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LIF neuron derivatives

Solution

Non-spiking Results

Backprop (BP) is not biologically plausible [1]: The leaky integrate-and-fire (LIF) neuron dynamics:

e Use population coding to transmit final-layer
error backwards. This allows the encoding of
negative errors.

e Use spiking LIF neurons throughout, with a
surrogate derivative for learning
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Error pathway is purelv linear
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e Error pathway uses present derivatives of
forward neurons

o Error pathway uses weights symmetric to
those of forward pathway (aka. tied weights)

e Forward and error pathways synchronous
Treats neurons as non-spiking, differentiable
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Spikes when V' > 1, then V = 0 for ¢,..f seconds.
The instantaneous firing rate in Hertz is:
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Validation problem:

e Data: Linear mapping from 30-D to 10-D,
normally distributed. Nontrivial to learn with
nonlinear neurons. . ARSI
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Feedback Alienment (FA Network: Two hidden layer (30-80-80-10) e Problem: A/ — 0o as u — 1
S (FA) network. Demonstrates ability to learn deep 10002000 3000 4000 5000 6000 e Solution: Replace i’ with surrogate derivative

A more biologically plausible alternative to back- networks. Spiking network has 3 ms alpha # examples function (derivative of IF neuron with
propagation developed by [2]: synapses between layers. Both BP and our model are able to solve the problem refractory period)

Training: Trained both non-spiking and using rate-based LIF neurons. Because the initial for- e Derivative no longer matches nonlinearity,
spiking versions. For spiking network, each ward weights are small, our model learns quicker but learning still works
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o Uses random feedback weights, instead of
symmetric ones

. . e stimulus is presented for 220 mes. than BP because it has larger feedback WelghtS
e Forward weights in later layers “align” so that 100 50
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Limitations: ) " 04 sigmoid neurons
. . Population coding used to transmit
e Feedforward neurons are sigmoidal, negative errors
hastically spikin 3 L
stochastically spiking . , L arga 0 1 Surrogate derivative used for the LIF
e Feedback neurons are sigmoidal, non-spiking, 0.2 ST neurons when learning. Used derivative of
allow negative firing rates e refractory IF, but plain IF derivative (i.e.,
Ref 1005.0 1005.5 1006.0 1006.5 1005.0 1005.5 1006.0 1006.5 200 400 600 800 1000 step tunction) also works.
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