dotted and solid
traces show training- and test-set classification errors, respectively. Some loss functions—
namely squared loss and weighted squared loss—show best test-set performance when
regularization is negligible. Other loss functions—namely softmax loss and hinge loss—
show best test-set performance for nonzero, moderate amounts of regularization. Error bars
on test-set results show 95% confidence intervals of the mean classification error across 10
trials.
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Hinge loss is based on the margin of the correct output over the next highest output, thus
it is in the same units as the linear classifier output. Softmax loss is the negative log
probability of the correct output after being passed through a softmax function. Taking
the log of a softmax function output does result in a value in the same units as the linear
classifier output, but normalized by the log of the sum of all exponentiated outputs. The
result is that softmax loss has a significantly different magnitude than the corresponding
hinge loss; the optimal amount of regularization will vary accordingly.

Figure 4.5 compares the loss functions with optimal regularization, across different
numbers of hidden neurons. For large numbers of neurons, hinge loss and softmax loss
perform equally well. For fewer neurons, softmax tends to perform better, though this
result may not always be statistically significant (see 95% confidence interval bars). This
difference between hinge loss and softmax loss could be because the regularization for hinge
loss is chosen based on 5000 hidden neurons, and that amount of regularization is no longer
optimal for fewer neurons. Since hinge loss is generally more affected by regularization than
softmax loss (see Figure 4.4), this would put softmax loss ahead for fewer neurons. This
could suggest that softmax loss is more robust across varying numbers of neurons.

The other key result from this figure is that weighted squared loss performs significantly
better than its unweighted counterpart across all numbers of neurons, but not as well as
softmax loss or hinge loss. This can be explained by how well each loss function is able to
fit the training data (see Figure 4.4). For lower amounts of regularization, softmax loss and
hinge loss are able to achieve almost zero classification error, that is they are able to fully
fit the training data. The squared loss methods, on the other hand, still misclassify many
training examples, likely due to the drawbacks of squared loss as described in Section 4.3.1.
However, weighted squared loss performs much better on the training data than unweighted
squared loss, allowing it to perform better on the test data as well.

4.5.3 Spiking

By substituting spiking LIF neurons for the rate LIF neurons used for training, we can
create networks of spiking neurons for classification. Regularization has an even greater
benefit on spiking networks, as shown in Figure 4.6. This is because not only does regular-
ization help with generalization from the testing set to the training set, it also helps reduce
the variance caused by spikes by penalizing large decoding weight magnitudes. Large de-
coding weights amplify the variance caused by spiking neurons by making the output much
more dependent on some neurons over others. When decoding weight magnitudes are more
uniform—as encouraged by L2-regularization—the spiking variance from different neurons
tends to cancel out, leading to less variance in the output.
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Figure 4.5: Comparison of loss functions for varying numbers of neurons. The
amount of regularization is chosen optimally for each loss function based on Figure 4.4. For
all numbers of neurons, softmax loss and hinge loss perform the best. They perform equally
well for large numbers of neurons, but softmax loss performs better for small numbers. This
may be because the hinge loss regularization was chosen based on 5000 neurons, and may
not be optimal for fewer neurons. Weighted squared loss performs significantly better than
unweighted squared loss for all numbers of neurons, though never as well as softmax or
hinge loss. Error bars show 95% confidence intervals of the mean classification error across
10 trials.
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Figure 4.6: Effects of regularization on spiking networks with 5000 hidden units.
Solid lines show spiking network test-set error, dotted lines show rate network test-set
error.
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Regularization is most important for the unweighted squared loss classifier (Figure 4.6,
blue line). When this loss function is not regularized, it sometimes puts large weights on
some neurons over others. By doing so, it can better exploit some patterns it finds in the
training data; for example, one neuron having a slightly higher activation than another
neuron might indicate a particular class, such that the amplified difference between these
two neurons can be used in the classifier. However, pitting one neuron against another like
this is often not robust when we move to spiking neurons, since spikes are variable and
dynamic, where rates are not. Thus, the unregularized squared loss classifier sometimes
fails catastrophically, getting > 20% error in spiking neurons despite achieving ∼ 2% error
in rate neurons. This only seems to happen one or two times in ten; the rest of the time,
the spiking error is reasonably close (within 1%) to the rate-neuron error. This occasional
catastrophic failure is why the unregularized squared loss has such high mean errors in
Figure 4.6, and why the error bars are so large.

Softmax loss and hinge loss, by contrast, hardly benefit at all from regularization when
moving from rate neurons to spiking neurons; in Figure 4.6, the rate-neuron and spiking-
neuron curves are almost identical. This is probably because both softmax loss and hinge
loss increase the margin between the correct class and the other classes, which means that
variance in the spiking output will have less of an effect on the classification. Even though
hinge loss does benefit significantly from regularization, since it decreases the magnitude
of the weights and thereby increases the effective margin enforced by the loss function,
this benefit appears to apply equally to the rate-neuron case as the spiking neuron case,
as evidenced by both curves being so close in Figure 4.6. Thus, for hinge loss, the optimal
amount of regularization for rate neurons is also the optimal amount of regularization for
spiking neurons.

Figure 4.7 shows the best results (optimal ρ) for each loss function. Softmax loss
performs the best, both on the training and test sets, and in spiking neurons, with hinge
loss a close second. Furthermore, the implicit and explicit margins enforced by softmax
and hinge loss, respectively, help them both to generalize to spiking neurons very well. By
contrast, unweighted squared loss makes a number more errors when using spiking neurons,
even with the optimal amount of regularization as shown in the figure.

I chose the spike rates of the network to be low enough that they are both on the
same order of magnitude as cortical spike rates, and to allow them to be implemented
on neuromorphic hardware. Furthermore, low spike rates also help demonstrate that the
network is truly robust to the variability caused by spikes; neurons with high spike rates,
when filtered by a synapse, end up having very low variability in their output, and act
essentially as rate neurons. The neurons in the spiking networks presented here all had
average neuron firing rates between 17 and 19 Hz. The firing was somewhat sparse, with
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Figure 4.7: Comparison of loss functions for spiking networks. The train, test, and
spiking classification errors for each loss function using 5000 Gabor-encoder neurons on
the MNIST task. Error bars show 95% confidence intervals of the mean over 10 trials. On
average, softmax loss performs the best, though it is not statistically much different than
hinge loss.
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Figure 4.8: Training time for the various loss functions. Solid lines show CPU
times, dotted lines show GPU times. CPU: OpenBLAS on Intel Xeon E5-1650 @ 3.5GHz
(6 cores), GPU: clBLAS on NVIDIA GTX 980 @ 1126 MHz (2048 cores)

an average of 30-32% of neurons responding to any particular input. Thus, the average
firing rate of neurons when they are responding is higher, in the 58-60 Hz range.

4.5.4 Computation time

Figure 4.8 shows the time required for training for various loss functions on both CPU
(solid line) and GPU (dotted line). Both axes are logarithmic, so the slope of the line
indicates how the computation speed scales with the number of neurons, with a slope of
unity corresponding to linear scaling.

The solvers can be grouped into two categories: the squared loss solvers, which both use
direct solution methods; and the softmax and hinge loss solvers, which use iterative solution
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methods. Given the number of training examples M (60000 for the MNIST dataset used
here), the number of neurons N , and the number of categories C (10 for MNIST), we can
compute order of magnitude of the theoretical computational complexity for each method.
The direct methods both involve computing a correlation matrix between all the neurons
over all the examples, which is O(MN2). The N -dimensional linear system corresponding
to this matrix then has to be solved; this is O(N3). These are the two main steps in both
the squared loss algorithms. All the other steps in these algorithms are of lower orders
(e.g., O(N2)). The order of the squared loss algorithm is thus O(MN2 + N3). Since the
weighted squared loss requires solving a separate system for each output category, its order
is O(CMN2 + CN3). Using the method described in Appendix A, this can be reduced
to O(2MN2 + CN3). Since it is often the case that M � N , these methods are often
dominated by the O(MN2) term; that is, the matrix-matrix multiply is the most costly
operation. This means that as we vary N , we expect the solvers to vary as N2.

In Figure 4.8, we see that the squared solvers actually vary as somewhere between
N and N2 on the CPU (solid blue and green lines). This is likely because as the size
of the computation grows, overhead costs become less significant, and computations can
be performed at closer to optimal speed. A detailed examination of the plot shows that
as N → 5000, the slope of both lines approaches N2. The weighted squared solver is
consistently slightly slower than the squared solver, as one would expect from the analysis
above. This effect becomes slightly more pronounced as N increases, because as N → 5000,
CN → M , which means that the O(CN3) term begins to compete with the O(2MN2)
term. I expect this speed difference to become more pronounced as N continues to increase.

A theoretical analysis for the softmax and hinge loss algorithms is more difficult to
perform, because these algorithms have one important unknown: the number of iterations
required for convergence. The main factor that affects the number of iterations is the
conditioning of the problem, where better-conditioned problems will converge more quickly.
Thus, the amount of regularization can have a significant effect on the convergence; here,
I used the optimal regularization as determined previously, since this seemed like the most
pertinent choice. What we can do is compute the computational complexity of the cost and
gradient computations that happen each iteration. For both algorithms, the computational
complexity of a cost-gradient computation is dominated by two matrix-matrix products,
one between the neuron activities and the parameters to determine the outputs, and the
second between the neuron activities and the output derivatives to determine the parameter
gradients. Both of these operations are O(MNC), making the cost of one step O(2MNC).
Thus, assuming the number of required iterations is independent of the number of neurons,
both these algorithms should scale linearly with the number of neurons N .

Looking at the time taken on the CPU by softmax (red solid line) and hinge loss (purple
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Core method Single ρ Many (30) ρ LOO method
Squared loss 16.07 s 482.10 s 81.97 s
Weighted squared loss 25.63 s 768.90 s 1054.06 s

Table 4.1: Computation time of the LOO cross-validation method. As compared
with brute-force validation on a separate validation set. The first column shows the cost
of running either method for a single value of the regularization parameter ρ, for 5000
neurons. The second column shows the cost of running the single method 30 times, which
would be the approximate cost of doing cross validation on a separate validation set by grid
search. The third column shows the cost of the LOO method. For unweighted squared loss,
the LOO method offers potential savings, but it performs worse on the weighted squared
loss.

solid line) in Figure 4.8, these two functions do appear to scale almost linearly with the
number of neurons (a careful examination reveals that they are slightly supralinear). Hinge
loss consistently takes more time than softmax loss; this appears to be because hinge loss
often runs for more iterations than softmax loss.

All of these solution methods are at least partially parallelizable. All the matrix-
matrix products can be parallelized, reducing some of the most costly operations for all
algorithms. The only costly operation that I have not parallelized here is the solution of the
linear system(s) in the direct methods.5 As Figure 4.8 shows, running these algorithms on
the GPU is almost always faster than on the CPU, with the exception being the weighted
squared loss for smaller number of neurons. Overall, weighted squared loss receives the
least benefit from the GPU, since it relies most heavily on solving linear systems, which I
am not running on the GPU. A close examination shows that for larger number of neurons,
the scaling with N is the same on the GPU as on the CPU. This is as expected, since larger
N are able to utilize all GPU cores, thus increasing N past that threshold will scale the
computation time as per the theoretical analysis.

Table 4.1 shows the results of testing the computation time of the Rifkin and Lippert
(2007) method for finding the optimal regularization parameter using the LOO error. When
using squared loss, the cost of the LOO method is roughly five times that of the basic
method. This additional cost is mainly due to computing P = AQ, which is an O(MN2)

5Parallel algorithms do exist for Cholesky factorization, and have been implemented in OpenCL (see
http://icl.cs.utk.edu/magma/software/view.html?id=190). However, this code has not been ported to
work with PyOpenCL, as far as I am aware. Doing so would not be difficult, but since solving the linear
systems is typically the less costly part of the algorithms explored here, I did not take the time to do so
myself.
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operation like AAT , but unlike the computation of AAT , the result is not symmetric,
so it requires twice the computation time. The remaining computational costs are due
largely to the matrix-vector products required for testing each different value of ρ. Despite
this large increase in computation time, the LOO method is still more computationally
efficient than running the basic method 30 times to test sufficient values of ρ to get a
decent estimate using a separate validation set. If instead of using grid search to perform
the cross-validation on a separate validation set, we used an optimization method such as
golden-section search, roughly 15 test values of ρ would be required instead of 30 (based
on observations from testing the LOO cross-validation). This would cut the times of the
middle column in half, though for unweighted squared error, the LOO method would still
perform better.

For weighted squared error, the LOO method is much more costly. This is because
we now require C additional matrix-matrix products of O(MN2), in addition to the other
computations required for computing the LOO error. This results in the LOO method
being sub-optimal for weighted squared error, taking more time than a brute-force grid-
search cross-validation on a separate validation set.

4.6 Discussion

Of the encoder generation methods examined in Section 4.5.1, Gabor filters perform best
(Figure 4.3). This is in spite of the fact that they are tuned for general image statistics,
whereas the encoders yielded by the CIW and CD methods are tuned for the specific
dataset (MNIST, in this case). This suggests that tuning encoders to each specific dataset
is not necessary, at least for the first layer of hidden neurons. While using Gabor filters for
encoding is not a new idea, the fact that they perform better than the newer CIW and CD
methods suggests that the utility of these new methods is limited in terms of generating
first-layer encoders.

Figure 4.5 shows that unweighted squared loss performs worst of all the loss functions
examined. Since it is still the norm for many recent fixed-encoder networks (e.g., McDonnell
et al., 2015), these results suggest better loss functions could considerably improve current
state-of-the-art results. Weighted squared loss is computable for a relatively small cost over
unweighted squared loss (see Appendix A), and even softmax loss or hinge loss minimization
can be performed in a very reasonable amount of time on a GPU (Figure 4.8).

Softmax loss appears to be the overall best loss function for fixed-encoding SLFNs for
MNIST. Not only does it yield the best results (though hinge loss is not significantly worse,
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see Figure 4.7), it is also the least sensitive to the amount of regularization (Figures 4.4
and 4.6). The main downside to softmax loss is that it requires more computation time
than squared loss methods (Figure 4.8), since a closed-form solution is not possible.

All of the loss functions presented in this chapter can theoretically be used with the
Prescribed Error Sensitivity (PES) learning rule (MacNeil & Eliasmith, 2011; Bekolay,
Kolbeck, & Eliasmith, 2013), a derivative-free variant of the delta rule adapted for NEF
networks. This would allow decoders to be learned online in a biologically-plausible man-
ner. Some loss functions might be more amenable to this than others. For example, the
squared loss has a linear derivative, and is the standard for both online and offline learning
in NEF networks. The weighted squared loss also has a linear derivative, but the weighting
terms will require scaling the learning on different decoders depending on the target class
of the digit. The softmax and hinge loss both have nonlinear derivatives. The softmax
loss requires computing a softmax function, which requires normalization and may not
be straightforward in spiking neurons. Hinge loss requires computing an argmax func-
tion, which again is not straightforward, though there is evidence for such functions being
computed in specialized regions such as the basal ganglia (Redgrave, Prescott, & Gurney,
1999).

There is a significant drawback to the methods examined in this chapter: they may not
be able to generalize to more difficult datasets, and even if they can, they may require so
many hidden neurons to perform well that training them becomes infeasible. So far, fixed-
encoding networks have predominantly been tested on the MNIST dataset. This dataset
does not have the complexity of other, more realistic datasets like CIFAR-10. The visual
appearance of MNIST digits is very simple, with trivially distinguishable foreground and
background. The categories are also very distinguishable, depending on only a few simple
visual features.

For more complex datasets, it is unlikely that SLFNs will be able to perform well. I
tried the networks described in this chapter on the CIFAR-10 dataset, using 15000 hidden
units as well as data augmentation, and achieved 36% test error (27% train error), which
is nowhere near the state-of-the-art. The best performance for fixed-encoding networks
on the CIFAR-10 dataset is by McDonnell and Vladusich (2015), who use a two-layer
fixed-encoding network with a 96-filter convolution and pooling layer followed by a 40000
hidden unit fully-connected layer, to achieve 24.14% test error. An identical network
achieves 3.96% test error on the SVHN dataset. Multilayer networks, particularly those
with convolution and pooling, make solving problems like translation invariance much more
straightforward than with a single-layer network. The convolutional filters in this network
are taken from the Overfeat network trained on ImageNet, thus incorporating significant
prior knowledge about what constitutes good low level features. Yet even this large fixed-
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encoding network using good convolutional features and pooling is still a ways from the
state-of-the-art, having about twice the level of error on SVHN (3.96% vs 1.92%) and
2.5 times the level of error on CIFAR-10 (24.14% vs 9.78%) as compared with the best
networks trained on these datasets (without data augmentation). These are significant
gaps, and it is unclear whether fixed-encoding networks will be able to overcome them.6

On a deeper level, there are limitations to what types of processing a fixed-encoding
network can hope to perform, even with a data-driven encoding. For example, take the
problem of learning a linear transform B from m dimensions to n dimensions, where m� n.
Because the input space is so much larger than the output space, there will be dimensions of
the input space that do not affect the output; we call these invariances, and mathematically
they correspond to the nullspace of B. If we create a network that uses some sort of random
encoding of the input space, or even learns some encoding using unsupervised learning, the
best we can hope to do is to perfectly represent the input space, ideally in some way that
is sparser or otherwise easier to work with than the inputs themselves. We can never hope,
though, that this encoding will pick up on any of the invariances in the dataset. That
is because these invariances depend on the transformation B, and without some explicit
or implicit knowledge about this transformation, we cannot hope to learn them. It may
be possible to take advantage of prior or expert knowledge about the domain to engineer
better features; this would be using explicit knowledge of B. Or we may have access to
some of the mappings from the input space to the output space, and can use them in
a supervised or semi-supervised learning setting; this would be using implicit knowledge
about B.

An example of real-world invariance is lighting. The lighting on a scene can greatly
affect the image that falls on one’s retina, but does not affect the identity of the objects
in the scene. For the most part, we are able to operate accurately in scenes lit in many
different ways. Human object recognition must therefore be invariant to many types of
lighting variation. For a computational visual system to be successful, it must also be
able to separate lighting variation from other object characteristics in such a way that
object recognition can be lighting invariant. Since our fixed-encoding network cannot
learn this implicitly from the training data using supervised learning, this invariance must
be engineered in. Specifically, we must engineer the system such that the effects of lighting

6The only way that I currently think that fixed-encoding networks might do well on these more chal-
lenging problems is by training a deep network on an even more difficult problem (e.g., ImageNet), and
then replacing the final (classifier) layer on the deep network with a classifier trained using one of the
methods discussed in this chapter. In other words, using the whole deep network as the fixed encoder.
In my opinion, this would not demonstrate the power of fixed-encoding networks (since one has to train
a deep network on a much harder dataset first), but would rather demonstrate that transfer learning is
viable.
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are factored out, having some hidden nodes that represent lighting and some that represent
other image features. Explicitly constructing such a system is no mean feat, however, and
some of the best successes so far have come from using unsupervised methods to learn this
decomposition (Tang, Salakhutdinov, & Hinton, 2012).

For fixed-encoding networks to truly be successful, then, the designers of such networks
will explicitly have to build in invariances such that the classifier at the end of the network
is able to easily separate the different classes. The convolutional-pooling fixed-encoding
networks of McDonnell and Vladusich (2015) are another example of building in such
an invariance, in that case an invariance to translation. In this chapter, I used explicit
knowledge of the image space—namely the fact that natural images are well-modeled
by Gabor filters—to design a fixed-encoding network. In its own way, this is building
invariance into the network: invariance to individual pixel fluctuations. I used the prior
knowledge that individual pixel values do not matter by themselves, but it is rather the
edges in an image, or the correlations between many adjacent pixels, that matter. However,
that invariance will not be enough by itself, and for that matter, neither will building in
only lighting invariances or only translation invariances. A good object recognition system
will have to account for all these invariances, and under a fixed-encoding system, it will be
up to the system engineers to enumerate them and build them all in.

These challenges are severe, and are one of the reasons that the computer vision com-
munity has slowly been moving away from traditional computer vision, where features are
hand-engineered, and tending towards machine learning approaches, where the features
are discovered using supervised learning approaches. Such approaches are the focus of the
next two chapters of this thesis.
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Chapter 5

Spiking Deep Networks

At the end of the previous chapter, we saw that fixed-encoding networks can be used to con-
struct spiking networks that perform well on smaller datasets. However, that method does
not generalize well to larger datasets. Deep artificial neural networks have been used by
the machine learning field to perform object recognition on very large, challenging datasets
(Krizhevsky et al., 2012). How to construct and train such networks in rate neurons is a
relatively well-studied problem; how the same types of networks might be constructed and
trained with spiking neurons, less so. This chapter describes a novel implementation of a
deep convolutional neural network using spiking LIF neurons. Some of this work has been
previously described in Hunsberger and Eliasmith (2015) and Hunsberger and Eliasmith
(2016), and has been expanded on for this thesis.

5.1 Background

Deep artificial neural networks (DNNs), specifically convolutional neural networks (CNNs,
see Section 3.4), are one of the success stories of modern computer vision. They have
been able to successfully recognize a wide range of objects in large, complex images (e.g.,
Krizhevsky et al., 2012). However, these networks have all been designed for and run
using rate-based neurons. The question of how they can be run in spiking neurons is an
expanding area of research.

Why would we want to run such networks in spiking neurons? There are two main
motivations behind making deep spiking networks. The first is to allow some of the large
CNN models that have recently had success at numerous object recognition and other tasks
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to run on spiking neuromorphic hardware. This will open the door for energy-efficient
systems performing object recognition in real time on robotic platforms, where current
technology is too energy-intensive to allow for deployment on mobile robots, for example.

The second motivation is to bring more brain-like components into machine learning
models. There are many unique challenges related to learning in the brain, such as how to
deal with the nonlinear nature of neurons, particularly around their firing thresholds, and
how to deal with the discreteness and variability that comes with communicating using
spikes. While the spiking deep networks introduced here are not intended to be models
of how the brain learns (the learning procedure is not neurally plausible), the challenges
addressed in this chapter are also faced by the brain, and some of the ideas in this part
help motivate the more biologically plausible learning mechanisms proposed in Chapter 6.

Spiking deep networks transmit information between neurons in the form of discrete
spikes. The first difference to notice about spiking networks is that there is an added
dimension of time not typically present in rate-based DNNs. That is, a spiking neuron is
a process that evolves over time, sometimes emitting spikes, sometimes not. It only makes
sense to talk about this process over time; looking at it in one instant tells us little about
what is going on. In rate-based networks, on the other hand, we typically present an input
and can instantaneously determine the activities of each subsequent neuron in the network,
since they do not change over time.

The second difference to notice is that spikes are discrete and all identical. The only
information that a spike carries is the time at which it occurred. As discussed in Section 2.4,
this means that there are two main types of codes a neuron can use: rate codes, or timing
codes. If we use a timing code, then we are concerned about the times of individual
spikes. If we use a rate code, then we are more concerned about the number of spikes
in a particular time window, or perhaps the relative timing of spikes with respect to one
another. When looking at the number of spikes in a time window, we are faced with the
additional challenge that the resulting rate is discrete. If there are n spikes in the t second
window, then the firing rate is n/t, where n is an integer. For a fixed window t, there are
only a discrete number of values that this firing rate can take on, specifically all the integer
values of n.

The third difference to notice is that the output of spiking neurons is inherently more
variable than their rate-based counterparts. Given a constant input, a rate neuron will give
a constant output, that is, the firing rate corresponding to that input.1 Spiking neurons,

1Rate neurons can have internal dynamics (e.g., the adapting version of the rate-based LIF), and given
a constant input, the output of these neurons will not be constant. However, their output is still much
less variable than their spiking counterparts.
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on the other hand, will output a spike train, which when filtered by a synapse, results in an
oscillating signal whose variability depends on the firing rate. Thus, even when presented
with a constant input, a spiking network will show variability in the inputs to each neuron,
and the outputs of the entire network.

