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Abstract

This report investigates how neurons with complex dynamics, specif-
ically adaptation, can be incorporated into the Neural Engineering
Framework. The focus of the report is fitting a linear-nonlinear sys-
tem model to an adapting neuron model using system identification
techniques. By characterizing the neuron dynamics in this way, we
hope to gain a better understanding of what sort of temporal basis the
neurons in a population provide, which will determine what kinds of
dynamics can be decoded from the neural population.

The report presents four system identification techniques: a corre-
lation-based method, a least-squares method, an iterative least-squares
technique based of Paulin’s algorithm, and a general iterative least
squares method based of gradient descent optimization. These four
methods are all used to fit linear-nonlinear models to the adapting
neuron model. We find that the Paulin least-squares method performs
the best in this situation, and linear-nonlinear models fit in this manner
are able to capture the relevant adaptation dynamics of the neuron
model. Other questions related to the system identification, such as
the type of input to use and the amount of regularization required for
the least-squares methods, are also answered empirically. The report
concludes by performing system identification on 20 neurons with a
range of adaptation parameters, and examining what type of temporal
basis these neurons provide.
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1 Introduction

The Neural Engineering Framework (NEF) describes how a population of
neurons can compute a wide range of nonlinear functions, using nonlinear
encoding and linear decoding [1]. It models a population of neurons as each
having a preferred direction vector. The neurons obey cosine tuning, with
activation given by a nonlinear function of the dot product between the input
stimulus and the neuron’s preferred direction vector. Linear decoders can then
be found using least squares, which when multiplied by the neuron activations,
reproduce either the original stimulus or an arbitrary function of this stimulus.
This creates a powerful framework for transforming computations in abstract
vector spaces to computations in neural populations.

One shortcoming of the NEF is that it currently only applies to neurons
with a limited range of dynamics. The NEF uses a rate approximation to
neurons in a population when solving for the linear decoders to compute a
function, so the firing rate of neurons in the population must remain constant
given a constant input signal. This is equivalent to the neuron having a fixed
response function that does not change over time.

Many neurons observed in vitro exhibit dynamics that cannot be captured
by the static response function model. For example, many cortical neurons
show a property called adaptation: Given a constant input, the neuron fires
rapidly at stimulus onset, but then quickly reduces its firing rate. Other
cortical neurons exhibit bursting, emitting short bursts of spikes rather than
firing at a constant rate. It is unclear how complex neuron dynamics like
these should be dealt with by the NEF.

One solution is to simply continue with the current NEF methods, com-
puting the response functions of neurons over long time scales, and using these
to find the linear decoders. For adapting neurons, the computed response
function would be dominated by the neuron dynamics after adaptation; this
decoding would work well for slowly varying signals, but would be inaccurate
for higher frequency ones. Therefore this decoding method only works for
neurons whose response functions reach a steady state for the given input
signals. Another drawback to this decoding method is that it cannot take
advantage of these neural dynamics to compute more complex temporal
functions.

These problems motivate a second solution, which is to model the neuron
dynamics in a way that they can be included when solving for decoders.
The linear-nonlinear (LN) model is a natural candidate for this, since it
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decomposes the neuron into a linear dynamic system and a static nonlinearity.
This model is very comparable to the current NEF model, but instead of a
preferred direction vector in the input space, the neuron’s linear kernel is a
preferred direction vector in time. Fitting a population of adapting neurons
to linear-nonlinear models will allow us to understand what sort of temporal
basis the population provides, and give an idea of what types of temporal
signals can be decoded from the population.

This report briefly presents an adapting neuron model and the linear-
nonlinear (LN) system model, then describes in-depth a wide variety of system
identification techniques for fitting LN models to a system, as well as many
considerations related to performing system identification on our specific to
our neural system. These system identification techniques are evaluated on
the adapting neuron model; the results are presented and the best technique
determined. This optimal technique is then applied to a population of neurons
to characterize the range of linear kernels present in the system. The report
concludes with suggestions as to how these results can be applied to improving
decoding in the NEF.

2 Methods

This section first presents the adapting neuron model which serves as the
system of study for the remainder of the report. It then describes the linear-
nonlinear (LN) system model which will be used to characterize the dynamics
of the adapting neuron model. Finally, it explores in detail the system
identification techniques used to fit the LN model to the neuron model, and
raises some challenges with system identification as it relates to our system
of interest.

2.1 Adaptive Leaky Integrate-and-fire Neuron

Adaptation is a decrease in the firing rate of a neuron given a constant input,
and is commonly observed in cortical neurons. It is a basic form of neural
dynamics that is not currently captured by the NEF, and due to its simplicity
and ubiquity it is the type of neuron dynamics examined in this report.