DNNs are traditionally rate-based, in that the nonlinearity activity implicitly represents
the firing rate of a neuron. For example, a ReLU can be viewed as a neuron that is silent
if its input is below zero, and whose firing rate increases linearly as the current increases
above zero. Furthermore, rate-based DNNs have cost functions that are based on the
activities (firing rates) of the output neurons: if the network is performing classification,
the chosen class is the output unit with the highest activity. One approach is therefore to
treat spiking networks similarly, and train the network so that the unit corresponding to
the target class will have the highest activity.2 The alternative is to train the network so
that the first neuron to spike will be the chosen class.

At the level of a single neuron, this distinction goes away. The activity of a neuron
firing at a regular rate is captured by its inter-spike interval, the time between one spike
and the next. Assuming the neuron starts in a resting state, the inter-spike interval is
equivalent to the time before the first spike of a neuron (plus the refractory period). The key
design decision is how we transmit information between neurons. Spike-based optimization
methods compute the exact spike times of neurons, and use these to compute the spike
times of neurons in subsequent layers. Rate-based optimization methods, on the other hand,
treat neurons as idealized rate-response curves, and only transmit firing rates within the
network.

5.1.1 Spike-based optimization methods

Spike-based methods optimize the times of individual neuron spikes to reduce the overall
error of the network. Because the time at which a neuron spikes is a continuous value, con-
tinuous optimization methods can be used. However, the problem is still highly nonlinear,
because a small change in the input to a neuron (and thus a small change to the neuron’s
input weights) can push a neuron over its firing threshold, eliciting a spike and drastically
changing the output of the neuron (Gütig, 2014).

The first algorithm to perform supervised deep learning by optimizing spike times
was SpikeProp (Bohte, Kok, & La Poutré, 2002). This algorithm makes the simplifying

2This activity does not necessarily correspond to a neuron firing rate. In fact, it is more likely the
filtered, weighted sum over the spiking activities of the final layer of neurons in the network.
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assumption that each neuron fires at most one spike during the spiking interval, or if
multiple spikes are fired, only the first is optimized. It also has the structural qualification
that each connection is composed of many different synaptic terminals, each with a different
synaptic delay and a different connection weight. They demonstrate that their algorithm
can solve the XOR problem, and performs comparably to backpropagation optimized both
with gradient descent (GD) and Levenberg-Marquardt (LM) on a number of small datasets
(the largest having 36 input dimensions, six output classes, and 4435 training examples).
The single-spike optimization procedure and multiple connection weights per synapse have
made it difficult to expand this work to larger datasets. McKennoch, Liu, and Bushnell
(2006) present two methods to improve the rate of convergence of SpikeProp, though the
applications are still limited to small datasets.

Mostafa (2016) proposes an alternative to the SpikeProp algorithm, designed specifi-
cally for non-leaky integrate-and-fire neurons. It relaxes the restriction that a connection
must be composed of many different discrete-delay elements, and instead uses a more stan-
dard network architecture, with one exponential-synapse connection between each pair of
neurons. They train networks with both one and two hidden layers, achieving 2.45% and
2.86% on MNIST, respectively. One challenge the author faced was that dropout, the
most common regularization technique, did not work in the network in question because it
would often prevent neurons from firing at all. Lacking a good alternative regularization
method, the networks suffered from large generalization errors (the training error for both
networks was almost zero).

Whereas the previous algorithms only optimize the first spike of each neuron, Stromatias
and Marsland (2014) relax this restriction. They use a genetic algorithm to optimize
multiple spikes from each neuron. However, they only demonstrate their algorithm on
relatively small models with fewer than 10 hidden neurons. Genetic algorithms often have
problems scaling to problems with many parameters, thus this algorithm may have trouble
scaling to datasets like MNIST or CIFAR-10.

Lee, Delbruck, and Pfeiffer (2016) also optimize over multiple spikes per neuron. They
ignore the spiking discontinuity during backpropagation, and treat the output of a neuron
as a linear function of its inputs (where the inputs have been filtered by the membrane of
the neuron in question). This allows them to run the network in spiking neurons during
training, but still perform backpropagation without worrying about discontinuities. They
also ignore the refractory period of the neurons, stating that it is short compared to the
time between spikes and thus has little effect on firing rates. They add lateral inhibition
components to increase network performance, but only optimize over the first-order deriva-
tives caused by these connections. Despite these simplifications, their method is still able
to learn appropriately on the MNIST task, achieving 1.30% error using standard SGD and
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1.23% error using an ADAM optimizer. While it remains to be seen whether this method
can generalize to larger datasets in a tractable way, it introduces a number of new ideas
for training spiking networks that will hopefully be improved upon by future work.

Huh and Sejnowski (2017) introduce a novel method to make the spiking process con-
tinuous. They introduce a gating function g(V ) of the membrane voltage V that is greater
than zero for voltages near the firing threshold, and zero otherwise, with unit integral.
They call the region where g(V ) > 0 the active zone. Rather than having efferent synapses
receive a current δ(t − tk) when the neuron spikes (crosses the firing threshold) at time
tk, synapses continuously receive current based on g(V )dV

dt
. If the voltage is outside the

active zone, this term is zero because g(V ) = 0. If the voltage crosses the active zone
(and thus the neuron spikes) the integral of this term is one. Finally, if the voltage enters
the active zone, but does not cross its upper threshold (i.e., the firing threshold), then the
integral of the term will be a positive number between zero and one (this is something akin
to a partial spike). This induced synaptic current is almost identical to the traditional
spiking current δ(t− tk) in the extremes (i.e., when the neuron is silent or firing reasonably
quickly), but continuous in the middle region. The authors can then achieve a gradient
through the network at any particular point in time using backpropagation, and optimize
the entire network using backpropagation through time. Their results focus on tasks that
require dynamic, temporal representation, such as predictive coding. This is a different
focus than most other spike-based methods, which typically focus on static tasks (i.e., ob-
ject classification), and thus a direct comparison is difficult. Because the method makes
the neural nonlinearity differentiable, it allows the use of many different neuron models:
the paper uses non-leaky integrate-and-fire and quadratic integrate-and-fire, and others
would certainly be compatible. This, along with the ability to optimize recurrent spiking
networks well, make this a potentially powerful method for dynamic spiking networks. For
networks focused on static tasks, I believe that the requirement of this method to optimize
over potentially long time series for each input stimulus would make it ill-suited for training
large object classification networks.

To date, spike-based optimization methods have not been applied to larger, deeper
architectures like CNNs. This has prevented spike-based training on any datasets larger
or more challenging than MNIST. Part of the challenge is simply computational: spike-
based optimization methods require more computational resources than rate-based meth-
ods, since the network is dynamic and requires iterative simulation for each stimulus pre-
sentation. Most of the current software has been designed for static ANNs, and expanding
it to spiking networks is non-trivial. For this reason, researchers have turned to rate-based
optimization methods to tackle larger datasets with spiking networks; this is the focus of
the next section.
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5.1.2 Rate-based optimization methods

Rate-based optimization methods make the simplifying assumption that all neurons are
performing rate coding (see Section 2.4). Therefore, these methods do not care about
the times of individual spikes, only the number of spikes over a time period. Almost al-
ways, these types of methods use this simplifying assumption to replace the spiking neural
process with a continuous-valued rate approximation. For derivative-based methods, this
rate approximation is then differentiated. Derivative-free methods, on the other hand,
avoid taking the derivative of this rate approximation, and instead opt for an optimiza-
tion method such as Contrastive Divergence that does not require it. Finally, function
approximation methods approach the problem differently: rather than assuming a network
of spiking neurons and trying to find rate approximations to these spiking neurons, they
choose an arbitrary nonlinearity for training the network, and then use spiking neurons to
approximate this nonlinearity.

Derivative-based methods

Pérez-Carrasco, Serrano, Acha, Serrano-Gotarredona, and Linares-Barranco (2010) de-
scribe the first work to train a spiking convolutional network. They trained a traditional
CNN with tanh units using backpropagation. To convert this to a spiking network, they
replaced the tanh units with binary threshold units with a refractory period. Specifically,
if the input to a neuron is above a certain threshold, it fires a spike, after which the neuron
cannot spike for a set period. This refractory period causes the firing rates of the neurons
to saturate. The authors argue that this helps to “emulate the corresponding sigmoid
functions” (that is, the tanh function) used in the rate model. They do not explain exactly
how the refractory period does this. Presumably, they mean because the tanh function is a
saturating nonlinearity, having the neuron firing rate saturate makes the firing rate curve
more similar to the tanh curve.

Cao et al. (2014) took a more principled approach to converting rate-based CNNs to
spiking CNNs. They took advantage of the fact that rectified linear units (ReLUs) perfectly
model the rate of a non-leaky integrate-and-fire neuron (IF). Since ReLUs are currently
the standard for deep networks, this allows networks to be trained with the same rate-
based ReLUs, and then replaced with spiking IF neurons at runtime. They also replaced
the max-pooling layers used by the network with average pooling layers. Average pooling
layers only involve summing and scaling the inputs, allowing them to work well with spiking
neurons, moreover in a biologically plausible manner. Max pooling, on the other hand, has
no clear spiking analogue: taking the max of the binary spikes coming in at the current
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point in time (i.e., outputting one if any of the inputs are spiking, and zero otherwise)
is not at all equivalent to taking the max across spike rates, as performed by traditional
CNNs. Furthermore, even taking the max across spikes is not biologically plausible, since
there is no clear neuron-level mechanism for taking the max across incoming signals. Cao
et al. (2014) also removed biases from the network, since they felt these would be difficult
for a spiking network to implement. However, it is not clear why biases would present a
problem for spiking networks, particularly if targeting neuromorphic hardware (much of
which supports biases). One advantage to removing biases is that it presents a slightly
cleaner biological explanation, since the output of each neuron depends only on the inputs
from other neurons in the network.

Diehl et al. (2015) employed a similar method to Cao et al. (2014), with the addition of
a novel normalization method for weight magnitudes. One key design decision in spiking
networks is the tradeoff between the firing rates of the neurons and the amount of time
needed by the network to make a decision (integration time). Higher firing rates allow the
network to transmit information more quickly, resulting in faster responses and higher ac-
curacy, but also use more energy, and on some neuromorphic platforms there are maximum
allowable firing rates. Increased integration time allows more information to be collected,
resulting in higher accuracy, but also leads to slower responses and more spikes per exam-
ple. Thus, to achieve a balance between accuracy, response time, and energy efficiency,
the firing rates and integration time need to be properly tuned. Because ReLUs—and by
extension IF neurons—are scale invariant, the firing rates of neurons in spiking IF networks
can be arbitrarily set. To change the firing rate of a neuron while maintaining the same
network, an increase in the firing rate of the neuron must be met with a decrease in all
connection weights emanating from that neuron. Diehl et al. (2015) presents two tech-
niques to normalize network weights using these ideas: model-based normalization; and
data-based normalization. Both methods are based around the criterion that we do not
want the input to any neuron in a single timestep to be greater than the firing threshold
of that neuron. If that were to happen, it could cause the neuron to need to fire two spikes
in the same timestep, something that is not supported by most neuromorphic hardware.
In other terms, the goal of the normalization is to ensure the instantaneous firing rates
of all neurons never exceeds the rate of the neuromorphic chip (simulation rate). Model-
based normalization finds the maximum sum of positive input weights across all neurons
in a layer, and then normalizes all neuron inputs in the layer using this sum. This en-
sures that no neuron could receive an input greater than one (the firing threshold) in a
single timestep. The authors found that this technique can make the weights smaller than
necessary, since the maximum possible input to a neuron is often never encountered in
real data, resulting in longer-than-necessary integration times. Data-based normalization
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instead bases the normalization on the examples in the training data. It ensures that for
any given training example, no neuron will receive an input greater than one (the firing
threshold). The authors found that data-based normalization decreased the amount of in-
tegration time needed by the network to achieve the same accuracy, as compared with an
un-normalized network with higher firing threshold. This paper presented state-of-the-art
results for spiking networks on the MNIST dataset, achieving 0.88% test-set error.

Esser et al. (2016) trained deep networks targeting the IBM TrueNorth neuromorphic
chip (Merolla et al., 2014). Unlike the other networks described here, this network uses
a simple binary threshold neuron, which fires a “spike” if its input is positive at a given
time step, otherwise it is silent. This is equivalent to a rate-based binary threshold unit.
Additionally, the network only presents each image for a single timestep before resetting
all neuron voltages and presenting the next image. These considerations make the network
rate-based, rather than spiking. They trained very large networks (8 million neurons) on
a number of tasks (including CIFAR-10 and SVHN). Their results are state-of-the-art if
compared to spiking networks, but the better comparison is to rate-based networks, where
the only innovation is the use of binary threshold units, which are not commonly used in
deep networks. The network is able to run on neuromorphic hardware (TrueNorth), but
uses many neurons even for modest datasets like CIFAR-10, and would be difficult to scale
to large datasets like ImageNet.

Derivative-free methods

Derivative-free, rate-based optimization methods use rate approximations for the spiking
neural process, but do not require the derivative of the rate approximation. All such
methods I have found base their work on using the Contrastive Divergence (CD) algorithm
(Hinton, Osindero, & Teh, 2006) to train deep networks of stacked RBMs.

O’Connor, Neil, Liu, Delbruck, and Pfeiffer (2013) create a spiking network of LIF
neurons using RBMs. For training the network, they use the Siegert approximation to
a noisy spiking LIF neuron as the rate neuron model. The Siegert approximation is an
equation for the mean firing rate of an LIF neuron given many input spike trains, where
spikes are Poisson distributed with constant firing rate. These output rates are then
normalized by the maximum firing rate 1/tref to generate firing probabilities, and the
hidden units are sampled from a binary distribution based on these probabilities. Training
with this model allows the authors to model some of the variability caused by using spikes.
They then substitute spiking LIF neurons for these rate neurons and run the network using
Poisson input trains based on pixel intensities, achieving 5.91% error on MNIST. Stromatias
et al. (2015) extends this work by showing that the method is robust to reduced weight
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precision, achieving lower error (5.06%) on MNIST using only 11-bit fixed point weights3

running on the SpiNNaker platform.

Neftci, Das, Pedroni, Kreutz-Delgado, and Cauwenberghs (2013) also develop spiking
RBMs using LIF neurons. Their approach fits the average firing rate of a noisy LIF neuron
to a sigmoid curve, and then trains using this sigmoid curve. This limits the choice of
parameters for the LIF neuron, in that they must allow the firing rate to be accurately
fit by a sigmoid; however, it allows the RBMs to be trained with traditional sigmoid
activation functions, making the training simpler and more efficient. They propose an
online variant of CD for spiking networks, building off of an STDP learning rule. For each
presented training image, there are two phases. The first occurs immediately when the
image is presented, and updates connections based on the data (stimulus). Then, after
a period of time, the recurrent connections become active, driving the network towards
its reconstruction distribution; this has an effect similar to Gibbs sampling in the CD
algorithm. During this time, the gating signal on the derivative is flipped, such that the
weights are affected negatively based on the reconstruction. This forms one complete cycle
of the algorithm, and is repeated on each training image, for many iterations through the
training data; this has an overall effect similar to CD, thus the authors call it “event-based
CD”. Using this method, they achieve 8.1% test-set error on MNIST in spiking neurons.

Function approximation methods

Function approximation methods are significantly different than the previously introduced
methods. Rather than using one spiking neuron to replace each node in the ANN, function
approximation methods use multiple spiking neurons for each node. They use these spiking
neurons to approximate the nonlinear function (e.g., sigmoid function) being computed by
the node.

I am only aware of one such use of this method, by Eliasmith et al. (2012). They
use three spiking LIF neurons to approximate the sigmoid function computed by each
node. They choose random parameters for each neuron; most significantly, they assign
a uniformly-distributed random bias current to each neuron. This allows each of the
three neurons to target a different portion of the sigmoid curve, and is in addition to the
bias current for the node which is set when training the network. Once these random
parameters are set, they solve for a scalar weighting for each neuron that determines how
much it contributes to the sigmoid function. This is the standard NEF method for function

3The 11-bit weights use 3 bits for the integer component and 8 bits for the fractional component.
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approximation (see Section 2.5), but applied on a small pool of neurons to approximate a
sigmoid function.

This method allows a spiking network to approximate a rate-based network in a very
general way. One disadvantage is that it uses many more neurons than nodes in the
network, making it more costly in terms of neural resources than the methods described
above. Its effectiveness also depends highly on how well the neurons can represent the node
function in the operational domain. Sigmoid functions are relatively easy to represent with
LIF neurons. ReLUs are much flatter and are not squashing, meaning that the range of
output values that the LIF neurons need to accurately represent is much larger; this makes
them much less amenable to this method.

5.1.3 Noise

Transmitting discrete, constant-amplitude spikes (as done throughout much of the human
central nervous system) is a higher-variance method of information transmission than sim-
ply sending a scalar value (such as a voltage). When taking a rate-based view of neural
activity, one can view this increased variance as “noise” around the firing rate (which is
the “signal”). The firing rate corresponds to the mean value of a spike train signal. If we
pass a spike train through a low-pass filter, we can view the result as an estimate of this
mean with some additional time-varying noise around it. The amount of noise depends
on the filter used; cutting out more of the high frequencies will result in a better estimate
with less noise, but if the underlying firing rate signal is also time-varying, then we will
cut out its higher frequencies as well. For a spiking network that is receiving a sequence of
images and outputting a response for each in real-time, this amounts to a longer response
time for each image.

Many rate-based spiking neural networks do not model the variance caused by spikes.
Of those that do, there are two approaches that have been used. The first is to model
the effects of spike noise on the mean neural firing rates, and then use these revised mean
rates when training the model. The second approach is to include stochastic elements in
the model during training, so that the probability distribution of the training output rates
models, in some way, the variance caused by the spikes used during testing.

An example of this first approach is using the Siegert model to account for the effects
of incoming spikes on the LIF neuron firing rate, as done by O’Connor et al. (2013). This
approach assumes that neuron inputs are uncorrelated, with spikes governed by a Poisson
process. The Siegert model then gives the average firing rate of the LIF neuron, given the
average firing rates of all inputs and their respective connection weights. One drawback
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to this approach is that the Siegert equation is complicated: it contains an integral with
no closed form solution, whose integrand contains both the exponential and error (erf)
functions. Computing this function on a GPU (or even a CPU) would be difficult and
time-consuming compared with the functions normally used in neural networks. The other
drawback of this approach is that it requires computing two linear functions of the input
neuron rates, one to compute the overall input mean and the other to compute the variance.
This means that it requires twice as many matrix-vector operations as the same network
without the Siegert model.

The second approach—adding stochastic elements to model spiking noise—has often
been used in various types of neural networks, though not with the intent of running the
final model in spiking neurons. A foundational example is Boltzmann machines, which use
binary sampling on probabilistic units (Hinton & Sejnowski, 1983). This allows units to
only communicate binary values with one another, which shares some similarity with spikes.
However, if one views each unit as wanting to transmit its underlying firing probability
(which is like a firing rate), then this is a very severe form of noise. Subsequent work by
(Nair & Hinton, 2010) greatly relaxed the amount of noise by having units use rectified
linear activation functions with Gaussian noise on the neuron input. Another example of
adding stochasticity to a model is denoising autoencoders (Vincent, Larochelle, Bengio,
& Manzagol, 2008), which add noise to model inputs and then attempt to reproduce the
noise-free version of the input. Adding noise to model inputs has often been used to help
make models better able to deal with a variety of inputs, essentially it is a type of data
augmentation.4 However, adding noise to hidden units—whether that be to their inputs or
outputs—is much less common in nonlinear networks (Poole, Sohl-Dickstein, & Ganguli,
2014). I could not find any examples of it being used to model the variability caused by
spikes in order to transfer a rate model into spiking neurons.

5.2 Implementation

The previous section outlines the many types of methods available for training deep spik-
ing networks; each approach has advantages and disadvantages, with no clear preferred
method. My goal was to implement a deep spiking network that could process real-world-
sized images depicting a large variety of object categories. Ultimately, I wanted something
that would be able to process the ImageNet dataset, a much larger dataset than any spiking
network had previously processed.

4Other forms of data augmentation, such as translating, rotating, or deforming images, can also be
viewed as noise on model inputs, albeit a more structured form of noise than Gaussian noise.
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The ImageNet dataset has a number of defining characteristics: the images are quite
large (256 × 256), there are over a million training images, and they are difficult to cat-
egorize. Because of the size, I needed a method that could quickly process many large
images. This immediately suggested spike-based optimization methods would not be a
good choice, since they require running each image for a period of time to generate spikes.
If each image needs to run for 100 timesteps, this means that such dynamic methods would
take 100 times longer than comparable static methods (assuming no specialized hardware
for accelerating spiking computations). Additionally, all networks that have been success-
ful on ImageNet are rate based, and by expanding on these methods I could make use of
existing code for training them.

Within the rate-based methods, I had a choice between derivative-based and derivative-
free methods. The derivative-free methods that I found were all based on unsupervised
learning techniques, whereas all networks that are successful on the ImageNet dataset have
been trained in a highly supervised manner. Finally, I did not pursue function approx-
imation methods in depth because they require many more neurons than methods that
incorporate the neuron tuning curves directly. Also, my preliminary investigation into
function approximation methods showed that it is difficult to use spiking LIF neurons to
properly represent a ReLU function, because ReLUs are non-squashing and thus have a
wide range of outputs.

These reasons pushed me to implement a deep spiking network using a derivative-based
rate method, specifically by training a rate-based ANN with neuron-like nonlinearities,
then converting this to a spiking network. This required three main steps, which I will
describe in detail in this section: 1) modifying the architecture to remove components
difficult to implement in neurons; 2) designing a nonlinearity similar to the LIF neuron,
but differentiable; and 3) adding noise during training to increase robustness to spiking
variability. The trained network is then tested with dynamic, spiking neurons. Since these
neurons output signals (i.e., spike trains) rather than static scalar values, the classification
procedure also needs to operate over time (see Section 4.4).

I evaluate the system on five different datasets: MNIST, SVHN, CIFAR-10, CIFAR-100,
and ILSVRC-2012 (ImageNet). The datasets are presented in detail in Section 3.1.7.

5.2.1 Architecture and modifications

I based my architecture off of AlexNet Krizhevsky et al. (2012). This architecture won
the ILSVRC-2012 (ImageNet) competition, and a smaller variant of the network achieved
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AlexNet My model

input, 3 channels, 224× 224 input, 3 channels, 224× 224
conv 64, size 11, stride 4, padding 0 conv 64, size 11, stride 4, padding 0

cross-map norm, size 5
max pool, size 3, stride 2 avg pool, size 3, stride 2

conv 192, size 5, stride 1, padding 2 conv 192, size 5, stride 1, padding 2
cross-map norm, size 5
max pool, size 3, stride 2 avg pool, size 3, stride 2

conv 384, size 3, stride 1, padding 1 conv 384, size 3, stride 1, padding 1
conv 256, size 3, stride 1, padding 1 conv 256, size 3, stride 1, padding 1
conv 256, size 3, stride 1, padding 1 conv 256, size 3, stride 1, padding 1

max pool, size 3, stride 2 avg pool, size 3, stride 2
full 4096 full 4096

dropout, keep 0.5 dropout, keep 0.5
full 4096 full 4096

dropout, keep 0.5 dropout, keep 0.5
full 1000 full 1000
softmax softmax (train only)

Table 5.1: Details of the AlexNet architecture and the modified version used
here. This is the architecture used for the ImageNet ILSVRC-2012 dataset. Differences
are highlighted in bold. “conv n” refers to a convolutional layer with n feature maps, where
“size” specifies the filter size. “cross-map norm” refers to a cross-map normalization layer,
where “size” is the s parameter of the layer. “max pool” is a max-pooling layer, and “avg
pool” is an average pooling layer. “full n” is a fully-connected layer with n output neurons.
“dropout” is a dropout layer, where “keep” is the fraction of output units to keep.

∼11% error on the CIFAR-10 dataset. I chose it because it is relatively simple, with very
efficient training code freely available.5

The network is a CNN, and makes use of the core components of CNNs outlined in
Section 3.4. The details of the original architecture are given in Table 5.1, along with my
modified architecture.6 The original architecture begins with two generalized convolutional
layers, where each such layer consists of a convolutional layer, a normalization layer, and

5https://github.com/akrizhevsky/cuda-convnet2
6This is the architecture used for the ImageNet ILSVRC-2012 dataset. For the other datasets tested,

I used simplified versions of the architecture. Details of these architectures, along with all the code for
running them, can be found at http://github.com/hunse/cuda-convnet2.
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a pooling layer. These are followed by three convolutional layers, with one pooling layer
at the end. These convolutional layers do not change the size of the image, and having
three of them allows the network to compute more complex nonlinearities. These are
followed by two fully-connected layers, each with dropout. Finally, the classifier consists
of a fully-connected layer mapping to the 1000-class output space, with a softmax layer.
Neural nonlinearities always occur after each weight layer, that is, each convolutional or
fully-connected layer. The only exception is the final layer, where the softmax nonlinearity
takes the place of the neural nonlinearities. Training is performed using a modified version
of the LIF rate response function, described in Section 5.2.2. For testing, I then run the
network dynamically using spiking LIF neurons.

To facilitate running this architecture with spiking neurons, I made two main modifi-
cations. The first was to remove the normalization layers. Though normalization layers
take inspiration from biology Jarrett and Kavukcuoglu (2009), it is not clear how spiking
neurons could efficiently and robustly perform this computation. This type of computation
would likely require lateral connections between neurons, making the network recurrent,
and no longer feedforward. Recurrent networks are much more difficult to train than feed-
forward ones, and would require completely different training methods. As we will see,
the normalization layers are non-essential, and by removing them I was able to train the
spiking network using the same feedforward methods as used on the original network.

The second modification I made was to replace the max-pooling layers with average-
pooling layers. Like normalization, the “max” function is a nonlinear function that is
difficult to compute using spiking neurons. Again, one way to implement something sim-
ilar would be with lateral connections, but I avoided these for the reasons stated above.
Average-pooling, by comparison, is easy to compute in spiking neurons, since it is a linear
operation.

The final structural modification was to use the final softmax layer during training
only, thereby avoiding the need to implement a “softmax” function using spiking neurons.
However, since the classification method takes the maximum output of the network, and
the “softmax” function does not affect the maximum value, this modification should have
no effect on the system output.

A summary of the sizes of the architectures used for each of the tasks is given in
Table 5.2. It also presents the number of floating point operations (FLOPs) required
to process one image using the ANN version of the network. The network used for the
ImageNet ILSVRC-2012 task has ten times more neurons and parameters and takes 36
times as many FLOPs per image as any of the other networks.
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Dataset # neurons # weights # synapses FLOPs
MNIST 27 088 6 318 000 11 623 200 23 298 576
SVHN 27 088 6 318 800 12 250 400 24 552 976
CIFAR-10 49 536 2 109 376 19 512 576 39 120 768
CIFAR-100 49 536 2 213 056 19 616 256 39 328 128
ILSVRC-2012 493 184 61 090 496 714 188 480 1 429 246 976

Table 5.2: Size metrics for the networks used on all the different tasks. The
number of parameters in each model is equal to the number of weights plus the number
of neurons (to account for each neuron’s bias). For fully-connected or locally-connected
layers, the number of synapses is equal to the number of weights, since each weight cor-
responds to one connection. In convolutional layers, the same weight is used for many
neural connections; this is why the number of synapses is much greater than the number of
weights. The floating-point operations (FLOPs) corresponds to the number of operations
required to run the network as an ANN using rectified-linear units. This will provide a
point of comparison for running the networks on neuromorphic hardware, examined in
Section 5.3.5.

5.2.2 The soft-LIF rate neuron

As described in Section 5.1.2, a number of previous works have run deep spiking neuron
models using non-leaky integrate-and-fire (IF) models without any refractory period be-
tween spikes. This model is particularly amenable to use in spiking deep networks because
its rate response function is equivalent to the rectified linear unit (ReLU) function that
has become ubiquitous in deep networks.

In my model, I use a leaky integrate-and-fire (LIF) neuron model with a refractory
period between spikes. This not only adds biological realism, but the refractory period
limits the maximum firing rate of the neurons, potentially reducing their average firing
rates as well and thereby making the networks more efficient on neuromorphic hardware.
However, the LIF neuron model has an added restriction as compared with the IF model:
Its rate response function is not differentiable. Specifically, the derivative of the spike rate
of an LIF neuron goes to infinity at the firing threshold. This unbounded derivative creates
numerical problems for algorithms that require the derivative of the nonlinearity.

To address this, I develop a smoothed (“soft”), differentiable version of the LIF rate
response curve. This smooth nonlinearity can be used for training a deep neural network,
and then these same parameters can be used to run a spiking version of the network. The
smoothing is adjustable such that the soft-LIF curve can be made arbitrary close to the
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LIF rate response curve.

The rate response function for the normalized LIF neuron is given by Equation 2.7. We
can re-write this equation:

r(j) =

[
tref − τRC log

(
1− 1

j

)]−1

=

[
tref − τRC log

(
j − 1

j

)]−1

=

[
tref + τRC log

(
j

j − 1

)]−1

=

[
tref + τRC log

(
1 +

1

j − 1

)]−1

if j > 1, and zero otherwise. Since r = 0 if j = 1, then we can re-write the equation as

r(j) =

[
tref + τRC log

(
1 +

1

ρ(j − 1)

)]−1

, (5.1)

where ρ(x) = max(x, 0).

By replacing this hard maximum with a softer maximum, such as ρ1(x) = log(1 + ex),
we can smooth over the hard firing threshold of the LIF neuron. This smoothed equation
is no longer discontinuous in its derivative; the derivative is bounded. Further, we can use
the substitution

ρ2(x) = γ log
[
1 + ex/γ

]
(5.2)

to allow us control over the amount of smoothing, where ρ2(x) → max(x, 0) as γ → 0.
Figure 5.1 compares of the LIF and soft-LIF rate response functions.

By reducing γ, we can make the soft-LIF rate response function arbitrarily close to the
LIF rate response function, allowing the soft-LIF function to accurately model the firing
rates of the spiking LIF neurons used during testing. Of course, having γ be too small
results in the same ill-behaved derivative that the soft-LIF model is designed to avoid,
making the choice of γ an empirical tradeoff. In practice, the precise choice of γ does not
appear to have a large effect on network accuracy. As long as the network does not learn
to rely on the small activation that the soft-LIF neuron has below the LIF neuron firing
threshold, then switching from soft-LIF to LIF neurons will not introduce significant error.
Since a classification network is trying to differentiate between different classes, it tends to
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Figure 5.1: Comparison of LIF and soft-LIF response functions. The left panel
shows the response functions themselves. The LIF function has a hard threshold at j =
Vth = 1; the soft-LIF function (γ = 0.01) smooths this threshold. The right panel shows
the derivatives of the response functions. The hard LIF function has a discontinuous and
unbounded derivative at j = 1; the soft-LIF function has a continuous bounded derivative,
making it amenable to use in backpropagation.
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want individual neurons to be selective between classes, responding strongly in the presence
of some classes and being silent in the presence of others. This is does not mean that the
input driving any particular neuron is bimodally distributed; in fact, the input currents
across all neurons in a layer appear unimodally distributed. Rather, a neuron looking to
be strongly and robustly representative of a class will form strong connections with the
strongly and robustly activated neurons in the previous layer, since these are the most
reliable for classification. Thus the network will not tend to rely on the weak activations
of many neurons, and the below-threshold activation of the soft-LIF model should have
minimal effect.

This is especially the case when training with noise (Section 5.2.3). Noise on the
inputs to a neuron is more detrimental when the neuron is active in an area of its rate-
response curve with a large derivative, since fluctuations in the input will have larger effects
on the output. For the LIF neuron, the rate-response derivative is highest at the firing
threshold, and lowest below the firing threshold (where it is zero) and well above it (where
it approaches zero). Additionally, filtered spike trains show the most variability when the
firing rate is low (see Figure 5.2). Both of these factors penalize neuron activities around
the firing threshold, since these result in the most variable outputs. The result is that
neural activations near the firing threshold should not be relied on by the network, and
switching from soft-LIF to LIF neurons should have little effect.

The soft-LIF curve has a biological motivation. High-frequency variability (“noise”)
in the membrane voltage of a neuron, caused for example by random fluctuations in ion-
channel opening and closing (Manwani & Koch, 1999), can cause a neuron to fire for a
constant input that is slightly below its firing threshold. Thus, the response of a LIF
neuron model with noise in the membrane voltage looks qualitatively similar to the soft-
LIF response function. The response of such a noisy LIF neuron can be modelled using
the Siegert approximation (Siegert, 1951; Kreutz-Delgado, 2015). This approximation
requires numerically computing an integral across a complex integrand. The soft-LIF
function provides a similar effect while being much simpler to implement, making it more
amenable for training networks on GPUs, for example.

5.2.3 Modelling spiking variability

A key difference between spiking and rate networks is that spiking networks have much
more variability in the signals passed between neurons. The output of a spiking neuron
(i.e., a series, or “train”, of spikes) is highly variable; the signal is very large at some
points in time (when a neuron spikes), and zero at all other points in time (between
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spikes). Luckily, synapses have an effect of lowpass-filtering these signals (see Section 2.3),
reducing the variability. Still, the variability of the filtered signal is significant. The result
is that whereas a rate network will produce a constant output given a constant input, a
spiking network will have a variable output even for a constant input. Understanding how
the synaptic filter affects a spike train is the key to understanding variability in spiking
networks, and the first step in reducing its adverse effects.

Figure 5.2 shows the variability of filtered spike trains across various levels of input cur-
rent, for different types of filtering. Low levels of filtering (e.g., the exponential filter with
τs = 0.003 s) results in filtered spike trains that are highly variable. Both increasing the
synaptic time constant τs and increasing the order of the filter from first-order (exponential
filter) to second-order (alpha filter) reduce the amount of variability. One significant dif-
ference between the two synapse models is that the exponential synapse still has non-zero
variance even for large firing rates, whereas with the alpha synapse the variance goes to
zero as the firing rate increases (see Appendix B.4 for a proof). Due to the significantly
lower variance of the alpha synapse, it will be the main synapse model used in this thesis.

If we can mimic the effects of this spiking variability when training networks, then
ideally the network will become more robust to that variability, and the resulting networks
will run better in spiking neurons than those trained without noise. To do this, we need a
model that can mimic the variability in the neuron output given the neuron’s firing period
p. The first model I experimented with was a simple Gaussian noise model:

mG(p) =

{
1
p

+N(0, σ) if 1
p
> r1

1
p

otherwise
. (5.3)

That is, the noisy output of the neuron is equal to the firing rate (the inverse of the firing
period) plus additive Gaussian noise with zero mean and standard deviation σ. I only add
noise if the firing rate is greater than r1 = r(j = 1), the firing rate of the neuron model
at the firing threshold j = 1. The idea behind this is to not add noise when the neuron
is silent, since there is no variability in that case. The soft-LIF model’s firing rate never
becomes exactly zero, however, it only approaches zero as j → −∞. I thus chose to add
noise only when the input current j > 1, that is, when the corresponding LIF neuron would
be firing. The σ parameter can be fit to the empirically-measured spiking neuron output
variance, as characterized in Figure 5.2. This makes the model amenable to any synapse
model. The main drawbacks to the model are that it models the noise as Gaussian (which
it is not, particularly for low firing rates, see Figure 5.2), and that it treats the amount of
variance as constant across all firing rates (which again is not the case).

For certain synapse models—including the alpha synapse—we can more accurately
model the variability of a filtered spike train. Making the assumption that neurons in
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Figure 5.2: Effect of presynaptic input current on variance of postsynaptic cur-
rent. The black line shows the average of the filtered postsynaptic signal (which is identical
to the average firing rate given by Equation 2.7, since the filtering is linear). The dashed
line shows its the median of this signal. The darker region indicates the range of its middle
quartiles (25th percentile to 75th percentile). The lighter region indicates its full range
(minimum to maximum).
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the network are all spiking at constant rates, we can model the variability in the network
by applying a synaptic filter to a train of spikes at regular intervals, and looking at the
resulting signal. The result of filtering a spike train with an alpha synapse is given by:

sα(t) =
e−t/τs

τ 2
s

(
t

1− e−p/τs
+

pe−p/τs

(1− e−p/τs)2

)
(5.4)

where τs is the synaptic time constant and p is the period between spikes.7

We can use the alpha-filtered impulse train series to generate noise in a rate-based
network during training, to help simulate the variability caused by spikes. To do this, we
assume that each input neuron is firing at a constant rate, and that at any given point in
time, the time since the last spike of the neuron is uncorrelated with all other neurons (i.e.,
firing is completely desynchronized). To sample from Equation 5.4 for a neuron with firing
period p, I generate a random t ∼ U(0, p) (that is, t is uniformly distributed between zero
and p). Thus, the alpha noise model describes the noisy output of a neuron with firing
period p as mα(p) = sα(U(0, p)).

Despite the fact that Equation 5.4 perfectly models the filtered output of a regularly-
spiking neuron, it is actually a poor model for spike noise because it over-estimates the
variability in the network due to spikes. This is because spiking neurons integrate infor-
mation over time, helping to smooth out the large fluctuations present in Equation 5.4.
To account for this, I combined the effects of the synaptic filter with the filtering effects of
the postsynaptic neural membrane. Applying this combined filter to a spike train results
in the following model:

sατ (t) =
τRC

d2

(
e−t/τRC

1− e−p/τRC
− e−t/τs

1− e−p/τs

)
−
e−t/τs

(
t(1− e−p/τs) + pe−p/τs

)
dτs (1− e−p/τs)2 , (5.5)

where d = τRC − τs. The corresponding noise model is given by mατ (p) = sατ (U(0, p)).

To evaluate how well sατ (t) actually represents the variability caused by spikes, I ex-
amined how the range of this series compares to the actual membrane voltages of an LIF
neuron with an alpha-filtered spike train input at different periods (Figure 5.3). When
we sample from sατ (t) to generate a noisy output of a neuron with spiking period p, we
get a value that represents the steady-state of the neuron membrane voltage; that is, the
membrane voltage will exponentially approach this value. The neuron will spike when its
membrane voltage crosses the firing threshold. Because the connection weights can scale

7A full derivation for this equation is given in Appendix B, Equation B.12.
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Figure 5.3: Evaluation of the mατ (t) noise model. To evaluate the mατ (t) noise model
(Equation 5.5), I compared voltage traces of a neuron receiving input from an alpha-
filtered spike train (solid blue traces), with an exponential increase to the minimum and
maximum of sατ (t) (dotted and dashed traces). The light solid traces show individual
neuron membrane voltages with different input spike train phases (offsets). The dark solid
trace shows the average of the individual neuron traces. Each plot shows a different period
p for the input spike train. Since the neuron input is not modulated by connection weights,
the membrane voltage is in arbitrary units. τRC = 0.05, τs = 0.003
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the input arbitrarily, and scaling all inputs is equivalent to scaling the firing threshold, we
can view the firing threshold as being at any point of the y-axis in Figure 5.3. The point
in time at which the voltage crosses the firing threshold determines the firing rate. The
lighter solid lines in Figure 5.3 show the membrane voltage of an LIF neuron subject to
an alpha-filtered spike train with period p, given that the neuron has just fired a spike
and the voltage is reset to zero. Each line shows a different phase (i.e., different temporal
offset) for the filtered input spike train. The dashed lines show an exponential approach
to the minimum and maximum of sατ (t). These indicate the range of variability that we
can get by using the sατ (t) distribution for noise generation in the model. If we draw a
horizontal line through any point in the graph (corresponding to setting the neuron firing
threshold at this value), the places where the solid lines intersect will represent the range of
possible inter-spike intervals (ISIs) for an actual neuron with spiking input, and the space
between the dashed lines will represent the range of possible inter-spike intervals using the
sατ (t) noise model. If sατ (t) represents well the variability caused by spikes, then these
two ranges should correspond well for any horizontal line we draw. This would mean that
wherever the firing threshold of the neuron is (i.e., whatever the magnitude of the inputs),
the actual variability caused by spikes will be well represented by the model.

As we see in Figure 5.3, the fit of the noise model depends on both the period of the input
spike train and the amount of time we allow for the membrane voltage to settle. For all
input spike periods p, if we allow the membrane voltage sufficient settling time (t > 3τRC),
then the sατ (t) noise model represents the spiking variability well. This corresponds to
the situation when the firing rate of the output neuron is low. For higher input spike
rates (smaller p), the noise model also does a reasonably good job representing the spiking
variability for t < 3τRC, as shown in the bottom two panels. In this situation, the output
spike rate can be higher while still having the variability be well modelled. As the input
spike rates get lower (larger p), the noise model gets progressively worse at capturing the
full range of variability caused by spikes before the voltage has had time to settle, as shown
by the light solid traces not falling within the dotted and dashed lines at earlier times. The
worst case scenario is when input spike rates are low, but the output spike rate is high
(i.e., an ISI of less than τRC). In this case, the model severely underestimates the amount
of variability caused by spikes. In practice, this seems to be an uncommon situation, since
the firing rate of neurons typically decreases from one layer to the next (see Table 5.8).

So far, this analysis has considered the case when we have a single input neuron, but
in actual networks, each neuron gets input from multiple neurons. Figure 5.4 looks at this
case. It makes the assumption that we have nine input neurons, all with the same input
weighting and randomly chosen phases, and with firing periods spread uniformly between
two values (distinct for each panel). This analysis shows similar results as before: when the
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Figure 5.4: Evaluation of the mατ noise model with multiple inputs. Each neuron
gets five alpha-filtered spike train inputs, with periods p linearly spread across the given
ranges (separate panels). Each light trace shows one trial (100 trials total), where the
phases (temporal offsets) of each input are determined randomly. The dotted and dashed
lines show the minimum and maximum across all trials of the noise model, where the value
of the noise model for one trial is the mean across the nine neurons of sατ (t) evaluated at
the period and offset time for that neuron. Since the neuron input is not modulated by
connection weights, the membrane voltage is in arbitrary units. τRC = 0.05, τs = 0.003
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membrane voltage is allowed to relax towards its steady state, the noise model performs
well. For shorter filtering times (i.e., fast output firing rates) and for longer input periods,
the model underestimates the variability caused by spikes. However, the magnitude of
these errors is generally smaller, due to the fact that some of the variability caused by the
different inputs cancels out, assuming the neurons are not synchronized.

5.2.4 Training methods

To train the network, I used backpropagation to determine the parameter gradients (Sec-
tion 3.2), and stochastic gradient descent as an optimization strategy (Section 3.3). This
is the same method used by Krizhevsky et al. (2012), and is common for training deep
neural networks.

For the most part, the architectural modifications described in Section 5.2.1 had little
effect on the training procedure. One exception is that the parameters used for the LIF
neurons—namely the bias, gain, amplitude, τRC, tref, and γ—had a large effect on the
success of the training. The most important factor when choosing all of these parameters
is that for the initial weights and biases in the network, the derivatives of the nonlinearities
for inputs from the dataset should be around one. This helps to discourage both the
vanishing gradient problem (where the gradient in the lower layers becomes too small),
and the exploding gradient problem (where the gradient becomes too large). For ReLU
nonlinearities, this is easy, since the derivative of a ReLU is one whenever it is active. This
is one characteristic that makes training networks with ReLUs much easier, but it is not
the case with the LIF (or soft-LIF) nonlinearity. By default, the firing threshold of a LIF
neuron corresponds to J = 1, so the first change that I made is to give it a bias of one such
that the firing threshold is at zero. Second, I chose the membrane time constant (τRC)
of the neurons. Smaller values (τRC = 0.02) caused problems with training, so I chose
τRC = 0.05, which makes a smoother transition between the silent and spiking regimes of
the neuron, and thus a less extreme gradient. It is possible that shorter τRC can be used
if other parameters—such as the magnitudes of the initial weights—are more judiciously
chosen. I chose tref = 0.001 to be small, to reduce the effects of saturation on neuron
behaviour. I found that γ—the amount of smoothing for the “soft” LIF—could actually
be quite small and still train successfully; I chose γ = 0.02. Smaller γ is desirable because
it makes the soft-LIF curve closer to the LIF curve, thus creating less error when switching
to spiking neurons. Finally, I chose the neuron gain and amplitude (that is, multiplicative
scaling on the input and output, respectively) such that the soft-LIF curve fit the ReLU
curve as closely as possible for inputs in the range [−1, 10]. This ensures that both the
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magnitude of the soft-LIF output is in a reasonable range, and that the soft-LIF derivative
has a maximum around one.

The ImageNet (ILSVRC-2012) dataset required one additional modification: initial
pretraining over a few (∼30) batches using a small learning rate, to bring the initial pa-
rameters into a more reasonable range. Otherwise, beginning with a normal learning rate
would lead to instability in the training.

5.2.5 Evaluation methods

When evaluating the network, all off the rate-based (soft-LIF) neurons are replaced with
spiking LIF neurons, and the network is run online. The spiking classification procedure
is the same as in the previous chapter (see Section 4.4). As with those networks, the
amount of time required to get a reasonable classification result is an empirical question,
depending on the synaptic time constant τs and how small we wish to make the margin of
error between the spiking network and its ANN counterpart; I examine this in Section 5.3.5.

One key difference with Krizhevsky et al. (2012) is that they used multiview testing:
many (9) different image patches (chosen in a 3× 3 grid covering the image) are all passed
through the classifier, and the final classification is determined by averaging the softmax
outputs across all views, and taking the class with the highest average. Presenting multiple
views requires multiple passes through the network, which is not realistic for a spiking
network. Each view could be presented sequentially, but this would take significantly more
processing time. I also experimented with jittering the input image over time to simulate
the effect of multiple views in a shorter time scale; this did not lead to better classification
results.

These models were run using the Nengo simulator (Bekolay et al., 2014). In particular,
the Nengo OCL backend8 was used to run the networks efficiently on a GPU. I made sig-
nificant additions to the backend specifically for running convolutional networks efficiently.

5.3 Results

This section provides results from training and running the spiking network on the datasets
described in Section 3.1.7. The experiments comparing the effects of noise on network
training and testing are performed on the CIFAR-10 dataset, since it is sufficiently small
to allow training many networks (for robust results).

8https://github.com/nengo/nengo ocl
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5.3.1 System overview

Figure 5.5 provides an overview of the system running on ImageNet test images. As images
are presented sequentially to the network (top row), they result in spiking activity through
the various layers in the network (middle rows). The output of the system is weightings on
all of the object categories, which can be used to assign probabilities and predict the class
of the image (bottom row). The synapses between subsequent layers in the network, as well
as the neural dynamics themselves, both contribute to delays between successive layers.
Most of the first layer neurons respond almost instantaneously to a change in the input
stimulus, but later layers take longer to transition to the new activity regime. The model is
often able to correctly predict the object class, either as its first guess (see “Shetland” and
“soup bowl”) or in its top five guesses (see “alp”). Even when the model is not correct,
it is often in the right ballpark, guessing similar objects (see “sea snake”). Sometimes,
the model is wildly incorrect, as in the case of “cradle” when it guesses “banded gecko”,
“armadillo” and “hamster” (though the first guess, “teddy”, is accurate). These images
also illustrate the difficulty of the ImageNet dataset, which is why researchers typically
focus on having the correct category in the top five guesses of the system, rather than
requiring the system to guess the correct class outright.