The adaptive leaky integrate-and-fire (ALIF) neuron model is an extension
of the leaky integrate-and-fire (LIF) neuron model that accounts for neural
adaptation [2]. The ALIF model has two state variables, the voltage v(t) and
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the adaptation parameter n(t). In practice, the model has a third variable
w(t), which is responsible for measuring the absolute refractory period. The
model is given by

τRC v̇(t) = R [αu(t) + β − gnn(t)]− v(t) + η(t) (1)

τnṅ(t) = −n(t) (2)

where R = 1 is the membrane resistance, gn = 1 is the adaptation conductance,
τRC is the membrane time constant, τn is the adaptation time constant, and
α and β are a scaling and offset for the input signal, respectively. When the
voltage crosses the threshold Vth = 1, the neuron fires a spike. The voltage is
then reset to zero, and the adaptation parameter is increased by ninc. The
voltage is held at zero for a short length of time after a spike, called the
absolute refractory period tref .

The LIF neuron model (without adaptation) has an analytic response
function that describes the neuron’s rate as a function of the constant input
level s:

r(s) =

[
tref − τRC log

(
1− Vth

R(αs+ β)

)]−1

. (3)

The adapting version of the model seems to follow this response function
initially, for the first few spikes before adaptation, but then settles to a much
flatter response function, similar to a rectified linear function. However, the
LIF tuning curve seems to be a good fit for the nonlinearity when fitting
linear-nonlinear models to the ALIF neuron model, so Equation 3 is used for
fitting nonlinearities in the following methods, with parameters α, β, and τRC
variable and all other parameters fixed.

2.2 Linear-Nonlinear Models

The linear-nonlinear (LN) model, or Wiener model, is a simplified description
of an arbitrary dynamical system [3]. The model consists of a dynamic linear
component and a static nonlinear component. The system input u(t) is first
passed through the dynamic linear system, fully described by its impulse
response h(τ) (also known as the linear kernel). The linear response x(t) is
given by the convolution of this kernel with the input signal

x(t) =

t∫
0

u(τ)h(t− τ)dτ. (4)
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This linear response is then passed through the static nonlinearity m(·) to
produce the system response

y(t) = m (x(t)) . (5)

The LN model has previously been used in computational neuroscience to
characterize the rate response of a neuron to a stimulus [4]. It bears a strong
resemblance to the neuron encoding model currently used by the Neural
Engineering Framework (NEF). In the NEF, the rate response of a neuron is
described by the neuron’s encoder φ (often called a preferred direction vector
in the literature) and the neuron’s static nonlinear response. Specifically, the
response r(t) is given by the dot-product between the multidimensional input
u(t) and the encoder, passed through the nonlinearity g(·):

r(t) = g
(〈
φ, u(t)

〉)
(6)

where
〈
x, y
〉

is the dot-product between two vectors x and y. In discrete
time, the convolution integral of Equation 4 becomes a dot product, and
therefore the linear kernel h(τ) is analogous to the preferred direction vector
φ of a neuron, except h(τ) is a preferred direction vector in time. Fitting
a population of neurons with LN models will allow us to characterize what
sort of temporal basis the population provides, which determines what sort
of signals can be decoded from the population.

2.3 Linear-nonlinear Model Estimation

Here I describe the system identification methods that will be used to fit
linear-nonlinear models to the ALIF neurons. All of these methods are
described in detail in [3].

2.3.1 Correlation-based Methods

Correlation-based methods were some of the first methods developed for
system identification, and are still in use [3]. They can be used to fit both
linear and nonlinear models to a system output. I will first summarize how
these methods apply to linear systems, and then I will present the extension
to our nonlinear system of interest.

Given a linear system with impulse response h(τ), the system response
y(t) to input u(t) is given by

y(t) = (u ∗ h)(t) (7)
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where (f ∗ g)(t) is the convolution of two functions f(·) and g(·) evaluated at
time t. Taking the correlation of both sides of this system with the input u(t)
results in the equation

φuy(τ) = (φuu ∗ h)(τ) (8)

where φuy(τ) is the cross-correlation of u(t) and y(t), and φuu(τ) is the
autocorrelation of u(t).

If we stimulate the system with a white input (i.e., the signal values of u(t)
from one time point to the next are independent), then the autocorrelation
φuu(τ) = σ2

uδ(τ), where σu is the standard deviation of u(t) and δ(·) is the
Dirac delta function. This greatly simplifies Equation 8 due to the filtering
property of the delta function in convolution, making the linear kernel equal
to a scaled copy of the cross-correlation between the system input and output

h(τ) = φuy(τ)/σ2
u. (9)

Thus the kernel of a linear system is easily determined from the cross-
correlation of the system input and output.

Bussgang’s theorem allows us to apply these results from linear systems
to nonlinear systems. The theorem states that

For two Gaussian signals, the cross-correlation function taken
after one signal has undergone a nonlinear amplitude distortion
is identical, except for a factor of proportionality, to the cross-
correlation function taken before the distortion. [3]

This theorem allows us to apply Equation 9 to nonlinear systems to estimate
the linear kernel h(t). Once we have an estimate of this kernel, we can form
the linear response of the system

x(t) = (u ∗ h)(t). (10)

This linear response can then be compared with the actual system response
z(t), and a static nonlinearity m(·) fit to the set of points {(x(ti), z(ti))}. The
output of the linear nonlinear system is then given by

y(t) = m [(u ∗ h)(t)] . (11)

For our linear system, preliminary results showed that using a white-
noise signal to fit the nonlinearity m(·) did not produce good results (see
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Section 3.1). For this reason, when applying correlation-based methods, I
used white noise and Equation 9 to identify the linear kernel of the system,
and then used a different (non-white) input signal to generate the linear
response of the system and fit the nonlinearity m(·), resulting in a much
better fit.