5.3.2 Architecture modifications and noise

This section examines the effects of different modifications to the architecture on the
CIFAR-10 dataset. The starting point is a network trained as per Krizhevsky et al. (2012).
The measured test-set error (14.03%) is considerably higher than the number reported by
Krizhevsky et al. (2012) (∼11%), mainly because the version presented here does not use
multiview testing, whereas the original work does (see Section 5.2.5).

The full list of modifications and the associated error measurements are shown in Ta-
ble 5.3. The first modification (Network 1) removes the cross-map response normalization
layers, which only affects the test-set accuracy slightly (∼ 0.3%). The second modification
(Network 2) replaces max-pooling with average-pooling, which is more detrimental to the
accuracy (∼ 2.3%).

Network 3 introduces soft-LIF neurons. This network is now a rate-based version of the
final spiking network, and thus serves as a baseline for the performance of later networks.
Surprisingly, the error rate of Network 3 is lower than that of Network 2, that is, introducing
soft-LIF neurons increases the accuracy of the network (by ∼ 0.8%). However, this result
is not necessarily significant. Network accuracy depends heavily on the hyperparameters
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Figure 5.5: The spiking system running on several ImageNet images. Images are
presented to the network (top row), which processes them using seven layers of spiking
neurons (middle three rows). The activities in the final spiking layer are decoded to prob-
abilities of membership in each of the 1000 possible classes (the five most probable classes
are shown). A video demonstration is available at https://youtu.be/VWUhCzUDZ70.
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# Modification CIFAR-10 error

0 Original ANNa 14.03%
1 Network 0 minus normalization 14.38%
2 Network 1 with average-pooling 16.70%
3 Network 2 with soft-LIF 15.89%
4 Network 3 with training noise (σ = 10) 16.01%
5 Network 3 with training noise (σ = 20) 16.92%
6 Network 3 (σ = 0) in spiking neurons 17.01%
7 Network 4 (σ = 10) in spiking neurons 16.46%
8 Network 5 (σ = 20) in spiking neurons 17.04%

aBased on Krizhevsky, Sutskever, and Hinton, 2012.

Table 5.3: Effects of successive architectural modifications to CIFAR-10 error.
We first show the original ANN based on Krizhevsky, Sutskever, and Hinton (2012), and
then the effects of each subsequent modification. Rows 6-8 show the results of running
ANNs 3-5 in spiking neurons, respectively. Row 7 is the best spiking network, using
a moderate amount of training noise. While these values provide a rough qualitative
characterization of the effects of the architectural modifications, each error measurement
only represents one network trained with a particular set of hyperparameters. A more
robust analysis of the effects of training with noise is presented in the next section.
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used (Bergstra & Bengio, 2012), and even slightly on the random initial values chosen for
the learned parameters. Thus, without extensive hyperparameter optimization, we cannot
draw the conclusion that the soft-LIF neuron is better than ReLUs, even for this particular
network.

Network 6 shows Network 3 run in spiking neurons. I also trained two networks with
moderate (Network 4) and high (Network 5) amounts of Gaussian noise on the neuron
firing rates, and ran these networks in spiking neurons (Networks 7 and 8). As shown
by Networks 4 and 5, training with even moderate noise reduces the accuracy of the
network (by ∼ 0.1%, not necessarily significant), with more noise being more detrimental
to performance (∼ 1.0%). However, when running in spiking neurons, the network trained
with a moderate amount of noise performs the best (by ∼ 0.5%). This demonstrates that
the right amount of training noise is able to make the network somewhat robust to the
variability that comes with running the network in spiking neurons. This result is explored
more robustly in the following section.

5.3.3 Performance of noise models

The previous section demonstrated that adding noise (with the Gaussian model) can help
to reduce the error in spiking networks. To more robustly assess the benefits of training
with noise, I trained multiple (5) models on CIFAR-10 using the Gaussian noise model with
two different levels of noise, as well as the models developed in Section 5.2.3, specifically
sα (Equation 5.4) and sατ (Equation 5.5). The results are shown in Table 5.4.

The most salient result is that training with noise is most beneficial for spiking networks
when the synapse time constant τs is small or zero and the amount of time used for
classification is short. When training the ANN, the noise from the mατ model has little
effect on the ANN performance, whereas noise from the other models (which is generally
larger in magnitude) has on average an adverse effect on ANN performance. In the first
two spiking conditions, when no synapse is used (τs = 0 ms), the benefits of training with
noise are most apparent: networks trained with the mατ model with τs = 3 ms perform
significantly better than networks trained without noise. The Gaussian noise model with
σ = 10 also performs well in these cases. When the synapse time constant is longer (3 ms
or 5 ms), the networks trained with either the mατ model with τs = 3 or the Gaussian
noise model with σ = 10 perform about as well on average as the networks trained without
noise.

The mατ model with τs = 5 ms performs closer to the no noise model case; the higher
level of filtering associated with this model results in only a small amount of noise being
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Noise model ANN Spiking 1 Spiking 2 Spiking 3 Spiking 4
None 15.57 (0.19) 17.86 (0.30) 16.99 (0.35) 16.38 (0.19) 16.31 (0.26)
mG (σ = 10) 16.03 (0.12) 17.15 (0.09) 16.68 (0.22) 16.38 (0.08) 16.40 (0.13)
mG (σ = 20) 16.96 (0.14) 17.44 (0.24) 17.29 (0.12) 17.37 (0.12) 17.43 (0.15)
mα (τs = 3 ms) 18.49 (0.22) 18.66 (0.24) 18.48 (0.18) 18.72 (0.28) 18.68 (0.26)
mα (τs = 5 ms) 16.96 (0.19) 17.42 (0.32) 17.22 (0.12) 17.13 (0.20) 17.20 (0.21)
mατ (τs = 3 ms) 15.65 (0.30) 17.31 (0.26) 16.55 (0.27) 16.18 (0.23) 16.18 (0.25)
mατ (τs = 5 ms) 15.66 (0.17) 17.58 (0.34) 16.90 (0.26) 16.38 (0.20) 16.37 (0.17)

Table 5.4: CIFAR-10 results from spiking networks trained with different noise
models. Results are the average over five independent networks; the standard deviation
is shown in parentheses. The columns show results for the non-spiking ANN, and spiking
results using alpha synapses with: 1) τs = 0 ms, tc = 10ms, tp = 60ms; 2) τs = 0 ms,
tc = 10ms, tp = 80ms; 3) τs = 3 ms, tc = 60ms, tp = 150ms; 4) τs = 5 ms, tc = 100ms, tp =
200ms. Noise, in the right amounts, is able to improve spiking performance, particularly in
cases where the synapse time constant τs used at runtime is small or zero, and the amount
of time used for classification (tp minus tc) is short. Note that for noise models that use
a synapse time constant τs, the value of τs used during training (presented with the noise
model in the left-most column) does not necessarily match the value of τs used at runtime
(which varies between the four spiking configurations).
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Network MNIST SVHN CIFAR-10 CIFAR-100 ILSVRC-2012a

ReLU ANN 0.79 5.65 16.48 50.05 45.4 (20.9)
LIF ANN 0.84 5.79 16.28 44.35 48.3 (24.1)
LIF SNN 0.88 6.08 16.46 44.87 48.2 (23.8)

aResults from the first 3072-image test batch.

Table 5.5: Test-set error rates (percent) for spiking LIF networks (LIF SNN).
Compared with ReLU ANN and LIF ANN (both using the same network structure, but
with ReLU and LIF rate neurons respectively). The spiking versions of each network
perform almost as well as the rate-based versions. The ILSVRC-2012 (ImageNet) results
show the error for the top result, with the top-5 result in brackets.

added, and it appears the reduced noise is not enough to significantly affect training.
The mα noise model, on the other hand, generally introduces too much noise, performing
considerably worse then the other models across almost all cases; the same is true of
the Gaussian noise model with high noise (σ = 20). The exception is when there is no
synapse and short classification time (case 1), when some of the higher-noise models are
competitive.

5.3.4 Accuracy on various datasets

To better quantify the performance of my method of constructing spiking deep networks,
I measured its performance on five datasets, and compared the results with other state-of-
the-art spiking networks. I used the MNIST, SVHN, CIFAR-10, CIFAR-100, and ImageNet
datasets, described in detail in Section 3.1.7.

A summary of the best test-set error scores are shown in Table 5.5. On all datasets,
the network of spiking LIF neurons (LIF SNN) is able to achieve results close to that of
the non-spiking ReLU network (ReLU ANN). This both shows that loss is minimal when
going from ReLUs to rate LIF neurons,9 and that loss is minimal when going from rate
LIF neurons to spiking LIF neurons.10

9The CIFAR-100 dataset shows a considerable increase in performance when using soft-LIF neurons
versus ReLUs in the ANN. However this may not be significant; it could simply be due to the training
hyperparameters chosen, since these were not optimized in any way.

10The ILSVRC-2012 dataset actually shows a marginal increase in accuracy when switching to spiking
neurons. This is likely not statistically significant, and could be because the spiking LIF neurons have
harder firing thresholds than their soft-LIF rate counterparts.
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Dataset My model TN 1-chipa TN 8-chipa Zambranob Best Other
MNIST 0.88 (27k) 0.44 (100k) 0.88 (22k)c

SVHN 6.08 (27k) 3.34 (1M) 2.54 (8M)
CIFAR-10 16.46 (50k) 16.59 (1M) 10.68 (8M) 10.14 (270k) 22.57 (28k)d

CIFAR-100 44.87 (50k) 44.36 (1M) 34.52 (8M) 35.79 (295k)
ILSVRC-2012 48.2e (493k) 37.03 (24M)

aEsser et al. (2016)
bZambrano, Nusselder, Scholte, and Bohté, 2017.
cDiehl et al., 2015.
dCao, Chen, and Khosla, 2014.
eResults from the first 3072-image test batch.

Table 5.6: Percentage error rates of my model compared with state-of-the-art
models. I compare with recent results on the TrueNorth (TN) neuromorphic chip (Esser
et al., 2016), as well as other best results in the literature. Approximate numbers of
neurons are shown in parentheses. The TrueNorth networks use significantly more neurons
than my networks (about 20× more for the 1-chip network and 160× more for the 8-chip
network). The ILSVRC-2012 (ImageNet) numbers indicate the error for the top result (the
top-5 result for this work can be found in Table 5.5, and was not reported for Zambrano).
It is important to note that my error on ILSVRC-2012 is only computed using the first
3072-image test batch (to reduce computation time), and thus only provides an estimate
of the true error and is not directly comparable to the other result on this dataset.
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Dataset Method Error Neurons Rate Time Spikes/image

MNIST
My model 0.88 27.1 k 9.7 200 52 k
Zambranoa 0.44 100.7 k 67 291 1963 k
Zambranoa 0.88 100.7 k 10 209 210 k

CIFAR-10
My model 16.5 49.5 k 148 200 1.5 M
Zambranoa 10.1 270.8 k 68 372 6.9 M
Zambranoa 11.5 270.8 k 22 304 1.8 M

Imagenet
My model 48.2b 493.2 k 93 200 9.2 M
Zambranoa 37.0 24085 k 66 347 551.6 M
Zambranoa 46.2 24085 k 12 338 97.7 M

aZambrano, Nusselder, Scholte, and Bohté (2017)
bResults from the first 3072-image test batch.

Table 5.7: Comparison of spikes required to classify an image. Comparing my
method with another state-of-the-art method (the only method from Table 5.6 to report
overall network firing rates). Despite higher firing rates, my model uses fewer spikes to
classify each image, due to the significantly fewer neurons used.

Table 5.6 compares my results with several other state-of-the-art results for deep spiking
networks. A recent paper using the TrueNorth neuromorphic chip (Esser et al., 2016)
set many new records for spiking networks on the SVHN, CIFAR-10, and CIFAR-100
datasets. However, these networks use large numbers of neurons, either one million for
the one-chip networks or eight million for the eight-chip networks. By comparison, my
networks—which use orders of magnitude fewer neurons (27-50 thousand)—outperform
the one-million-neuron TrueNorth networks on two of the three tasks. Furthermore, I
demonstrate that my methods can perform reasonably well on the very large ImageNet
(ILSVRC-2012) dataset using half a million neurons. The methods used by Esser et al.
(2016) would have difficulty scaling a problem of this size due to the sheer number of
neurons required.

It is only quite recently that other another spiking network has been able to compete
on ILSVRC-2012, namely that of Zambrano, Nusselder, Scholte, and Bohté (2017). Their
networks also use lower firing rates than other state-of-the-art networks (including the ones
presented in this thesis). However, their networks also use significantly more neurons than
those presented in this thesis. The result is that the number of spikes required to classify
each image is actually higher than all the networks presented in this thesis (see Table 5.7).
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5.3.5 Efficiency

Running on standard hardware, spiking networks are considerably less efficient than their
ANN counterparts. This is because ANNs are static, requiring only one forward-pass
through the network to compute the output, whereas SNNs are dynamic, requiring the
input to be presented for a number of time steps and thus a number of forward passes. On
hardware that can take full advantage of the sparsity that spikes provide—such as most
neuromorphic hardware—SNNs can be more efficient than the equivalent ANNs, as we
show here.

First, we need to compute the computational efficiency of the original network, specifi-
cally the number of floating-point operations (FLOPs) required to pass one image through
the network. The two main computations in a spiking neural network are those associated
with the neurons, and those associated with the connections:

FLOPs =
FLOPs

neuron
× neurons +

FLOPs

connection
× connections . (5.6)

Since a rectified linear unit is a simple max function, it requires only one FLOP to compute
(FLOPs/neuron = 1). Each connection requires two FLOPs, a multiply and an add
(FLOPs/connection = 2). We can determine the number of connections by “unrolling”
each convolution, so that the layer is in the same form as a locally connected layer. (See
Table 5.2 for the number of FLOPs needed to process a single image on conventional
hardware for each different network architecture.)

To compute the SNN efficiency on a prospective neuromorphic chip, we begin by iden-
tifying the energy cost of a synaptic event (Esynop) and neuron update (Eupdate), relative
to standard hardware. In consultation with neuromorphic experts, and examining current
reports of neuromorphic chips (e.g., Merolla et al., 2014)), we assume that each neuron
update takes as much energy as 0.25 FLOPs (Eupdate = 0.25), and each synaptic event
takes as much energy as 0.08 FLOPs (Esynop = 0.08). (These numbers could potentially be
much lower for analog chips, e.g., Benjamin et al. (2014).) Then, the total energy used by
an SNN to classify one image is (in units of the energy required by one FLOP on standard
hardware):

ESNN =

(
Esynop

synops

s
+ Eupdate

updates

s

)
× s

image
. (5.7)
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MNIST CIFAR-10 ILSVRC-2012
Layer N S R N S R N S R

0 314k 2.8M 70M
1 12.5k 5.0M 4.6 37k 15M 173 194k 224M 178
2 12.5k 6.3M 15.6 9.2k 1.3M 99 140k 112M 48.8
3 2k 20k 4.2 2.3k 664k 9.7 65k 150M 26.6
4 1.2k 12k 7.2 43k 100M 30.6
5 43k 38M 35.6
6 4.1k 17M 19.1
7 4.1k 4.1M 10.7

Table 5.8: Spike rates by layer for my networks. The number of neurons N , synapses
out of the layer S, and average spike rate R in Hz for each layer of each network (k =
thousands, M = millions). Layer 0 indicates the input layer, which has no neurons, so
only the synapses out are shown (connecting to the first hidden layer). The output layers,
which also have no neurons, are not shown.

These numbers are computed from the per-layer parameters shown in Table 5.8:

synops

s
=

L∑
i

SiRi

updates

s
=

timesteps

s
×

L∑
i

Ni ,

where L is the number of layers.11 The CIFAR-10 network has rates of 2.69 billion synops/s
and 49.5 million updates/s. This results in the equivalent energy usage as 45.6 million
FLOPs when each image is presented for 200 ms. Dividing by the number of FLOPs
per image on standard hardware (39.1 million), we find that the relative efficiency of the
CIFAR-10 network is 0.76, that is, it is somewhat less efficient than the ANN, if we present
the images for 200 ms.

Equation 5.7 shows that if we are able to lower the amount of time needed to present
each image to the network, we can lower the energy required to classify the image. Alter-
natively, we can lower the number of synaptic events per second by lowering the firing rates
of the neurons. Lowering the number of neuron updates would have little effect on the
overall energy consumption since the synaptic events require the majority of the energy.

11The networks in this thesis update every millisecond, resulting in 1000 timesteps/s.
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Dataset τs [ms] tc [ms] tp [ms] Error Efficiency

CIFAR-10

5 100 200 16.18% 0.76×
3 60 150 16.18% 0.98×
0 10 80 16.55% 1.64×
0 10 60 17.31% 2.04×

MNIST

5 120 200 0.88% 5.94×
2 40 100 0.92% 10.24×
2 50 60 1.14% 14.42×
0 20 60 3.67% 14.42×

ILSVRC-2012
3 140 200 23.80% 1.39×
0 30 80 25.33% 2.88×
0 30 60 25.36% 3.51×

Table 5.9: Estimated efficiency of my networks on neuromorphic hardware. As
compared with traditional hardware. For all datasets, there is a tradeoff between accuracy
and efficiency, but we find many configurations that are significantly more efficient while
sacrificing little in terms of accuracy. τs is the synapse time constant, tc is the start time
of the classification, tp is the end time of the classification (i.e., the total presentation time
for each image).

To lower the presentation time required for each input while maintaining accuracy, we
need to decrease the synapse time constant as well, so that the information is able to
propagate through the whole network in the decreased presentation time. Table 5.9 shows
the effect of various alternatives for the presentation time and synapse time constant on
the accuracy and efficiency of the networks for a number of the datasets.

Table 5.9 shows that for some datasets (i.e., CIFAR-10 and ILSVRC-2012) the synapses
can be completely removed (τs = 0 ms) without sacrificing much accuracy. Interestingly,
this is not the case with the MNIST network, which requires at least some measure of
synapses to function accurately. We suspect that this is because the MNIST network has
much lower firing rates than the other networks (average of 9.67 Hz for MNIST, 148 Hz for
CIFAR-10, 93.3 Hz for ILSVRC-2012). This difference in average firing rates is also why
the MNIST network is significantly more efficient than the other networks.

It is important to tune the classification time, both in terms of the total length of time
each example is shown for (c1), and when classification begins (c0). The optimal values
for these parameters are very dependent on the network, both in terms of the number of
layers, firing rates, and synapse time constants. Figure 5.6 shows how the classification
time affects accuracy for various networks.
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Figure 5.6: Effects of classification time on accuracy. Individual traces show different
starting classification times (c0), and the x-axis the end classification time (c1).
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5.4 Discussion

The soft-LIF neuron model is able to smooth the LIF rate response function, such that
it is differentiable and usable with backpropagation. This smoothing technique is also
applicable to other neuron models with a static rate response function and a discontinuity
in firing rate around the firing threshold. This could include the idiosyncratic neuron
models used on analog neuromorphic hardware (e.g., Benjamin et al., 2014).

With the soft-LIF model, the amount of smoothing can be adjusted so that the model
is arbitrarily close to the LIF model it is approximating. This could allow for a relaxation
over the course of training where the soft-LIF model begins quite smooth and then relaxes
towards the actual LIF model, so that there is no loss when changing to a LIF rate model.
In practice, I have not found that this is necessary. Optimization tends to push neurons
to be either robustly on or off, particularly when noise is present either on the neural
nonlinearity or in the form of dropout. This keeps neural inputs away from the firing
threshold, and thus out of the region where the soft-LIF and rate LIF models differ.

The first noise model I developed for alpha synapses (model sα, Equation 5.4) did
not perform well. While this model perfectly characterizes the variability of an alpha-
filtered spike train, it assumes that downstream neurons only receive an instantaneous
snapshot of the filtered spike train, when in fact they integrate this spike train over time.
This leaky integration provides a second layer of filtering on the incoming spike trains,
and is especially significant because the neural membrane time constant τRC tends to be
much larger than the postsynaptic time constant τs. Without accounting for this filtering,
the model overestimates the amount of noise caused by spiking, injecting too much noise
during training resulting in lower accuracy. Including the effects of this membrane filtering
significantly improves performance.

When accounting for neuronal integration, the window over which a neuron is actually
able to integrate depends on its firing rate, where the integration period is equal to the
period between spikes (minus the refractory period). For example, a neuron that is firing
quickly only integrates its inputs for a short amount of time before it hits threshold and
spikes, whereas a neuron with a low firing rate will require much more time to integrate
before hitting threshold. This is illustrated in Figure 5.4, where the model correctly es-
timates the spiking variance for low postsynaptic neuron firing rates, but underestimates
the spiking variance at high firing rates. In the low firing rate case, there is more time
between spikes and thus the full filtering effect of the membrane is able to be applied to
most inputs; thus the model—which includes the full membrane filter—does a good job.
As the firing rate increases, the membrane has less time to filter inputs and the effective
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filtering is reduced; the model now overestimates the amount of filtering being applied to
inputs, thus underestimating the amount of variance in the output.

The firing rate of a neuron depends on the strength of its inputs, which in turn depend
on both the firing frequency and synaptic weighting of each of its afferent neurons. This
dependence on both input frequency and weighting is important: it means that to fully
characterize the variability of a neuron’s input signal, one needs to transmit both these
values for each afferent neuron.12 For example, if we only transmit a single value for each
neuron that is equal to its firing rate times synaptic weighting (as is standard for rate-based
networks), then a downstream neuron cannot tell the difference between a high-frequency
input with a small weighting, and a low-frequency input with a large weighting. Yet, these
two inputs have very different amounts of variance, with a filtered high-frequency spike
train having much less variance than a similarly filtered low-frequency one. The need
for both the firing rate and synaptic weight of input neurons can be seen in the Siegert
model for the rate of a LIF neuron with Poisson inputs (O’Connor et al., 2013): it requires
both values, multiplying the weights times the rates to characterize the input mean, and
multiplying the squared weights times the rates to characterize the variance.

It is not theoretically difficult to transmit two values during training—or even more to
characterize higher moments of the variability distribution—and the increase in training
time would be roughly proportional to the total number of moments transmitted (e.g., using
two moments would take twice as computation in the forward pass as a typical ANN, which
uses only the mean). Incorporating these values into the backwards pass would be more
difficult, since typical objective functions only constrain the mean firing rates of the output
units. That said, even incorporating higher moments only in the forward pass could be
beneficial, since these moments can affect the mean (as seen in the Siegert model). Current
machine learning libraries are not designed to transmit multiple values in this manner, and
would require significant modification. Depending on the exact calculation required for
the higher moments, many of the basic computational elements such as convolution and
pooling may be able to be reused to compute the moments.

The alternative to accounting for such moments in a rate-based optimization method
is to simply switch to a spike-based optimization method. Due to the relationship between
first spike time and firing rate, spike-based and rate-based methods are optimizing very
similar quantities. The main difference is that by accounting for individual spike times,

12This assumes that each of the input neurons is firing at constant rate, and that we are not interested
in the phase of any neuron’s firing. If a neuron’s rate is variable (e.g., a bursting neuron) then more values
would be needed to fully characterize the variability. Similarly, if we are interested in neural phases (to
account for synchrony between neurons), again more information would be needed.
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spike-based methods can better account for the inherent variability due to spikes. Fur-
thermore, they can exploit synchrony between neuron spike times, information that is lost
when dealing only in firing rates. However, this ability to optimize the precise spike times
of neurons assumes that all neurons are starting from the same resting state for each stim-
ulus presentation. Not surprisingly, all the networks I am aware of that use spike-based
optimization methods do reset the system between stimulus presentations, not only dur-
ing training but also during testing. If the system is run continuously, without resetting
between presentations, then much of the advantage of spike-based methods will disappear,
and I expect the two types of networks to perform similarly. However, I am not aware of
any such comparison in the literature. The exception to this would be on dynamic stimuli,
such as those used by Huh and Sejnowski (2017), where spike times and synchrony over
the course of a single stimulus are important.
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Chapter 6

Biological Deep Learning

The previous chapters of this thesis examined how spiking neural networks of various depths
might be implemented in a biological system. They did not look at how a biological system
might learn such networks. This chapter looks at the problem of biological learning of deep
networks, specifically the following question: How does the brain solve the spatial credit
assignment problem to develop deep networks skilled at solving real-world tasks?

6.1 Background

Recently, there has been increased interest from the machine learning community as to
how the brain might learn deep networks (see Marblestone, Wayne, and Kording (2016)
for a review). One significant difference between these recent efforts and many previous
neuroscientific inquiries into learning is the distinct emphasis on high-level functionality.
Machine learning researchers are accustomed to evaluating their algorithms on functional
tasks, such as object classification. Their approach to biological learning is no differ-
ent, except that the learning algorithms are designed to be biologically plausible. This
section first highlights the reasons why the core of almost all state-of-the-art deep learn-
ing systems—the backpropagation algorithm—is not biologically plausible (Section 6.1.1).
Then, it reviews four ways to overcome this problem, either by proposing neural mech-
anisms that might be able to implement backpropagation (Section 6.1.2), or by using
alternative credit-assignment methods that avoid the problems faced by backpropagation
(Sections 6.1.3, 6.1.4, and 6.1.5).
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6.1.1 Biological problems with backpropagation

The backpropagation algorithm (BP, see Section 3.2) has been very successful for training
deep neural networks for many tasks, including object classification. Yet there are no
known mechanisms by which the brain could implement BP. Bengio, Lee, Bornschein, and
Lin (2015) list a number of factors that make BP not biologically-plausible:

1. The weight transport problem: BP uses the same connection weights both for
the forwards pass (to perform inference) and the backwards pass (to transmit er-
rors back through the network). Synapses in the brain are uni-directional, with a
clear presynaptic and postsynaptic neuron. It is unclear how they could be used
to transmit errors backwards. If a separate backwards connection is posited, its
strength (connection weight) would need to be synchronized with that of the forward
connection, again something that would be difficult in a biological system.

2. The derivative transport problem: BP relies on the derivative of each hidden
unit at the current operating point (forward activation). Not only is it unclear how
this derivative might be computed, but it is then used to modulate the error signal,
which is propagated further back in the network. Thus, each neuron needs to be
able to use its derivative to modulate whatever mechanism is storing/transporting
the error signal.

3. The linear feedback problem: In BP, the feedback path is purely linear, whereas
the biological neurons that would need to implement it are non-linear. This could
potentially be addressed with population-coding methods like the NEF (see Sec-
tion 2.5), though care would have to be taken such that the number of required
feedback neurons is within reasonable limits.

4. The spiking problem: BP works with rate-based neurons, while the brain uses
spiking neurons. While this problem has been partially addressed by the previous
chapters of this thesis, it presents unique problems in the context of online learning,
particularly since the derivative of a neuron is taken with respect to the firing rates
(i.e., filtered spikes), not the spikes themselves.

5. The timing problem: The back-propagation phase of BP uses information from the
forward-propagation phase. Not only is the output of the network used to compute
the overall error, but both the presynaptic activity (used directly) and postsynap-
tic activity (used to compute the derivative at that node) are needed to update the
weights. This is difficult in a biological deep network, because there is delay inherent
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in each neural connection. It takes a significant amount of time for information to
propagate through the network to provide an output classification (which is presum-
ably used to generate the error signal), and even more time for this error signal to be
propagated back to the earliest layers. By this time, the activities of the early layers
may have changed, putting them out of sync with the error signal.

6. The target problem: Most of the success in machine learning for object classi-
fication has relied on a supervised learning paradigm. This assumes that for each
training image, we know the true category label for that image. In the brain, it is
not clear where this category label comes from. State-of-the-art DNNs learn from
millions of images, but children only have to be told a handful of times what is a cat,
dog, etc. The most obvious way for the brain to address this would be to combine
large amounts of unsupervised learning with the small number of provided labels (su-
pervised learning), for example to cluster similar input stimuli (e.g., different cats) so
that only the cluster has to be labelled, not all the individual stimuli. The details of
how the brain might execute this semi-supervised learning are still largely unknown.

Other than the term “weight transport”, which was coined by Grossberg (1987), these
problem names are first suggested here, so they are not in common parlance.

One additional problem not pointed out by Bengio et al. (2015) is that BP networks
do not obey Dale’s principle (Baldi, Sadowski, & Lu, 2016), which states that neurons are
almost always either excitatory or inhibitory, meaning they only release either excitatory
or inhibitory neurotransmitters, not both. In an abstract neural network, this means that
the signs of connections coming out of a neuron should either be all positive or all negative,
never a mix. BP does not respect this rule, and furthermore allows connections to change
sign over the course of training, which is also not biologically realistic.

Another problem not raised by Bengio et al. (2015) is how feedforward and feedback
signals can combine within a single neuron to simultaneously allow for feedforward predic-
tion and learning (Guergiuev et al., 2017). In BP, there is an error signal associated with
each hidden neuron, determined by backpropagating the error signals of the previous layer
using the forward connection weights. This error signal modulates learning at all of the
afferent synapses of the neuron, and thus must be injected into the neuron in some way.
The question is: How does this happen, without mixing with the feedforward signals also
entering the neuron?

A distinct but related problem is how the derivative of the neuron activity might be
propagated within the neuron to arrive at the synapses. Significant research has been done
in the area of backpropagating action potentials, which are action potentials (spikes) that
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propagate from a neuron’s soma backwards through the dendrites (Waters, Schaefer, &
Sakmann, 2005). It is often hypothesized that these are related to learning, but there is
still a lack of understanding of how they operate, and how they may propagate backwards
without affecting or being affected by the forwards activity of the dendrites. These prob-
lems compound with the timing problem, since not only does everything need to arrive in
the right place, it also has to be there at the right time.

In addition to these core problems with BP, there are many additional problems related
to the tools and techniques typically used when training deep networks in machine learning.
I do not attempt to enumerate them all here, nor do I address them in this thesis. Exam-
ples include: architectural problems, such as how neurons might implement max-pooling
or local contrast normalization (or something similar); initialization problems, such as how
connectivity between neurons is initially established; and training problems, such as how
the brain could implement momentum, or adjust learning rates (at the network, layer, or
individual neuron level, and possibly over time). None of these features are necessary for
deep learning—one can learn, to some degree, with a simple randomly or locally connected
network with no pooling, normalization, or momentum, and a fixed learning rate. How-
ever, current state-of-the-art results in machine learning typically combine many of these
features.

The fundamental goal of this subfield, then, is to determine how the brain solves the
spatial credit assignment problem. The first approach has been to propose biological
mechanisms by which BP itself could be implemented by the brain, specifically by finding
or positing biological mechanisms to solve the weight transport problem (since weight
transport seems to be the largest problem with BP, research has focused on addressing
it). The second approach is to look for alternative credit assignment methods, again
often starting with weight transport as the fundamental problem, and once it has been
solved, expanding the method to address the other problems with BP as well. A third
approach is to reject the problem entirely, by positing that the brain does not solve the
credit assignment at all. The new problem is then to explain how the brain might learn to
perform complex tasks using only shallow supervised learning, unsupervised learning, and
other methods that do not rely on performing spatial credit assignment; this lies outside
the scope of this thesis. Likely, the final answer will lie somewhere within all three of these
approaches, taking elements of BP and combining them both with novel credit assignment
strategies and other learning methods.
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6.1.2 Biological mechanisms for backpropagation

Bogacz, Brown, and Giraud-Carrier (2000) was one of the first papers to try to address
some of the biological plausibility limitations of BP. The main contribution of the paper
is that they perform a type of learning with some similarities to BP in a spiking neural
network with a hidden layer. However, their method is specific to a very constrained type
of network. The purpose of the network is to determine whether a stimulus is novel or has
been previously presented to the network (familiar). If presented with a novel stimulus, the
network updates using a one-shot-learning paradigm so that the stimulus will subsequently
be classified as familiar. The structure of this network has one hidden layer. The connection
weights from the input to the hidden layer are learned, but the output neuron simply
sums across the hidden neurons and thresholds the response. Credit assignment in this
structure is much easier than in a general network, since all hidden neurons contribute
equally to the output, while BP in a general network would need to propagate the error
backwards through variable connection weights from the hidden neurons to the output.
The authors acknowledge this, and identify the generalization to variable-weight outputs
as future work. This generalization (i.e., solving the weight transport problem) is not
straightforward, and has been the focus of much of the subsequent work on biologically
plausible credit assignment.

6.1.3 Feedback Alignment (FA)

Feedback Alignment (FA) (Lillicrap, Cownden, Tweed, & Akerman, 2014) is an alternative
to BP for biological credit assignment. The idea behind FA is that the feedback weights—
the weights used to transmit error information backwards through the network—do not
need to be the transpose of the feedforward weights (W T ), as they are in BP. Instead,
FA uses random feedback weights, and finds that the feedforward weights “align” them-
selves so that useful error information can be propagated backwards through the network.
Specifically, the feedforward weights align themselves so that they are not orthogonal to
the feedback weights, thus allowing the feedback error signals to push the neuron activities
in a direction that somewhat decreases the overall error (despite not being the optimal,
i.e., gradient, direction).

Liao, Leibo, and Poggio (2015) focus on the weight transport problem, and find that
networks perform better when there is concordance between the signs of the feedback
weights and the feedforward weights. This is perhaps not surprising, since having feedback
weights with the same signs as the feedforward weights makes it highly likely that the two
sets of weights will be far from orthogonal, and thus the feedback weights will transmit
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useful information. They also find that using some sort of batch normalization (Ioffe
& Szegedy, 2015) is very beneficial for any learning method where the feedback weights
are not the transpose of the feedforward weights (which they broadly call “asymmetric
backpropagation”). When training ANNs, weights may change sign during training, so at
first blush sign concordance may seem to not be biologically plausible, since it could again
require symmetry between feedforward and feedback weights (albeit a more relaxed form
of symmetry). However, connections in the brain do not change sign over time; they are all
either inherently excitatory or inhibitory.1 My conclusion is that sign changes over time do
not pose a threat to possible sign concordance in the brain, though additional issues would
have to be addressed to concretely demonstrate its biological plausibility. (I am not aware
of a large-scale learning system that obeys Dale’s principle in the feedforward connections,
never mind one that would also obey both Dale’s principle and sign concordance in the
feedback path.)

Nøkland (2016) uses FA to tackle some more difficult datasets—namely CIFAR-10
and CIFAR-100—as well as MNIST. On MNIST, FA and its direct FA variant (DFA,
see Section 6.2.2) perform almost as well as BP across a number of different network
architectures. This paper also investigates a very deep network (with 100 layers of 240 tanh
units each), for which only DFA is able to converge, presumably because it helps mitigate
the vanishing and exploding gradient problems.2 On CIFAR-10 and CIFAR-100, FA and
DFA are able to perform within a few percentage points of BP on the test set for fully-
connected networks. For convolutional networks, FA and DFA perform significantly worse
than BP (27.1% and 26.9% vs 22.5% respectively on CIFAR-10). This could be because
convolutional networks have fewer parameters, meaning less redundancy, and FA typically
needs more parameters than BP since the fixed random feedback weights constrain the
space that any particular neuron can explore during learning (see Section 6.3.4). Finally,
the paper introduces a novel FA variant called indirect FA, which uses random direct
feedback to the first hidden layer, then forward connections to propagate this error forward
(see Section 6.2.2). There are some biological reservations to this approach, however, since
the forward connections skip the neural nonlinearity and only use the connection weights.
No results from the IFA algorithm are presented.

Baldi et al. (2016) perform more in-depth analyses on the FA algorithm, both theo-
retical and experimental. One of their key results is that FA is “very robust and works
almost as well as BP”, and that “performance is unaffected or degrades gracefully when the

1In fact, the constraint is even stronger: each neuron only either has excitatory or inhibitory efferent
connections. This is known as Dale’s Principle.

2However, the average test-set error (3.92%) for this architecture is worse than for simpler architectures,
including a 7-layer network (2.32%) and a single-layer network with 800 tanh units (1.68%).
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the random backwards weights are initialized from different distributions or even change
during training.” They perform experiments that look at varying levels of sparsity in the
feedback weights, and find that FA achieves the same test error on MNIST for sparsity
levels from 20% to 80% (where non-zero elements all equal one). Additionally, they test
FA on a convolutional CIFAR-10 architecture, and are able to achieve around 25% test-set
error (their reference BP implementation achieves 16%). In addition to the tests on exist-
ing FA variants, they introduce two novel FA variants, which they call adaptive random
backpropagation (ARBP) and adaptive skipped random backpropagation (ASRBP). They
operate the same as FA and DFA, respectively, except that the feedback channels are also
allowed to learn over time. They do not perform extensive tests of these algorithms, but
a test on MNIST shows that ASRBP speeds up training slightly as compared with its
non-adaptive counterpart. ARBP also works, but is much more fragile, requiring a much
smaller learning rate on the backwards connections, and even then showing a non-smooth
error trajectory.

Neftci, Augustine, Paul, and Detorakis (2017) implement a spiking version of direct FA
targeting neuromorphic hardware. One major innovation over the Lillicrap et al. (2016)
spiking FA model is that they do not use the exact neural derivative, but rather use a
surrogate derivative function to approximate the neural derivative. This allows them to
train with LIF neurons. They also introduce a form of probabilistic regularization where
spikes are randomly dropped based on a given probability; this slightly improves test-set
results. The algorithm is event-driven, meaning that weights are only updated when the
corresponding presynaptic neuron spikes. They demonstrate their spiking training method
on MNIST, and show that the final network can achieve 2.25% test-set error. Using a
first-to-spike classification method yields around 4.5% test-set error while using 50 times
less power than the better classification method.

Samadi, Lillicrap, and Tweed (2017) also implement a spiking version of direct FA
(which they call broadcast alignment, or BA) in LIF neurons. To approximate the LIF
neuron derivative, they fit the LIF rate-response curve with the following function:

f(x) = max(0, c1 tanh(c2x)) , (6.1)

where x is the neuron input (current) and c1 and c2 are arbitrary constants (hyperparam-
eters). This function fits the LIF rate-response curve reasonably well, and is everywhere
differentiable. Using this as a surrogate derivative function, they are able to train spiking
networks to achieve 2.95% test-set error on MNIST. Their comparable rate-based networks
achieve 1.40% error with BP, 1.78% with FA, and 2.36% with DFA.
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6.1.4 Difference Target Propagation (DTP)

Difference Target Propagation (DTP) (Lee, Zhang, Fischer, & Bengio, 2015) is another
algorithm for solving the spatial credit assignment problem in a biological system. Rather
than using random feedback weights (as FA) or symmetric feedback weights (as BP),
it learns feedback weights to propagate error information. The objective for the back-
wards path is to learn an approximate inverse gi for the forward function f(hi−1) = hi =
F i(W ihi−1) computed by the weights W i and neural nonlinearity F i at each layer. Using

this approximate inverse, we can compute a “target” value ĥ
i

for a layer given the target

value ĥ
i+1

for the subsequent layer

ĥ
i

= hi + gi+1(ĥ
i+1

)− gi+1(hi+1) . (6.2)

This equation is designed so that when ĥ
i+1

= hi+1, then ĥ
i

= hi. This ensures that when
there is no error at the highest layer, then learning stops throughout the system. The more

intuitive choice of ĥ
i

= gi+1(ĥ
i+1

)—that is, simply propagating the target backwards—
obeys this same property if gi is the inverse of f i, but not if gi is only an approximation of
the inverse of f i, hence the choice of the more complicated Equation 6.2. The target for
the final layer is computed as a small step in the direction of the gradient for that layer:

ĥ
N

= hN − η̂ ∂O(hN , y∗)

∂hN
. (6.3)

DTP can learn relatively deep networks; the authors use it to learn a network with 7
hidden layers of 240 units each on MNIST, achieving 1.94% error using tanh units (compare
1.86% for BP). Interestingly, the same network with ReLU units achieved 3.15% with DTP,
whereas BP achieved 1.62%. The authors also tested a network on CIFAR-10, achieving
50.71% with DTP versus 53.72% for BP; these numbers are good for a fully connected
network without data augmentation.

Although DTP offers a solution to the weight transport and linear feedback problems,
it is unclear how exactly the feedback connections would operate in a biological network.
There are two concerns: 1) each feedback connection is used to transmit two distinct

values, gi(ĥ
i
) and gi(hi), it is unclear how they could be transmitted simultaneously; 2)

the feedback connection gi needs to receive both ĥ
i

and hi as input, thus they must be
stored in the same place, but it is unclear how a single neural population could store

both feedforward (hi) and feedback error (ĥ
i
) signals. Guergiuev et al. (2017) extend the

DTP algorithm with a compartmental neuron model, addressing both of these questions.
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Their hidden neurons have three compartments: an apical dendrite that accepts feedback
connections; a basal dendrite that accepts feedforward connections; and a soma, which
receives input from both dendritic compartments and controls the neuron’s output. There
are two distinct phases to each stimulus presentation: a forward phase, where the forward
activity is computed; and a target phase, where the correct category signal is applied at
the top layer. This allows the model to compute “plateau potentials” αf and αt in the
apical dendrites; these signals are analogous to gi(hi) and gi(ĥi) in DTP, respectively. The
output of each neuron is a firing rate, determined by applying a sigmoid function to the
soma’s membrane voltage. They demonstrate that a two-layer version of their model is
able to learn on MNIST, achieving 3.2% test-set error.

6.1.5 Equilibrium Propagation (EP)

Ten years ago, Hinton (2007) proposed the idea that neurons could use derivatives in
activity to transmit error information. The general idea is that after the forward pass,
the top-level neurons in the network are perturbed to push them closer to the target
output values (as in DTP). This change in activity over time codes for the error gradient
of those neurons; this is then propagated backwards (using symmetric weights in Hinton’s
original proposition). This would explain how neurons seemingly transmit both forward
signals and error information within a short span of time. It could also help explain the
spike-timing-dependent plasticity (STDP) curves that Bi and Poo (1998) first identified
empirically.

More recently, Bengio et al. (2015) began to try to embody these ideas into a quanti-
tative model, to demonstrate that they could actually work in practice. This first paper
presented a generative statistical model utilizing the temporal derivative idea, which was
able to fill in corrupted sections of MNIST digits.

Bengio, Mesnard, Fischer, Zhang, and Wu (2017) present an alternate use for the deriva-
tive error encoding idea, to perform inference in an energy-based model with symmetric
weights. They demonstrate that such a model reproduces STDP-like curves in the weight
changes. Scellier and Bengio (2017) extend this idea to a deep network that is able to learn
to perform the MNIST task, achieving 0.0% training error for all three networks tested
and between 2% and 3% test error depending on the number of layers used. They title this
algorithm Equilibrium Propagation (EP). The model has two distinct phases: an inference
phase, where the model settles to a steady-state given a stimulus; and an error propagation
phase, where the energy is increased slightly based on the error of the network output, and
the model settles to a new steady-state minimizing the combined energy from the stimulus
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and output error. Weight changes are Hebbian, based on the new (stimulus and label)
steady-state activities, and anti-Hebbian, based on the stimulus-only steady-state. This
pushes the model to associate lower energy with the correct stimulus-label pairs.

This tentative connection between derivatives of neuron activity, error, and STDP is
very intriguing from a biological perspective, since it would explain how neurons are able
to encode both activities for inference from the stimulus and the error or correction infor-
mation needed to learn. The energy-based approach is also enticing, since it quantitatively
describes how an arbitrarily-connected neural system can perform inference over time given
a stimulus. This opens the door for recurrent or lateral connections that allow for a more
complex inference process over time, rather than just the simple feedforward inference
used by most current object-classification networks.3 While these models do make these
ideas more concrete, there are still open questions about how they could work biologically.
The most significant one is again the weight transport problem; the energy-based models
re-introduce symmetric connections, bringing back all the problems that other approaches
have explicitly worked to overcome. While Scellier and Bengio (2017) is hopeful that this
can be overcome—making analogies to how autoencoders were able to move to using un-
tied weights, and how FA has addressed the need for symmetric weights in BP—it is still
unclear how this might be addressed in an energy-based model. The other biological con-
sideration with these models is the timing aspect: they involve distinct inference (no label
information) and clamped (label information provided) phases, and in the case of Scellier
and Bengio (2017) these phases are quite different lengths. It is unclear how the brain
might coordinate between such phases, especially since the weight updates require neural
activities from both phases.

6.2 Feedback Alignment

Feedback Alignment (FA) is an alternative credit assignment method first proposed by
Lillicrap et al. (2014); since then, the core idea has been studied by a number of other
researchers, sometimes under the name Random Backpropagation (RBP) (e.g., Liao et al.,
2015; Baldi et al., 2016; Nøkland, 2016).

As mentioned in Section 6.1.3, the core idea of the algorithm is to use the same network
structure as BP, but to use static random feedback weights (rather than the transpose of

3It also introduces more considerations, first and foremost the amount of time needed by a network
with recurrent and lateral connectivity to settle to a steady-state.
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the forward weights) during the backwards pass.4 This solves the weight transport problem,
since the feedback weights do not need to be kept identical to the feedforward ones. Some
variants of the algorithm (explored in Section 6.2.2) also address the derivative transport
problem. Finally, Lillicrap et al. (2016) constructed a spiking version of their network that
also addresses the linear feedback, spiking, and timing problems to varying degrees.

The success of the FA algorithm—and even the fact that it is able to learn anything
at all—has surprised many researchers. It seems counter-intuitive that back-propagating a
random projection of the subsequent layer’s error would transmit any useful information.
At first blush, it seems that the random projection would make the errors random: un-
correlated to the output errors and thus uninformative and useless. The first part of this
intuition is correct: the errors are in fact random. However, since the random projections
are fixed, there is still structure to the errors, and their values contain information about
the nature of the output error. To better understand how FA allows for learning, it is
important to develop intuitions about how the algorithm works.

6.2.1 Intuitions

The first intuition about FA is what I will call the “alignment” intuition. It was presented
as part of the original FA paper (Lillicrap et al., 2014), and is where the name “feedback
alignment” comes from. The intuition is that over time, the forward weights in an FA
network will “align” themselves so they are not orthogonal with the backwards weights.5

If the forwards and backwards weights are orthogonal, then the projected error will not
provide any useful information to help correct the actual errors of the network. Put another
way, the change in the network weights will be orthogonal to the gradient, and thus not
decrease the error.6 As soon as the feedback weights are non-orthogonal (in a positive
direction) with the feedforward weights, then each update will move at least partially in
the same direction as the gradient, that is, in a direction that decreases the error. The
smaller the angle between the feedforward and feedback weight matrices, the more similar

4See Section 3.2 for a presentation of the backpropagation (BP) algorithm. Some of the notation used
in this section is defined there.

5Here, two matrices A and B are essentially orthogonal if the images of these matrices across error
vectors e is approximately orthogonal: eBATeT ≈ 0 for all e. In practice, FA works as long as eBWeT > 0
for most error vectors e, where W is our forward weight matrix and B is our random feedback weight matrix
(Lillicrap et al., 2014). To assess this, we can look at the eigenvalues of BW: if they all have positive real
components, then the dot product in the previous expression will be positive for all e.

6It is important to note that this explanation assumes linear neurons, but the same ideas apply in the
case of nonlinear neurons.
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the update is to the gradient, and the more the error will decrease with each step. If
the angle is zero, then the feedback weights are the transpose of the feedforward, and we
move in the direction given by BP. Lillicrap et al. (2014) presented this as the motivating
idea behind FA, and found empirically that in an FA network, the angle between the
feedforward and feedback matrices reduces to much less than 90◦ (typically less than 45◦

in their networks).

So why does this “alignment” happen? To explain this, I introduce a second intuition:
the random feedback matrices push each hidden neuron to be selective to certain classes
and not others. For example, for the final hidden layer, each neuron has a randomly-
weighted feedback connection to each output error neuron. If a neuron happens to have
a strong positive feedback connection to class A, then each time a stimulus of class A is
presented but not correctly classified (such that the output error is large), then that neuron
will be pushed to be more active. It thereby develops an affinity for stimuli of class A. The
reverse process can happen if the neuron has a strong negative connection to class B; the
neuron will learn to be silent for class B stimuli. Thus, the neuron develops a selectivity
for some classes over others. Once this selectivity begins to form, then the feedforward
connections between that neuron and those classes will strengthen, since activity in that
neuron is indicative of those classes. In this manner, the neuron will develop both strong
positive feedback and feedforward connections for some classes, and strong negative ones
for other classes. This makes the feedforward weights more similar to the feedback weights,
causing them to align.

A third intuition is that this push for class selectivity only happens when there is error
in the network output. An error causes neurons to learn to respond more strongly to the
problematic stimulus. The most change occurs for neurons with a significant derivative at
their current activity level, since this derivative modulates the learning (see Section 6.2.2).
The initial forward connections in the network are random, and thus some neurons are
slightly predisposed from the start to respond to some stimuli over others. These factors,
when combined with the random feedback weights, result in hidden neurons that learn
to form distributed representations across all classes and stimuli in the dataset. Different
neurons are responsible for different classes, and different groups of stimuli within a class.

6.2.2 Variants

There are a number of different variants of the FA algorithm, as mentioned in Section 6.1.3.
For all the variants, the structure of the weight update is the same:

∆W n
ij = −ηenj f ′(anj )hn−1

i . (6.4)
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Figure 6.1: Diagrams of the three main variants of FA. Global-derivative FA (GFA,
left) has an identical structure to BP, but replaces the transpose weights with random
weights: (Wn)T → Bn. Local-derivative FA (LFA, middle) is similar to GFA, but only
applies the neuron derivatives h′ locally. Direct FA (DFA, right) projects the error signals
directly from the output error e∗. Since both the LFA and DFA feedback pathways are
linear, feedback matrices B can be chosen such that they are equivalent.
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That is, all variants use the activity of the presynaptic neurons hn−1
i , the derivative of the

postsynaptic neuron activity f ′(anj ), and a modulatory error signal enj (and the learning
rate η). Additionally, the output layer performs shallow learning in all variants, as in BP:

∆WN+1
ij = −ηe∗jhNi (6.5)

where e∗j = yj − y∗j and N is the number of hidden layers in the network. What changes
between variants is how the feedback error signal en is determined, that is, the structure
of the feedback chain. Figure 6.1 shows diagrams of the three main variants examined in
this thesis.

The original FA algorithm from Lillicrap et al. (2014) uses the neuron derivatives as
part of the feedback chain; I call this global-derivative FA (GFA). Its key feature is that it
uses the hidden-neuron derivatives in the feedback chain:

enj =
∑
q

en+1
q f ′(an+1

q )Bn+1
qj . (6.6)

Here, Bn+1 is the matrix of random feedback weights that projects the error from the space
of layer n+1 to the space of layer n.7 Therefore, the update to the weights W n

ij depends not
only on the local postsynaptic derivative f ′(anj ), but also on the hidden neuron derivatives
from all subsequent layers (where the exact dependence is determined by the connectivity
of the B matrices).

The first variant removes the neuron derivatives from the feedback chain, and only uses
each derivative locally for updating the weights going into the corresponding neuron. I call
this local-derivative FA (LFA); it can be formulated as follows:

enj =
∑
q

en+1
q Bn+1

qj . (6.7)

The second variant—direct FA (DFA)—builds off the fact that the local-derivative FA
passes the error signal at the classification layer e∗ through subsequent random linear
projections to produce en. Assuming no layer has fewer hidden neurons than the number
of output dimensions of the network (such that no information is lost about e∗), we can
achieve a very similar effect by simply projecting each layer’s error signal randomly off the
output error signal:

enj =
∑
l

e∗lB
n+1
lj . (6.8)

7All variants of FA include random feedback weight matrices B, though the dimensionality of the
matrices may differ between variants.
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This variant was proposed both by Lillicrap et al. (2016) and Nøkland (2016). It is also
explored by Baldi et al. (2016), who call it skipped random backpropagation.

A third variant—called indirect FA (IFA)—was proposed by Nøkland (2016). They
present this variant in the context of a two-hidden-layer network. The first hidden layer
receives random feedback from the output layer, just as with DFA:

e1
i =

∑
l

e∗lB
∗
li . (6.9)

The second hidden layer’s error is based on that of the first layer, using the input weights
of the second layer:

e2
j =

∑
i

e1
iW

2
ij . (6.10)

While perhaps somewhat interesting theoretically, there are reasons to have reservations
about using it as a biological model. The main reservation is that it uses the connection
weights between the first and second hidden layers (W2), but the error e1 that is projected
through these weights is not integrated by the second hidden-layer neurons (i.e., their
activity is not affected), and conversely the error signal is not affected by the neural
nonlinearity. The neuron would need some mechanism such that the error signal only
reaches the synapses and is not passed on to the soma, while the feedforward currents—
passing through the same synapses—would pass through to the soma as usual. Since there
is no mechanism to distinguish between electrical currents in this manner, this poses a
significant problem with this method.8 Additionally, it is unclear how this method would
generalize to more than two hidden layers. If we were to use the third hidden layer’s
weights to project e2, then we again run into the problem that we are making use of the
second layer’s synapses while avoiding the neural nonlinearity. Due to these reservations,
combined with the fact that Nøkland (2016) provided no advantages for the IFA variant,
this thesis does not examine IFA any further.

It is also possible to have learning in the backwards channel, called adaptive FA. Baldi
et al. (2016) introduce weight changes for their backwards weights that are proportional
to the product of the forward activities for the layer in question, as well as the randomly
projected error for the previous layer:

∆Bn
ij = ηµδni h

n−1
j (6.11)

8The problem of how to manage feedforward and error signals in the same cell is common to all variants
of Feedback Alignment, and learning more generally. However, in the other variants, feedforward and error
signals would only co-occur in the postsynaptic neuron’s dendrites, and would not require passing error
information from the presynaptic neuron to the postsynaptic neuron through synapses, as required by IFA.
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where δni = eni f
′(ani ), η is the learning rate for the forward weights, and µ is a scaling factor

on η to determine the feedback learning rate. This is the same update as is applied to the
forward weights; for that reason, I will call it symmetric adaptive FA. A similar update
can be applied to DFA:

∆Bn
lj = ηµe∗l h

n−1
j . (6.12)

The idea of adaptive FA is intriguing, since it can potentially allow initially random feed-
back weights to better align with the forward weights, resulting in better error information
transmission and therefore faster convergence and better performance. It may also increase
the biological plausibility of the model, since it is unclear whether the brain could main-
tain static feedback connections over long periods of time, particularly when the adjacent
forward connections are learning. In the case of symmetric adaptive FA, it does also raise
the biological question as to how the forward activities come to modulate the backwards
weights. Baldi et al. (2016) present only preliminary results on adaptive variants of both
GFA and DFA, but find that in the case of DFA, adding adaptation improves convergence
and overall performance, whereas introducing it to GFA makes the algorithm unstable
(even for µ = 0.1).

I am not aware of any other published investigations into adaptive variants of FA. Here,
I propose two new adaptive variants based on Hebbian learning: one using a pure Hebbian
learning rule; and the other using Oja’s rule (Oja, 1982), a more stable variant of Hebbian
learning. These adaptive variants can be viewed as unsupervised forms of adaptation,
whereas symmetric adaptive FA is more like supervised learning (where the forward path
is providing the teaching signal). Hebbian ADFA is given by:

∆Bn
lj = ηνe∗l e

n−1
j (6.13)

where η is the forward learning rate and ν is a scaling factor on this learning rate. Oja
ADFA is given by:

∆Bn
lj = ην

[
e∗l e

n−1
j − βBn

lj

(
en−1
j

)2
]

, (6.14)

where β is a scaling parameter to control the amount of regularization (often just set to
unity). These adaptation rules can be combined with symmetric ADFA to create hybrid
rules: Symmetric Hebbian (Symm-Hebb) ADFA; and Symmetric Oja (Symm-Oja) ADFA.
These learning rules use a linear weighting of the ∆B updates

∆Bn
Symm-Hebb =ηµ∆Bn

Symm + ην∆Bn
Hebb (6.15)

∆Bn
Symm-Oja =ηµ∆Bn

Symm + ην∆Bn
Oja . (6.16)

Typically, we will have µ = 1 and ν = 0.1, giving more weight to the “supervised” portion
of the rule.

145



6.2.3 Comparison of variants

Given these three different implementations of the FA algorithm (GFA, LFA, and DFA),
how should we choose which one to use? There are two key considerations: performance
and biological plausibility. In Section 6.3.1, I compare the performance of the different
variants, and find that all the variants perform similarly, with perhaps the direct variant
performing slightly better.

In terms of biological plausibility, we must consider both how the neuron derivatives are
used and how the error is transmitted. The neuron derivatives can either be used locally
or globally, and it is not entirely clear for either case what mechanisms the brain might
use to compute these derivatives. However, with mechanisms such as backpropagating
action potentials being proposed for transmitting information about postsynaptic neuron
activity back to the synapse (Waters et al., 2005), it is not a stretch to imagine how such a
mechanism could also transmit derivative information to the synapse, perhaps computing
the derivative in the dendrites. How the neuron derivative could be computed or trans-
mitted outside of the neuron and its dendritic arbour is harder to imagine, and this is
what would be needed to transmit the derivative globally. That said, in Section 6.2.5 I will
explore using alternatives to the neuron derivative itself in the computation (i.e., surrogate
derivatives), including functions as simple as a step function that turns on learning when
the postsynaptic neuron is active and turns it off otherwise. It is easier to imagine how
a simpler function like this could be computed or transmitted outside of the postsynaptic
neuron. My conclusion from this exploration is that, in the variants that only use the
derivative locally (i.e., LFA and DFA), it seems easier for a biological system to implement
the necessary derivative computations. Nevertheless, it may be possible for a biological
system to implement the computation involved in GFA, if necessary.

As for error transmission, direct FA as it has been presented—where all the neuron error
signals are direct random projections from the output error—is not biologically plausible
for the simple reason that it would require too many long-range connections for each hidden
neuron to have projections back to the higher visual cortices. However, this problem can
be solved by assuming there are copies of the output error in the earlier visual cortices.
Making these copies would be quite feasible using a population-coding scheme such as is
used by the NEF. This would require a more modest number of long-range connections,
and each hidden neuron could then receive random projections from this local copy of the
error signal. The connections required by direct FA are thus not implausible assuming
that they are organized in such a way that they are predominantly local. Ensuring sparse
connections between populations would further help the plausibility of the model by again
decreasing the long-range connections.
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With the other FA variants (GFA and LFA), the biological plausibility of their connec-
tion structure is determined mainly by how sparse they are. These feedback connection
matrices should obey the same constraints as feedforward connection matrices do. For
example, if a model has sparse feedforward connections for biological reasons, then the
structure of the feedback connections should also be relatively sparse.

Another problem faced by all the FA variants—if implemented in a biological system—is
how to backpropagate a linear error using nonlinear neurons (the linear feedback problem).
The core of the problem is that neural firing is non-negative, whereas the error signals
(whether in the output space or the randomly projected space) have both positive and
negative components. An additional aspect to the problem is that the input-output rela-
tionship of the neuron is nonlinear even in the firing regime, meaning that the error in a
particular dimension could not be decoded linearly even using two neurons (an “on” and an
“off” neuron) to represent that dimension. One partial solution that still allows one neuron
per error dimension is to simply shift all the error signals so that they are non-negative
(perhaps clipping or squashing some very negative components using a function like tanh).
This corresponds to having a non-zero level of neural activity represent zero error, and is
the approach taken by Lillicrap et al. (2016) in their spiking implementation.

Using population coding is another way to address the linear feedback problem, and
works quite well when there are relatively few error dimensions. This is often the case
in DFA, specifically when we have few output categories. In the case of GFA and LFA,
the number of error dimensions corresponds to the number of hidden neurons in the layer
for the intermediate (i.e., non-output) error signals. Thus, for these variants, population
coding would require multiple feedback neurons for each feedforward neuron (a minimum
of two just to represent the positive and negative error components, and upwards of ten to
remove some of the significant effects of the neural nonlinearities in the error encoding).
This is likely to lead to an explosion in the number of neurons required to implement the
network.

6.2.4 Parameters

For the most part, FA shares the same parameters and hyperparameters as BP. The main
difference is that FA does not constrain the backwards weights. Whether one should
consider these as parameters or hyperparameters is unclear; like hyperparameters, they
are arbitrary and are not adjusted as part of the learning procedure (except in adaptive
FA variants), but like parameters, there are many of them, and they are similar in their
biological interpretation to the forward weights, which are clearly parameters. Also, one
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would hope that the performance of FA is not dependent on their specific values. Thus, I
prefer to look at the backwards weights B as parameters, but view the distribution from
which they are randomly drawn as a hyperparameter. The original work by Lillicrap et al.
(2014) used Gaussian distributed weights, and most derivative works have followed suit.
Yet there are many possible choices for the distribution of the feedback weights. Baldi
et al. (2016) explores some of these alternatives, looking at the sparsity of feedback weight
matrices.

To simplify the discussion, I consider the distribution of the weights for a single neuron
in the context of DFA, where each neuron has a weight connecting it to each of the output
class errors. This weight represents how the neuron in question responds to errors in that
class.9 A positive weight means the neuron will increase its activity if the correct label is
of the corresponding class, but the network is not classifying it as such. Furthermore, it
will decrease its activity if the error is positive, meaning it will try to be less active when
the network is falsely responding to the corresponding class. Together, this will push the
neuron to be selective for the class with a positive weight. A negative weight means that
the neuron will become less active if the error is negative, and more active if it is positive.
This will push the neuron to be less active for examples of the class in question, and more
active when examples of other classes are shown but are misclassified as this class, resulting
in a neuron whose activity indicates the stimulus is not the class in question. A weight of
zero means that a neuron will not update itself based on errors in a particular class, but
the neuron can still develop correlations or anti-correlations with stimuli of that class as a
by-product of updating itself based on other class errors.

A distribution of backwards weights can therefore be classified partly in terms of how
many positive, negative, and zero values it contains. A sparse distribution results in many
weights that are zero, whereas a dense distribution results in weights that are all non-zero.
Distributions can also be classified by their variance within positive and negative values.
For example, a Gaussian distribution (w ∼ N(0, 1)) and binary distribution (w ∈ {−1, 1})
are both dense distributions with the same (expected) number of positive and negative
values, but the Gaussian distribution will yield large and small weights, whereas in the
binary distribution all weights have the same magnitude.

A final aspect of the feedback weights is their magnitude. In BP, the magnitude of the

9A positive error for a particular class output means that the network is outputting that class, but the
correct label corresponds to a different class (the output is too high). A negative error means that that
output dimension corresponds to the correct class, and the network is not outputting it strongly enough
(the output is too low). Noting the effects of these error signs, and observing that the weights are modified
in the negative direction of the error gradient, one can derive the correspondences between weight sign
and neuron behaviour.
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feedback weights is determined by the feedforward weights (since they are the same). If
the forward weights in any layer are too small, then the preceding layers will have very
small gradients, and if they are too large, then the gradients will also become large; this is
the basis of the vanishing and exploding gradient problems.10 FA can avoid these problems
since the magnitudes of the backwards weights are independent of those of the forwards
weights. The weight magnitudes are redundant with the learning rates, since both control
the rate of learning at a particular layer. This also means that one must take care when
comparing FA and BP results directly, since the combination of initial weight magnitudes,
learning rates, and feedback weight magnitudes can have significant effects. For example,
some applications of FA show the algorithm learning faster than BP (e.g., Lillicrap et al.,
2016, Figure 3d), but this is simply an artifact of using large feedback weight magnitudes
resulting in a better effective learning rate for FA.

6.2.5 Neuron derivatives

Like BP, FA makes use of derivatives of the neuron rate response functions. These deriva-
tives quantify how much each neuron’s firing rate will change in response to a small change
in its input current; thus, the derivative for each neuron is evaluated at that neuron’s
activity level, as determined by the feedforward pass.

As described at the start of the previous chapter, there is no clear way to take the
firing rate derivative of a spiking neuron based on the spiking output. This is because
the instantaneous firing rate can only be estimated from the output spikes, and thus the
derivative will also be an estimate. We have additional problems with LIF neurons, because
the firing rate derivative, even if we could take it, is not well behaved (it has a singularity
at the firing threshold). To avoid using the actual derivative of the LIF rate response curve,
one option (Neftci et al., 2017; Samadi et al., 2017) is to use an alternative or “surrogate”
function in place of the actual derivative. The goal is to choose surrogate functions that
are close enough to the actual derivative such that learning still proceeds well, but without
any of the instabilities caused by the singularity in the LIF derivative function. This is the
same motivation as for the soft-LIF neuron model introduced in Section 5.2.2.

Theoretically, the most important characteristic of a surrogate derivative function is
that it has the same sign as the actual derivative it is standing in for. I will show here that

10In deep networks, these problems compound when many layers in a row have weights that are too
small or too large. Thus, the vanishing and exploding gradient problems are typically discussed in the
context of deep networks, or recurrent networks when backpropagation-through-time is used (since these
are equivalent to deep networks with tied weights between layers).
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if the sign of the surrogate derivative matches that of the actual derivative for all inputs,
then the error will continuously decrease when training with BP (with an infinitesimally
small step size). Consider a hidden layer in a network hj ≡ f (

∑
i xiWij). We wish to

determine how the cost changes as we adjust the weights. The change in the objective
function (cost) for a given change in weight is

∂O

∂Wij

=
∂O

∂hj

∂hj
∂Wij

(6.17)

= ejf
′
jxi (6.18)

where ej ≡ ∂O
∂hj

and f ′j ≡ f ′ (
∑

i xiWij). In ordinary BP, we adjust the weights in the

opposite direction of this gradient in order to minimize the cost:

dWij

dt
∝ − ∂O

∂Wij

(6.19)

= −ejf ′jxi . (6.20)

When training with a surrogate derivative, we replace the f ′j term with a gj ≡ g(
∑

i xiWij)
term. We can derive how the cost changes over time in our network:

dO

dt
∝ ∂O

∂Wij

dWij

dt
(6.21)

=
(
ejf
′
jxi
)

(−ejgjxi) (6.22)

= −e2
jx

2
i f
′
jgj . (6.23)

If f ′j and gj always have the same sign, then this expression is non-positive and the cost will
always decrease. Thus, we need our surrogate derivative function to have the same sign
as our actual derivative function to maintain stability. Note that this is not a sufficient
condition for stability, only a necessary one. BP with a non-infinitesimal learning rate
is always potentially unstable, with more risk of instability the larger the learning rate
becomes. Even if two surrogate derivative functions both match the sign of the actual
neuron derivative, one may become unstable more quickly than the other as the learning
rate increases. I explore this question empirically in Section 6.3.2.

Figure 6.2 shows three different neural response functions and their corresponding
derivatives. Since the goal is to implement spiking networks in LIF neurons, only the
LIF response function is representative of the firing behaviour of the neurons themselves,
but the singularity in the LIF response derivative around the firing threshold prevents it
from being used within a learning algorithm. One option for a surrogate derivative function

150



0 5 10 15 20
input current j

0
50

100
150
200
250
300
350
400

fir
in

g 
ra

te
 r 

[H
z]

0 5 10 15 20
input current j

0

10

20

30

40

50

fir
in

g 
ra

te
 d

er
iv

at
iv

e 
d
r/
d
j LIF (tref =0.002)

IF (tref =0)
IF (tref =0.002)
soft-LIF (tref =0.002)

0.0 0.5 1.0 1.5 2.0
input current j

0

5

10

15

20

25

30

fir
in

g 
ra

te
 r 

[H
z]

0.0 0.5 1.0 1.5 2.0
input current j

0

10

20

30

40

50

fir
in

g 
ra

te
 d

er
iv

at
iv

e 
d
r/
d
j

Figure 6.2: Comparison of neuron derivatives (right) and the response functions
on which they are based (left). The top row shows the functions across a wide range
of input currents. The bottom row shows their behaviour around the firing threshold.
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is to simply use the LIF derivative function, but with the value “clipped” to fall within a
reasonable range.

The other functions shown in Figure 6.2 can also be used as surrogate derivatives for
LIF neurons. The IF curve with no refractory period (tref = 0) is identical to the ReLU unit
common in machine learning; its derivative is simply a scaled step function. The IF neuron
with refractory period (tref = 0.005) introduces saturation in the firing rate. Near the firing
threshold, it acts linearly (as does the other IF curve), but for larger input currents the
firing rate saturates and it approaches the LIF curve. The derivative is qualitatively similar
to that of the LIF neuron everywhere except near the firing threshold, where it does not
suffer from the singularity present in the LIF neuron. The equation for the IF curve is

r(j) =

[
tref + τRC

1

ρ(j − 1)

]−1

(6.24)

where ρ(x) = max(x, 0) is the rectified linear function. In contrast, the LIF curve is given
by

r(j) =

[
tref + τRC log

(
1 +

1

ρ(j − 1)

)]−1

. (6.25)

Since log(1 + x) ≈ x for x near zero, for large values of j the two curves become indistin-
guishable. It is only around the firing threshold that the two functions behave differently.
The same is true of their derivatives, as shown in the figure. Thus, the derivative of the
IF curve with refractory period is a good surrogate for the LIF derivative.

The soft-LIF neuron developed in the previous chapter can also be used to provide a
surrogate derivative for the LIF neuron. By controlling the smoothing parameter γ, we
can control how closely the soft-LIF curve approximates the LIF curve; larger γ leads
to a better approximation, but also results in more extreme values in the derivative. To
facilitate comparison with the other derivative functions, I chose γ = 0.146 such that the
maximum value of the soft-LIF derivative equaled the same maximum value as the other
surrogate derivative functions.

One aspect of this problem that I do not address here are the biological mechanisms
by which error or derivative information may be transmitted within a neuron. FA uses a
three-factor learning rule, with factors corresponding to the presynaptic neuron activity,
the derivative of the postsynaptic neuron activity, and the projected error. Since the post-
synaptic neuron activity is based on all the incoming signals to the postsynaptic neuron, it
is not locally available at the afferent synapses in question without some process to trans-
mit it back from the soma through the dendrites. This is the function often credited to
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backpropagating action potentials, which behave analogously to axonal (forward) action
potentials, but traveling backwards from the cell soma into the dendrites. The postsynap-
tic neuron activity is something that is required in many different learning rules, including
all Hebbian and STDP-based rules. To get this information to the synapses, the backprop-
agating action potentials would have to be timed or transmitted in such a way that they
would not interfere with electrical currents passing forward through the dendrites (from
synapse to soma). In this thesis, I am not modelling backpropagating action potentials
explicitly, thus I do not account for any of these potential interference effects.

6.2.6 Spiking details

One of the main goals of this chapter is to implement FA in a biologically plausible spiking
network model.

Along with the original presentation of the FA algorithm, Lillicrap et al. (2014) present
a spiking implementation. However, their model has a number of limitations:

1. It does not use spiking neurons with a state, but rather uses sigmoidal neurons that
spike stochastically with a probability given by the sigmoid function. This makes it
significantly easier to find the neuron derivative.

2. To represent both positive and negative feedback errors, the feedback path also uses
neurons with a sigmoid response, but centred around zero and thus allowing nega-
tive firing rates. The authors justify this use of negative firing rates by referencing
climbing fibres in the cerebellum, which fire tonically and raise or drop their firing
frequency around this tonic rate to code positive or negative errors, respectively.
They provide no evidence that cortical cells use such a coding scheme.

3. The model consists of only a single hidden layer. This simplifies the timing problem,
by limiting the maximum possible delay in the network. It also does not address
issues around error transmission, since for one layer all FA variants (GFA, LFA,
DFA) are equivalent.

There are two subsequent papers—Neftci et al. (2017) and Samadi et al. (2017)—that
address some of these issues in spiking neurons (see Section 6.1.3 for summaries). Both
use the direct variant of FA, which is simpler to implement in spiking neurons because it
does not require mixing derivative information into the feedback chain like GFA, and also
makes it easier to code both positive and negative errors using nonlinear feedback neurons
due to the lower dimensionality of the error signal.
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Figure 6.3: Comparison of spiking architecture with FA and BP. The spiking archi-
tecture used here is identical to DFA, except that it uses an independent error population
at each layer of the network. Since all the error populations encode the same output-layer
error using population coding, this method is mathematically identical to DFA. However,
it introduces a more biologically plausible delay structure into the network.

The spiking network exhibited in this chapter is a type of DFA (Figure 6.3). While it
shares a number of similarities with Neftci et al. (2017), it was developed independently
(Hunsberger & Eliasmith, 2017). There are notable differences between the two networks:
1) I use population coding to transmit the error backwards; 2) my network uses contin-
uous learning, whereas their network has a blackout period at the start of each stimulus
presentation when no learning occurs.

Rather than having only one error population, I use population coding to transmit the
error backwards from each layer to the previous layer. This is a more biologically plausible
connection structure, since it avoids many long range connections from the output layer to
each of the hidden layers. In doing so, it accounts for transmission delays in the feedback
channel, which biological networks have to overcome. It also bears some similarities to LFA,
since the connections between feedback populations do appear roughly random, though
they are designed to ensure no error information is lost in the transmission.

The learning blackout period at the start of each stimulus presentation, as employed
by Neftci et al. (2017), ensures that no learning occurs while the network is in transition
and neuron spiking in the forward and backward pathways is not yet reflective of the new
stimulus and error. This idea may have some biological support, since if the error signal is
internally generated (as it must be in biological systems) then it would likely be triggered
by the stimulus in some way. Yet a biological system would not be able to turn off learning
instantaneously; there would still be residual activities in the neurons when a stimulus
changes, which may drive incorrect learning in the system for a brief time. The network
presented here uses continuous learning, which results in slightly less efficient learning.

Both networks compute a neuron’s local activity derivative based on the current input
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to that neuron. This has potential biological limitations, since it is unclear how a specific
synapse would be able to use a derivative that is dependent on the inputs to all synapses in
the neuron. It seems more plausible that the neuron derivative would be computed based
on the neuron output (spikes), and the signal carried to the dendrites via backpropagating
action potentials. From a computational perspective, this adds additional noise to the
derivative signal, and interferes with learning. The networks presented here will use a
derivative signal computed on the total synaptic input to the cell, as other implementations
have. Implementing a derivative based on spiking neuron output remains an area of future
work.

6.2.7 Datasets

I use three different problems to evaluate the FA networks: the linear problem, the banded
problem, and the MNIST dataset.

In the linear problem, the network has to learn a linear transform from a higher-
dimensional space to a lower-dimensional space. Specifically, we have an m× n matrix of
m normally-distributed n-dimensional input data points X, and our d-dimensional output
targets are Y∗ = XT, where T is an n × d matrix. I orthogonalize the transform such
that each dimension in the output space corresponds to an orthogonal vector in the input
space (i.e., T TT = I). Learning is performed using a square cost (i.e., MSE). While this
may sound like a trivial problem, it is non-trivial for a network of non-linear neurons to
approximate a linear transform, particularly if the neurons are nowhere linear (e.g., LIF
neurons or sigmoid neurons).11 When training on this dataset, I continuously generate new
input-output pairs during training using the transform. Since no example is seen more than
once, the error during training is an unbiased measure of the generalization (testing) error.

In the banded problem (Figure 6.4), the data is arranged into bands in each dimension,
and the class of a datapoint is determined by which band it is in. The mapping from
bands to classes can be chosen such that a single dimension contains no information about
the class of a point; only by using both dimensions can the class be determined (see
Figure 6.4). I will use this fact to help me distinguish some of the key differences between
different learning algorithms, in terms of what kind of data distributions they are and are
not suited to learn.

11Since rectified linear units (ReLUs), also known as IF neurons, are linear above the firing threshold
and silent below, two such neurons can perfectly fit a line (with appropriate weights). Therefore, networks
of these neurons can solve the problem exactly. A network with one hidden layer would need 2d of these
neurons for the exact solution.
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Figure 6.4: Samples from the 2-D banded dataset. The colours of points denote to
which of the three categories they belong. Looking at only a single dimension gives no
information about the class to which a point belongs (i.e., the marginal distributions for
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As a more challenging and realistic learning problem, I use the MNIST dataset (Sec-
tion 3.1.7).

6.3 Results

Since FA is still a relatively new algorithm, there are many aspects of it that have not been
well explored. My goal with this chapter is to create a spiking model of FA learning, in
order to investigate whether the FA algorithm is a biologically plausible method by which
the brain may perform deep learning. Before presenting the spiking model, however, I first
present some supporting results to help justify my spiking architecture (see Section 6.2.6),
including results comparing the different FA variants and the different possible choices for
the LIF neuron derivative. I then present a fully spiking implementation of the modified
DFA algorithm (see Section 6.2.6) using LIF neurons. All rate-based experiments use the
LIF rate nonlinearity unless otherwise noted.

Throughout these results, I have made an effort to choose hyperparameters such that
BP and FA are directly comparable. As noted in Section 6.2.4, the scale of feedback weight
matrices in FA can have a very large effect on algorithm performance and learning rate,
since it can have an identical effect to setting individual learning rates for each hidden
layer. To this end, I try to choose the overall learning rate such that BP performs as well
as possible. Then, I choose the scale of the feedback matrices for FA such that it performs
as well as possible, using the same overall learning rate as with BP. This helps ensure that
neither algorithm has an unfair advantage over the other simply by having better-tuned
learning rates.12

6.3.1 FA variants

I compared the performance of the different FA variants (GFA, LFA, and DFA; see Sec-
tion 6.2.2) on both the linear transform and MNIST learning tasks, to look for differences
between the algorithms in performance and stability.

Figure 6.5 shows the results on the linear transform problem. It looks at two cases:
The first is where all B matrices have the same norm across all different variants of FA.
However, since GFA and LFA both pass the output error through multiple B matrices

12A better approach would be to use a hyperparameter optimization method to find the ideal parameters
for each algorithm, but that is significantly more time-consuming.
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Figure 6.5: Comparison of FA variants on the linear-transform problem. In the
left panel, all feedback (B) matrices have been generated to have the same norm (0.2).
However, this gives larger-magnitude errors in the early layers of direct FA as compared to
global and local FA, since their early-layer errors are the result of passing through multiple
B matrices. In the right panel, the B matrices have been normalized so that the early-layer
errors in GFA and LFA will have the same magnitude as with DFA. In this situation, we
see that the variants all perform comparably.
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when propagating it to earlier hidden layers, having a matrix norm less than one can mean
that the magnitude of the error signal becomes significantly smaller in earlier layers. This
can be seen in the results, where the GFA and LFA algorithms both learn significantly
slower than DFA and BP.

To account for this, I looked at a second case where I normalized the magnitudes of
the B matrices for the GFA and LFA algorithms, such that the combined magnitudes of
the B matrices leading back to a given hidden layer equals the magnitude of one of the B
matrices in the DFA algorithm. This ensures that the magnitudes of the errors at each
hidden layer are approximately the same.13 With these normalized weights, all the FA
algorithms learn quite comparably on the linear problem, and perform similarly to BP. It
is interesting to note that the inclusion of the neuron derivatives in the feedback pathway
does not appear to benefit GFA, despite these same derivatives playing an important role
in the BP algorithm. This suggests that GFA is not making use of these derivatives in any
meaningful way, due to the lack of correspondence between the role that each neuron plays
in the feedforward network computation and randomly-projected error signal that drives
the learning.

To better understand whether there are performance differences between the FA vari-
ants and BP, I also compared them on the MNIST dataset (Figure 6.6). This dataset is
more challenging, and shows more difference between the algorithms. First, BP signifi-
cantly outperforms all the FA variants, scoring significantly better on both the training
and test sets. The FA results depend on the run; a specific randomly-generated feedback
matrix can be responsible for considerable changes in performance, particularly generaliza-
tion performance. One result that is consistent, however, is the rate at which the training
error decreases for different FA variants. DFA and LFA both show similar rates of train-
ing error decrease, and are faster than the decrease shown by GFA. This is because GFA
reduces the magnitude of the error signal by multiplying by the neural derivatives (which
for this experiment are given by a step function that outputs zero or one), while LFA and
DFA do not.

Despite being slightly slower to learn than LFA and DFA, it is possible that GFA is more
stable because it keeps the derivative in the feedback chain.14 To test this, I investigated

13This assumes a linear feedback path, which is the case for LFA, but not for GFA. Since GFA has the
hidden unit derivatives included in the feedback path, the feedback error will be slightly smaller, since
some of the hidden units at each layer are off and thus silence the corresponding element of the error signal.
For this experiment, I used a step derivative function, and chose the feedforward amplitude on the LIF
neurons such that the derivative equals one when the neuron is active. This allows GFA to be comparable
to DFA and LFA, since the derivative does not have a scaling effect on the error, other than to silence
some elements.

14I investigated a local variant of BP, where the derivative is not used in the feedback chain, and found
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Figure 6.6: Comparison of FA variants on the MNIST dataset. The FA variants
perform similarly on MNIST. GFA learns slightly slower, because the neural derivatives
in the feedback pathway set some error components to zero (this experiment uses a step
function as the surrogate derivative, scaled so that the output is unity if the neuron is
active).
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Figure 6.7: Comparison of FA variant stability on the linear-transform problem.
To evaluate FA variant stability, this figure compares the three variants with different
learning rates. At the lowest rate (η = 0.04), all the variants are stable. At the moderate
rate (η = 0.05), LFA and DFA lose stability, but GFA is still marginally stable. At the
highest rate (η = 0.06), all are unstable. What is noteworthy is that these learning rates
are so close together, suggesting that GFA does not significantly improve stability. The
fact that it is slightly more stable is likely simply because the derivative terms in the error
set some values to zero, making the overall magnitude of the projected error smaller.
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the three FA variants with learning rates around the point at which the algorithms begin
to lose stability. I used the linear problem, and as before, I scaled the amplitude of the LIF
neurons so that when using a step derivative, it would output one if the neuron is active
and zero if silent, thus not scaling the error for active neurons. As shown by Figure 6.7,
when the overall learning rate η = 0.04, all three algorithms are stable. Increasing η to
0.05 causes LFA and DFA to lose stability, but not GFA. Increasing η again to 0.06 causes
GFA to lose stability as well. Thus, GFA loses stability at a slightly higher learning rate
than LFA and DFA (on the linear problem). However, this can be explained by the fact
that the error signal in GFA is slightly smaller, since some of the error elements are zeroed
by the derivatives. My conclusion is that GFA is not inherently more stable than LFA or
DFA, and there is no benefit to using the derivatives in the feedback pathway.

6.3.2 Derivatives

Figure 6.8 compares different LIF surrogate derivatives on the linear problem. I normalized
all derivatives to have the same maximum value, to reduce effects due to one derivative
simply having a larger magnitude than another (see Figure 6.2 for an illustration of the
derivatives). For BP (left column), having no derivative (“none”) leads to qualitatively
different results than all of the surrogate derivatives. Even at low learning rates (η = 0.02),
where the no derivative option appears stable, it still learns considerably more slowly. It
becomes unstable even at moderate learning rates (η = 0.05). The same is the case for FA,
where having no derivative is unstable at η = 0.1.

The other derivatives all appear equally stable when used with BP, and learn equally
well. The same is true with FA across most learning rates. At the highest learning rates,
which begin to test the algorithm’s stability, the step-function derivative becomes unstable
first, followed by the soft-LIF derivative. The clipped LIF derivative and IF derivative
(“linearized”) show the best stability and learning characteristics, performing equally well
across all the test cases. A careful examination of the behaviour at the smallest learning
rate shows that in that case, the soft-LIF derivative is able to learn slightly faster than
the other derivatives; this is possibly because it is non-zero just below the firing threshold,
thus helping neurons on the verge of firing to get involved.

Figure 6.9 shows a similar experiment using the MNIST dataset. Again, using no
derivative is clearly detrimental to learning. More surprisingly, the step derivative function
performs as well as other derivative functions when used with BP, but slightly worse than

that it is significantly less stable than ordinary BP.
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Figure 6.8: Comparison of alternative neuron derivatives on the linear problem.
The left column shows BP performance, the right column FA performance. Having no
derivative (“none”) causes significant stability problems for both BP and DFA. The other
derivatives perform similarly, except with high learning rates with DFA, where the step and
soft-LIF derivatives lose stability before the clipped LIF and IF (“linearized”) derivatives.
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Figure 6.9: Comparison of alternative neuron derivatives on the MNIST dataset.
Again, having no derivative is problematic to learning. All other derivatives perform
similarly with BP, but with FA the step derivative performs slightly worse.
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Figure 6.10: Correlation between neural activities and feedback weights. His-
tograms of correlation coefficients between the vector of a neuron’s mean activity across
stimuli from each different class and its feedback vector, for the two hidden layers of a 784-
500-500-10 MNIST network. Dashed lines show the initial (random) weights, solid lines
show after training with DFA. The activity and feedback vector are generally positively
correlated after training, indicating that DFA does push neurons to be more selective for
particular classes over others.

the others when used with FA. Overall, FA performs worse than BP in terms of both
training and testing error.

6.3.3 Selectivity

One of my hypotheses for how FA works is that the random feedback weights push neurons
to be selective for different categories. I investigated this hypothesis by looking at the
correlation between a neuron’s feedback weights Bi and its activity in response to stimuli
of each different class. To do this, I trained a 784-500-500-10 network on MNIST.

Figure 6.10 shows the correlation between the feedback weights for a neuron and the
pattern of activity for that neuron across classes (in a DFA network). The post-training
histogram of correlation coefficients is skewed significantly to the positive side for both
layers, suggesting that FA does push neurons to be selective for particular classes. The
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shift from before to after training is also clearly positive. Yet the correlation between
activity and feedback vector is not perfect. This is indicative of the fact that neuron
weights are only updated when there is an error. So for example, if the network is able
to learn to classify the digit “1” (one of the easier digits to distinguish) early on in the
training, then there will be few errors on 1s, and neurons that are mostly tuned to that
digit will have fewer changes in weights. Also, some neurons may be “naturally” tuned
(based on their initial feedforward weights) to a set of digits completely different than
what their feedback weights are pushing them towards. Such neurons may end up with
activities that are more correlated with their feedback weights, but may never become
strongly correlated.

6.3.4 Limitations

As described previously (Section 6.2.1), one intuition for what FA is doing is that the
feedback weights are pushing the hidden neurons to each be selective to different output
classes, thus making them useful for decoding class information. This has an apparent
limitation: if hidden neurons in a particular layer do not have the information that they
need to be selective for one class over another, then pushing them to be selective for
some classes is simply going to push them in random directions. To both illustrate and
demonstrate this limitation, I have designed a network where this is the case. For this, I use
the 2-D banded dataset (see Section 6.2.7), which has the property that class information
can only be determined using both input dimensions.15 Using this dataset, and limiting
each first-layer neuron to only receive input from one input dimension or the other, results
in a problem that BP is able to solve but FA is not. For simplicity, this experiment uses
ReLU neurons.

The upper panel of Figure 6.11 shows the experiment where the input (first-layer)
weights are unconstrained; that is, first-layer hidden neurons can receive input from both
input dimensions. In this case, both BP and FA are able to learn. BP still outperforms
FA on the task, though; this is because the number of neurons in the first layer is too
low for FA to have one neuron per section on the grid. In the constrained case, where
each first-layer neuron only receives input from one of the two input dimensions, we see
that FA performs much worse. This suggests that FA is unable to properly solve the
credit assignment problem to learn hierarchically. BP, on the other hand, is able to learn
hierarchically, and performs better.

15Put another way, the marginal distributions across either input dimension contain no class information.
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Figure 6.11: Comparison of learning methods on the 2-D banded dataset. The
solid lines show the fully-connected case, where first-layer hidden neurons are connected to
both input dimensions. The dashed lines show the limited-connectivity case, where each
first-layer hidden neuron connects to only one of the two input dimensions or the other.
Learning is impaired in the limited-connectivity case for GFA, DFA, and local BP, but not
for standard BP.
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It is surprising that local BP—that is, BP with the neuron derivatives only applied
locally, but not included in the feedback pathway—is also not able to solve the problem.
This suggests that the neuron derivatives are an important part of the credit assignment
process, and not including them in the feedback pathway is detrimental. Unfortunately,
there is no obvious way to include the neuron derivatives in FA in a useful manner. As
seen previously, and as evidenced by the poor performance of GFA on this task, simply
including the neuron derivatives in the feedback pathway (in a similar manner to BP) is
not helpful.

6.3.5 Adaptive variants

I compared the performance of adaptive variants of DFA (the ADFA variants) on the
MNIST task. Preliminary experiments indicated that the Hebbian and Oja variants offered
a performance improvement over non-adaptive DFA. A closer examination of this result
revealed that the magnitude of the feedback weights was smaller than optimal, and that
the benefit from these adaptive variants was because they increased the magnitude of these
weights, thus speeding up convergence.

Figure 6.12 shows the revised experiment with closer to optimal feedback weight mag-
nitude. In this case, the Oja variant no longer performs better than DFA; in fact, it
performs slightly worse. As in the preliminary experiments, the Oja variant increases the δ
magnitudes (and thus the learning rate), but in this situation, the original (unadapted) δ
magnitudes were near-optimal, and increasing them is only detrimental. Additionally, the
angles between the Oja ADFA updates and the ideal BP updates are worse than for DFA,
thus the adaptation is not pushing the weights in a useful direction. The Hebbian variant
is not shown, because it becomes unstable in this experiment, even though its learning rate
is one-tenth the forward learning rate (ν = 0.1).

Symmetric ADFA does considerably better than DFA, with performance nearing that
of BP. The angle between the symmetric ADFA updates and BP is much better than the
DFA angles, since the updates are pushing both the forward and backwards weights in
the same direction, aligning them. The combined Symmetric-Hebbian and Symmetric-Oja
variants also perform well. Near the end of training, their performance appears to surpass
that of Symmetric ADFA, though it is unlikely that this result is significant.
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Figure 6.12: Comparison of adaptive variants on MNIST task. The top-left and
top-right panels show the training error and testing error, respectively. The ability to
decrease training error is the best reflection of each algorithm’s performance. The bottom-
left panel shows the magnitude of δ, where δ is the projected error times the local neuron
derivative. The bottom-right panel shows the angle between the actual (FA) update and
the ideal (BP) update. In the bottom plots, solid lines show the first hidden layer, and
dashed lines show the second hidden layer. For all variants, µ = 1.0 and ν = 0.1; thus the
symmetric component of the adaptation has the same learning rate as the forward weights,
whereas the unsupervised component (Hebbian or Oja) has one-tenth the learning rate.
This is required for stability.
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Figure 6.13: Spiking network learning the linear problem. The left panels show the
network output (solid traces) as compared with the desired output (dotted traces) before
and after learning. The centre panels shows the spiking of the first hidden layer before
and after training. The right panel shows the overall error rate of the spiking and rate
networks during the course of training.
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6.3.6 Spiking network

A summary of the online spiking learning system is shown in Figure 6.13. The system
learns to perform the linear task. The top panels show the performance of the network
before learning; there is a minimal, uniform response to all stimuli, and the neuron spiking
is sparse and does not seem to be indicative of what stimulus is present. The bottom panels
show the performance after learning, on novel test stimuli. The network output matches
the target output values well, and the neurons are both more active, and appear to be
selective to specific regions of the input space. As shown by the far-right panel, the error
of the spiking network decreases to almost the same level as that of the network trained
offline.

When learning in online spiking networks, there are a number of different factors that
affect how well the network learns. As with non-spiking networks, the learning rate has
a strong effect on how well the network learns. While larger learning rates theoretically
allow the error to decrease more quickly, if the learning rate is too large, then the network
will fit itself too much to each new stimulus, and lose some of the information learned
from previous stimuli. This problem is more acute in online learning, since each stimulus
is shown for multiple time steps, giving the network more time to overfit to the new
stimulus. I found that if the system is able to reduce the error to close to zero on each new
stimulus presentation, particularly during early learning, this indicates the learning rate
is too large. Optimal learning rates showed only a slight decrease in error over the course
of each stimulus presentation, but after many such presentations, the network was able to
learn the desired function quite well.

The presentation time for each stimulus also has a large effect on learning. Assuming
the total training time is fixed, there is a tradeoff between showing each stimulus for a long
time and showing many stimuli. Each stimulus must be shown for an adequate length of
time to learn well, since at the onset of each new stimulus there are considerable transients
due to past information stored in synapses and membrane voltages. It is only once the
network has settled into its feedforward state that useful learning can occur. However, if
stimuli are shown for too long, this decreases the number of different stimuli that can be
shown in the allotted time, limiting the diversity that the network is exposed to and thus
reducing its generalization performance.

Finally, the total training time affects performance. While the basic relationship is
that longer training times mean exposure to more stimuli for longer times and thus better
performance, the outcome does depend on the learning rate and presentation time. For
example, if the presentation time is long or the learning rate is high, then increasing the
total training time may not improve performance beyond a certain point. In this situation,
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the network is constantly re-fitting itself to the most recent stimuli and forgetting the old
stimuli, so increasing the total training time will only increase the list of forgotten stimuli.

6.4 Discussion

One limitation of Feedback Alignment (FA)—and a key difference with backpropagation
(BP)—is that FA does not truly solve the spatial credit assignment problem. Theoretically,
this is most apparent in the case of direct FA, where all hidden neurons only receive error
information from the output layer. Since they do not receive error information from any
downstream neurons (cf. BP), there is no way that they can update to reduce downstream
errors, they can only try to reduce the output error directly. Since global FA and local
FA essentially reduce to direct FA16, they also face the same problem. I confirmed this
empirically with the experiments in Section 6.3.4: In the case of the 2-D banded problem,
where no class information is available to the first layer neuron it is impossible for FA to
learn. FA relies on pushing all hidden neurons to be selective for some classes over others,
rather than reducing downstream hidden-neuron errors as BP does. The result is that
there are certain problems that are unlearnable by FA.

To determine whether this limitation of FA is a serious problem, the next question
should be: “How much credit assignment is required in a brain?” In the human visual
system, it is quite unlikely that classification error is the only error signal available to
the system. Not only do earlier visual layers likely learn at least partly based on features
more associated with the dorsal stream (such as depth and motion), but there is likely
unsupervised learning happening at many layers. Therefore, the amount of supervised
deep learning that occurs in the brain is almost certainly not as all-inclusive as is the case
in the models presented here. Thus, the fact that FA can only learn when class information
is available may not be a serious limitation: early visual layers—where there is typically
less class information—could learn predominantly based on other signals, with FA taking
a leading role at the higher layers of the ventral stream where more class-specific inputs
are readily available.

16Local FA is mathematically equivalent to direct FA, and global FA is the same as local FA but with
an essentially random perturbation (the derivative scaling) on the feedback errors. See Section 6.2.2.
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Chapter 7

Conclusion

I have described three different methods for constructing spiking neural networks: fixed-
encoding methods, spiking deep neural networks trained with backpropagation, and spiking
deep neural networks trained with Feedback Alignment. While the ultimate goal of all the
methods is to provide insight into how the brain may solve the object classification problem,
each method has its own unique benefits and limitations. This chapter outlines the key
contributions of this thesis towards each of these three methods, as well as future work to
be done both for the specific methods and to understand human object recognition as a
whole.

7.1 Summary of contributions

7.1.1 Fixed-encoding networks

The first portion of this thesis looks at spiking object classification in fixed-encoding net-
works.

This thesis proposes Gabor filters for fixed-encoding networks, demonstrating that a
randomly generated basis of Gabor filters is a good encoding method for classifying MNIST
images. They outperform the randomly generated weights typically used in fixed-encoding
networks, as well as the Computed Input Weights and Constrained Difference weights
approaches of data-driven encoder generation. This suggests that Gabor filters are a better
basis for classification, despite being tuned to general image statistics, rather than the
particular statistics of the MNIST dataset.
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I also characterize the benefits of alternative loss functions for solving for decoding
weights in fixed-encoding networks. Alternative loss functions have not been well explored
in these types of networks, with almost all works relying on squared loss. Squared loss
works well for regression problems (such as those typically addressed by the NEF), but the
results of Chapter 4 show that alternative loss functions (weighted squared loss, softmax
loss, hinge loss) result in better performance on classification problems. While the weighted
squared loss was previously introduced by Toh (2008), it has not caught on in the ELM
community, who are the main group using fixed-encoding networks for classification. My
results underscore the need for alternatives to squared loss.

I run these fixed-encoding networks in spiking neurons, a step that is common in the
NEF paradigm but that is not typically taken for object classification problems (which
have largely been ignored by the NEF). The spiking networks perform almost as well
their non-spiking counterparts, indicating that this conversion is possible, and allowing
basic object classification components to be seamlessly integrated into NEF models. I also
demonstrate that regularization is required for spiking networks when using squared loss,
but is less essential with other loss functions, particularly softmax loss.

7.1.2 Spiking deep networks

The middle portion of this thesis examines methods to train spiking deep networks on
more difficult object classification tasks, including the ImageNet dataset.

The soft-LIF model—a differentiable version of the LIF rate response curve—is a novel
way to train deep spiking networks with LIF neurons. It is both simple and efficient,
allowing it to train the first deep spiking models on the ImageNet dataset (Hunsberger
& Eliasmith, 2016). The idea behind it—smoothing out the discontinuity of a neural
model around the firing threshold—is generalizable to other neural models, allowing deep
networks to be trained with any neural model with a fixed rate response function.

I also introduce a novel approach to account for the variation caused by spiking neurons,
by modelling this variation and training with stochastic variation (noise) with a similar
distribution. The results show that training with noise (in the right amount) is benefi-
cial, particularly when using no synaptic filters and shorter classification times. Doing
so can improve the efficiency of spiking neural networks on neuromorphic hardware while
maintaining similar levels of accuracy (Section 5.3.5). The method of characterizing spik-
ing variation is also potentially applicable to other spiking networks, for example those
developed using the NEF.
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7.1.3 Biological learning

The final portion of this thesis brings biological plausibility into the training of deep spiking
networks, specifically via the Feedback Alignment (FA) algorithm.

The first contribution of this thesis in this area is to provide a better understanding
of how FA works. I examine a number of different variants of FA (GFA, LFA, and DFA),
and find that they are all essentially doing the same thing. Including the gradient in the
feedback pathway (as with GFA) does not contribute to the stability of the algorithm.
FA also works with a number of different surrogate gradients for LIF neurons; it does not
require the exact derivative of the nonlinearity to function. I introduce the derivative of
an IF neuron with refractory period as a surrogate for the LIF derivative, and find that
it works better than a step derivative function when used with FA. I also investigate the
hypothesis that FA pushes neurons to be selective for particular classes. I find that there
is correlation between a neuron’s activity and its feedback weights in DFA, indicating that
this hypothesis is correct. Yet the correlation is not perfect, suggesting that there are
numerous factors at play, including the initial weights and which classes are more difficult
to classify.

Most works to date have focused on situations where FA performs similarly to BP;
Section 6.3.4 begins to identify some of the limitations of FA. The results show that there
are problems that BP can solve that FA cannot. This indicates that FA does not fully
solve the credit assignment problem. Interestingly, local BP (i.e., BP without neuron
derivatives in the feedback pathway) is also not able to solve this problem. This indicates
that the inability of FA to include derivatives in the feedback pathway in a meaningful way
contributes to its inability to fully solve credit assignment.

Section 6.3.6 presents a novel spiking implementation of FA. This spiking implemen-
tation addresses most of the problems with BP outlined in Section 6.1.1, most notably
some that have not been addressed by past spiking implementations. It uses population
coding to transmit the feedback error using nonlinear neurons, addressing the linear feed-
back problem. It demonstrates that the timing problem does not prohibit learning as
long as stimuli are shown for a sufficient length of time. It uses surrogate derivatives to
allow the use spiking LIF neurons, improving on past models by using a more biologically-
plausible neuron model, and demonstrating that surrogate derivatives can be used without
a significant effect on performance.
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7.2 Future work

This section outlines some avenues of future work that follow either directly from the work
in one of the chapters, or more generally in order for neural models of object recognition
to continue to become more biologically plausible and powerful (Section 7.2.4).

7.2.1 Fixed-encoding networks

The weighted squared loss, softmax loss, and hinge loss examined in Chapter 4 all showed
an improvement over squared loss for classification. It remains unclear how neurons may
implement such loss functions online. Weighted squared loss is likely the easiest to imple-
ment, since it still has a linear derivative. All that would be required is weighting the errors
on the decoder learning based on the correct label of the current input. To implement soft-
max loss or hinge loss, neural mechanisms would be required for computing the nonlinear
functions in their derivatives. Expanding these loss functions for online learning in neu-
rons would have applications beyond fixed-encoding methods, to any online classification
learning in neurons, including the biological learning methods examined in Chapter 6.

For fixed-encoding methods to be truly successful, they need to have success on more
challenging datasets. To date, their main successes are on MNIST, with some success
on CIFAR-10 (McDonnell & Vladusich, 2015). A likely criterion for this success is the
extension to multilayer networks, with two or more hidden layers. This will require better
techniques for constructing features beyond the first layer. The nature of deep features
both in the brain and in ANNs are still poorly understood, which makes it difficult to
manually construct these features for fixed-encoding networks.

7.2.2 Spiking deep networks

Spiking ANNs can achieve similar performance to similar non-spiking ANNs—even on
challenging datasets like ImageNet—as shown in Chapter 5. It has yet to be shown that
spiking networks can match state-of-the-art performance on these datasets. The network
on which I based my work in Chapter 5 (Krizhevsky et al., 2012) was close to the state-
of-the-art when I began, but advances in recent years have far surpassed it. Achieving
state-of-the-art results in spiking networks using my methods may be as straightforward as
integrating them into the training procedure. The simplicity of some modern networks like
the all-convolutional network of Springenberg et al. (2015) could facilitate easy integration.
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Both the networks introduced in Chapter 5 and others that perform well on datasets
like MNIST (e.g., Diehl et al., 2015) have spike rates (80-180 Hz) considerably higher than
those observed in cortical neurons (∼10 Hz). Lowering firing rates would both increase
the biological plausibility of the networks, and increase the potential benefits from imple-
menting them on neuromorphic hardware, where energy use is often tied directly to neuron
firing rates. Recent work by Zambrano et al. (2017) moves in this direction, introducing
networks with significantly lower firing rates ( ∼10 Hz on many datasets). Yet, their net-
works actually require more spikes to classify each image, due to larger network sizes (see
Table 5.7). Future work is required to determine whether the number of spikes per can be
reduced, while maintaining high levels of accuracy.

As of yet, my networks have not been tested on neuromorphic hardware. While this is
theoretically straightforward, there are a number of technical hurdles to overcome, partic-
ularly when targeting analog neuromorphic hardware due to the variation between chips.
These include developing detailed models of all the neurons on the hardware, then training
the network for the specific chip in question.

On some types of neuromorphic hardware, it is not possible to construct a static rate-
response function for the neurons, if they include more complex dynamics such as adap-
tation. For this hardware, an approach that takes neuron dynamics into account might
be required. As of yet, most methods for training spiking neural networks—whether rate-
based or spike-based—are not able to account for such dynamics.

7.2.3 Biological learning

The results in Section 6.3.4 outline some of the limitations of FA as compared with BP,
including the fact that FA does not truly solve the credit assignment problem. In that
case, the limitations are only apparent on a constructed problem; it remains to be seen
whether FA is limited on real-world problems, as compared with BP. So far, results from
FA have been comparable with those of BP for fully connected networks on the MNIST
dataset. Nøkland (2016) applied FA to a convolutional network on the CIFAR-10 dataset,
and found that it performed significantly worse than BP (see Section 6.1.3 for details).
Part of the problem may be that convolutional networks use tied weights, which results
in many fewer parameters and thus make it more difficult for the random feedback basis
employed by FA to function efficiently.1 Convolutional weights are also not biologically

1A similar effect is seen with fixed-encoding networks. They function almost as well as BP when using
a large basis of random input weights to cover the entire space of inputs, but perform comparatively worse
with only a small random basis. The curse of dimensionality means that as the input dimensionality
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plausible, since the weights across different locations are exactly equal (tied), but they do
make training deep networks more efficient due to fewer parameters. Future work should
investigate whether FA is comparable to BP in a deep network without tied weights but
with limited receptive fields (i.e., locally connected layers), since these are most similar
to the structure of visual cortex. If FA is able to achieve similar results to BP on more
challenging datasets with such architectures, this may be evidence that FA is sufficient
for the supervised learning problems faced by the brain. Otherwise, a learning method
that fully solves the credit-assignment problem may be required. Adaptive FA is one such
potential algorithm. By pushing the backwards weights to further align with the forward
weights, not only could adaptive FA reduce the error due to misaligned feedback, but it
could also allow FA to integrate neuron derivatives into the feedback pathway in a way that
they contribute to credit assignment. Research is needed to test this hypothesis, as well as
to identify adaptation methods for FA that are both effective and biologically plausible.

So far, FA has mainly been investigated at a network level, with less consideration
to how individual neurons may implement the required learning mechanisms. Guergiuev
et al. (2017) is one exception; their work begins to address how feedforward and feedback
signals may be managed within a single cell. Future work is needed to expand on these
networks, for example by bringing in spiking dynamics.

7.2.4 Beyond

There are a number of open questions that go beyond the methods examined in this thesis.

While this work makes a step in the direction of biological plausibility, there are still
numerous characteristics of biological networks that are not accounted for by any object
recognition models. One such characteristic is Dale’s principle, which for our purposes can
be simplified to the rule that neurons are either excitatory or inhibitory (in their output),
not both. In typical ANNs, including all the networks developed in this thesis, neurons are
allowed to have both positive and negative connection weights on their outputs. Respecting
Dale’s principle would require restricting these to be either all-positive or all-negative for
each neuron, which could have significant effects on learning. Excitatory and inhibitory
neurotransmitters also have different synaptic dynamics, and excitatory and inhibitory
neurons have different connectivity structures; a more extensive implementation of Dale’s
principle would also account for these additional characteristics.

All the methods presented in this thesis process static images, one-at-a-time, and view
each image in its entirety. This is the way object recognition systems have traditionally

increases, it becomes harder to tile the space with a random basis.
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been designed and developed, and it is still common today. Recently, some researchers
have begun focusing on object localization, where objects are both identified (recognized)
and their position in the image is determined; this task is included as part of the new
ImageNet challenges (ILSVRC). This allows images with multiple objects to be processed
in a more natural manner.

A next step is to begin to run object recognition networks on video, and as part of
this process, incorporate other aspects of vision such as tracking. I believe that it is in
such systems, where there is a temporal aspect to the input, that neuromorphic hardware
will really offer an advantage. No longer will the temporal aspect of spiking neurons be
holding back the efficiency of the system, as occurs when a spiking network needs multiple
timesteps to process a static image (whereas an ANN can process it in one forwards pass).
With dynamic inputs, spiking networks will be continuously processing, which could allow
for both efficient computation and short response times. Traditional methods like ANNs
require a new, independent pass through the network for each video frame, potentially
making them less efficient by comparison.

All methods that currently excel at object recognition—including all the methods in
this thesis—rely heavily on supervised learning. They require large sets of labeled data,
and while images are cheap, the corresponding labels are expensive, because they require
a human to provide them. Not only is this detrimental from an engineering perspective,
it also limits the biological plausibility of the models. Young humans learn to recognize
objects using only limited labels. A child needs only to be told a few times that a particular
type of animal is a dog or a cat, and can quickly begin generalizing to other objects of
the same class.2 This points to large amounts of unsupervised learning happening in the
brain, specifically a type of clustering that allows us to group objects even when we do not
have a label to apply to the group.

Accounting for such unsupervised learning will significantly change the way we model
object recognition. For the fixed-encoding methods of Chapter 4, ideas and methods
from unsupervised learning can inform the way we choose encoders, so that they will
better capture and separate the data. When learning deep networks with backpropagation
(Chapter 5), methods that combine unsupervised and supervised learning will ideally be
able to learn better generalization, since they can take advantage of the large number of
unsupervised images available. Finally, unsupervised learning will have a dramatic effect
on the biological learning models discussed in Chapter 6. It will take a lot of the onus
off the supervised learning method (e.g., Feedback Alignment), allowing the supervised
methods to focus on learning the last few layers of the network, while the unsupervised

2ANNs, by contrast, require thousands of labelled examples of each class.
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methods take care of much of the earlier learning. This means that it is not as important
if these supervised methods can learn very deep networks, and may mean that algorithms
like Feedback Alignment that can only partially solve the credit assignment problem could
still be successful in the brain. Unsupervised learning may also be important when there
are no tied weights. Tied weights are relied upon heavily in machine learning through the
use of convolutional networks, but are not possible in the brain where each connection is
independent.

Unsupervised learning is a specific example of the need for more complex objective
functions in deep learning. While there are advantages to the simplicity of only having a
performance-based objective function at the output layer of the network—and it is amazing
how much has been accomplished with this paradigm—the brain likely uses many cost
functions, and throughout the visual hierarchy, not just at the output. Cost functions in
the early visual cortices likely contribute to many tasks, not only object recognition. Early
visual neurons have many responsibilities, including edge detection, depth perception, and
motion perception. Learning to be good at one of these responsibilities may help in other
responsibilities as well. For example, image edges often co-occur with depth edges and the
borders of motion, since all of these often correspond to the edges of physical objects. Thus,
a cost function that pushes neurons to detect object edges will not only be training these
neurons for a variety of tasks, but will also have a multitude of features with which to train
them. Current object recognition networks are trained only with static images, and thus
have no concept of depth or motion. To achieve human-level performance on real-world
object recognition tasks with only limited labeled data, we may require systems that have
many complex cost functions working together to use information from all aspects of the
visual environment, including viewing 3-D objects in stereo, from numerous angles, under
various lighting conditions, and with observer and object motion. This is the environment
that gives rise to human vision.
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Appendix A

Efficient Weighted Linear Least
Squares for Classification

Weighted squared loss (a.k.a. weighted linear least-squares) can be used to solve for decod-
ing weights in fixed-encoding networks (Section 4.3.2), performing better than unweighted
linear least-squares (Section 4.5.2). When solving these systems for classification, particu-
lar constraints on the weights allow us to solve the problem almost as quickly as unweighted
least squares.

Let A be an M ×N matrix of activities of N hidden neurons on M training examples.
Let Y be an M ×D matrix of the one-hot classification targets for the D possible classes.
Let X be an N ×D matrix of the decoding weights, which we wish to solve for.

In unweighted linear least-squares, we solve the equation

(ATA + λI)X = ATY. (A.1)

Note that we are solving for the D columns of X, but since each column obeys the same sys-
tem of equations ATA+λI, if we use direct (i.e., non-iterative) methods, we pay essentially
the same computational cost as solving a one-dimensional system.

In weighted linear least-squares, we solve the equation

(ATWA + λI)X = ATWY. (A.2)

However, since we want different weights for each column of X and Y, we must solve a set
of k ∈ [0, D) one-dimensional systems:

(ATWkA + λI)Xk = ATWkY k, (A.3)
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where Xk and Yk are the kth columns of X and Y, respectively, and Wk is an M ×M
diagonal matrix of weights for the kth system. This system is much more expensive to solve,
because we must compute D products ATWkA, with a total computational complexity of
O(DMN2).

To reduce the cost, we will take advantage of the fact that the weights on each example
are (Wk)ii = w+

k if Yik = 1, and (Wk)ii = w−k if Yik = 0.

Let Ak be the rows of A that belong to class k (i.e., each row (Ak)i such that Yik = 1),
and Ak̄ be the rows of A that do not belong to class k. We can then write Equation A.3 as

(w+
k AT

kAk + w−k AT
k̄Ak̄ + λI)Xk = w+

k AT
k 1Mk

(A.4)

((w+
k − w

−
k )AT

kAk + ATA + λI)Xk = w+
k AT

k 1Mk
(A.5)

where 1Mk
is a vector of ones of length Mk. Since ATA =

∑
k AT

kAk, we now only have to
compute theD matrix products AT

kAk (with a total computational complexity ofO(MN2)),
rather than having to compute the the D matrix products ATWkA (with a total compu-
tational complexity of O(DMN2)). When M > DN , computing these matrix products is
the main computational burden of the algorithm; solving an N -dimensional linear system
has complexity O(N3). Thus, in many cases, the weighted linear least-squares algorithm
does not take much longer than unweighted linear least-squares.
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Appendix B

Derivations of Filtered Spike Train
Equations

By modelling the variability of a filtered spike trains (Section 5.2.3), we can train networks
using noise that simulates this variability, and thereby make networks more robust to it
(Section 5.3.3). To model spiking variability, we look at the effect of various synaptic filters
on the spikes coming out of a neuron firing at a constant rate.

The output spikes of a neuron firing at a constant rate can be modelled as an impulse
train:

T (t) =
∞∑

i=−∞

δ(t+ ip) (B.1)

where p is the period between spikes, and δ(·) is the Dirac delta (a.k.a. impulse) function.

Convolving this impulse train with a filter will produce a copy of the impulse response
of the filter at each spike. The filtered spike train s(t) is then given by the sum of the
contributions of all previous filtered spikes:

s(t) =
∞∑
i=0

h(t+ ip) (B.2)

for 0 ≤ t < p, where h(·) is the impulse response of the filter.
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B.1 Exponential synapse response

First, we examine the filtered spike train when the synapse is a first-order synapse model:
the exponential model. The impulse response of an exponential filter is given by

h1(t) =
1

τs

e−t/τs (B.3)

where τs is the synaptic time constant. Substituting this into Equation B.2 we get:

s1(t) =
∞∑
i=0

1

τs

e−(t+ip)/τs (B.4)

=
∞∑
i=0

1

τs

e−t/τse−ip/τs (B.5)

We are summing over a geometric series of the form
∞∑
i=0

ari = a/(1− r) (B.6)

where a = e−t/τs/τs and r = e−p/τs . As long as p > 0, then r < 1 and the series converges,
resulting in the following sum:

s1(t) =
e−t/τs

τs (1− e−p/τs)
. (B.7)

B.2 Alpha synapse response

Next, we examine the filtered spike train when the synapse is a common second-order
synapse model: the alpha synapse model. The impulse response of an alpha filter is given
by

h2(t) =
t

τ 2
s

e−t/τs (B.8)

where τs is the synaptic time constant. Substituting this into Equation B.2 we get:

s2(t) =
∞∑
i=0

(t+ ip)

τ 2
s

e−(t+ip)/τs (B.9)

=
∞∑
i=0

1

τ 2
s

e−t/τs(t+ ip)e−ip/τs (B.10)
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This is an arithmetico-geometric series of the form

∞∑
i=0

c(a+ ib)ri = c

(
a

1− r
+

br

(1− r)2

)
(B.11)

where a = t, b = p, c = e−t/τs/τ 2
s , and r = e−p/τs . This results in the following sum:

s2(t) =
e−t/τs

τ 2
s

(
t

1− e−p/τs
+

pe−p/τs

(1− e−p/τs)2

)
. (B.12)

B.3 Combined alpha synapse and membrane response

Finally, we look at the filtered spike train under combined filtering from an alpha synapse
and first-order model of the neuron membrane. The combined alpha filter and neuron
membrane filter has a transfer function of

H3(s) =
1

(τss+ 1)2(τRCs+ 1)
(B.13)

Assuming τRC 6= τs (as is typically the case), this results in an impulse response of

h3(t) =
τRC

d2

(
e−t/τRC − e−t/τs

)
− t

τsd
e−t/τs (B.14)

where d = τRC − τs. As before, we substitute into Equation B.2, and find the value of
the infinite series using the equations for the geometric and arithmetico-geometric series,
resulting in:

s3(t) =
τRC

d2

(
e−t/τRC

1− e−p/τRC
− e−t/τs

1− e−p/τs

)
−
e−t/τs

(
t(1− e−p/τs) + pe−p/τs

)
dτs (1− e−p/τs)2 . (B.15)

B.4 Limits of synapse responses

To determine the variance of the exponential synapse response (s1, Equation B.7) and
alpha synapse response (s2, Equation B.12), we look at the limit of the maximum value
minus the minimum value as the period p→∞.
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For the exponential synapse, the maximum value occurs at t = 0, and the minimum at
t = p. The range of the series is then:

s1(t = 0)− s1(t = p) (B.16)

=
1

τs (1− e−p/τs)
− e−p/τs

(1− e−p/τs)
(B.17)

=
1− e−p/τs

τs (1− e−p/τs)
(B.18)

=
1

τs

. (B.19)

Since this is constant (independent of p), the range of this function will be large even
for very high firing rates (small p), resulting in significant variance in the filtered neural
output.

For the alpha synapse, the maximum occurs when the derivative of the series function
s2 equals zero:

0 =
∂

∂t

t
(
1− e−p/τs

)
exp−t/τs + pe−p/τs exp−t/τs

τ 2
s (1− e−p/τs)2 (B.20)

0 =
(1− t

τs
)
(
1− e−p/τs

)
exp−t/τs − zp

τs
exp−t/τs

τ 2
s (1− e−p/τs)2 (B.21)

0 = (1− t

τs

)
(
1− e−p/τs

)
− pe−p/τs

τs

(B.22)

t∗ =
τs

(
1− e−p/τs

)
− pe−p/τs

1− e−p/τs
. (B.23)

The minimum of the series occurs when t = p (or t = 0, since this series is continuous and
periodic with period p). Taking the limit of the difference:

lim
p→0

s2(t = t∗)− s2(t = p) (B.24)

= lim
p→0

e−t∗/τs
(
τs

(
1− e−p/τs

)
− pe−p/τs + pe−p/τs

)
τ 2

s (1− e−p/τs)2 − pe−p/τs

τ 2
s (1− e−p/τs)2 (B.25)

= lim
p→0

τse
−t∗/τs

(
1− e−p/τs

)
− pe−p/τs

τ 2 (1− e−p/τs)
(B.26)

= 0 . (B.27)
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Thus, as the firing rate becomes large, the variance in the alpha-filtered spike train
goes to zero. The intuition behind this is that the series s2(t) is continuous—that is
s2(0) = s2(p)—so as the firing rate becomes large we are summing together more and more
superimposed alpha function impulse responses, eventually resulting a constant signal.
The exponentially-filtered series s1 is discontinuous— namely s1(0) 6= s1(p)—so even when
filtering high-frequency spike trains we end up with a signal more similar to a sawtooth
wave than a constant signal, resulting in non-zero variance in the limit as p→∞.
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Appendix C

Source Code

The source code used to generate all figures, tables, and results presented in this thesis is
available online at https://github.com/hunse/phd.

The source code for training and running the deep spiking networks presented in Chap-
ter 5 is available at https://github.com/hunse/cuda-convnet2.
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