2.3.2 Least-Squares Method

The correlation-based methods described above are able to solve for the linear
kernel at low computational cost, but to do this they make some assumptions
about the input signal. Specifically, they assume not only that the input is
white, but also that the finite-length input sequence is a perfect instantiation
of white noise (i.e., equal power at all frequencies). For any finite-length signal,
this will never be the case. Though some correlation-based methods have
been extended to colored noise, all of them encounter this second problem.

To address this, we can explicitly formulate the least-squares problem
as a linear system, and solve this linear system for the linear kernel. This
formulation is based on the fact that at any given time point t the convolution
between two discrete signals is simply a dot-product. This allows us to rewrite
the convolution y(t) = (u ∗ h)(t) as

y(1)
y(2)

...
y(T − 1)
y(T )

 =


u(1) 0 · · · 0 0
u(2) u(1) · · · 0 0

...
...

. . .
...

...
u(T − 1) u(T − 2) · · · u(T −N + 1) u(T −N)
u(T ) u(T − 1) · · · u(T −N + 2) u(T −N + 1)




h(1)
h(2)

...
h(N − 1)
h(N)


(12)

where T is the number of time points in the input and output signals, and N
is the number of elements in the kernel. This linear system y = Uh can now
be solved for h using least-squares:

h = (UTU)−1UTy. (13)

This equation can be solved directly, using for example the Cholesky decom-
position to invert the matrix (UTU). It can also be solved using the QR
factorization U = QR, in which case

h = R−1QTy. (14)
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This second method is known as the ordinary Orthogonal Algorithm (OOA)
[3].

To improve efficiency, the Fast Orthogonal Algorithm (FOA) avoids form-
ing the matrix U by finding the matrix Φuu = UTU and the vector Φuy = UTy
directly [3]. This is done using a combination of the fast Fourier transform
(FFT) and the structure inherent to the U and by extension the Φuu matrices.

The first column of Φuu is simply the autocorrelation of u(t), found using
the Fourier transform:

Φuu(:, 1) = F−1 {F {u(t)}∗ F {u(t)}} (15)

where F−1{·} is the Fourier transform, F−1{·} is the inverse Fourier transform,
and ·∗ is the complex conjugate. Subsequent columns of Φuu are autocor-
relations of truncated versions of u(t) (i.e., where some of the end terms
u(T ), u(T − 1), etc., have been removed from the signal). This results in the
following equation, which can be used to calculate the subsequent columns of
Φuu:

Φuu(i, j) = Φuu(i, j − 1)− u(T − i+ 1) ∗ u(T − j + 1). (16)

Furthermore, the above calculation only needs to be performed for the half
of the matrix i > j, since Φuu is symmetric. The vector Φuy is the cross-
correlation of u(t) and y(t), and is also found using the FFT method. The
resulting system h = Φ−1

uuΦuy can be solved efficiently using the Cholesky
decomposition.

In addition to improved accuracy offered over the correlation method, the
least-squares method also opens up the possibility of regularizing the solution.
Regularization is an additional constraint on the solution that penalizes
undesired properties of the parameters. For example, one can penalize the
magnitude of the linear kernel components, the slope between one component
and the next, or the change in slope across three components. Regularization
is implemented by adding a regularization matrix R to the autocorrelation
matrix:

(Φuu + λR)h = Φuy (17)

where λ controls the amount of regularization. R can be determined using a
constraint matrix L, where each row of L is a constraint, and each column
corresponds to an element of the linear kernel. To penalize the magnitude
of kernel element j, one adds a row A to L with Aj = 1 and all other
elements zero. To penalize the slope between two adjacent elements j and
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j + 1, one adds a row with Aj = −1 and Aj+1 = 1 (again with all other
elements zero). To penalize the curvature across three elements, one sets
Aj−1:j+1 = [−1, 2,−1]. In all cases, the regularization matrix is calculated as
R = LTL,. For a detailed discussion of regularization, see [5].

2.3.3 Paulin Least-Squares Method

Fitting linear-nonlinear models in one step, specifically by fitting the linear
kernel and then the static nonlinearity, has disadvantages. Estimation of the
linear kernel could be improved if the nonlinearity were removed from the
system, and estimation of the nonlinearity could be improved if the optimal
kernel were known. These coupled constraints suggest that an iterative
method may be advantageous, by alternately creating better estimates of the
linear and nonlinear components in a type of bootstrapping operation.

Paulin developed an iterative algorithm for identifying LN models [3]. The
key advantage of the algorithm is that, unlike previous iterative algorithms,
it avoids inverting the nonlinearity m(·) explicitly. The original algorithm
used repeated iterations of correlation-based methods, but I have adapted
the algorithm to use repeated iterations of least-squares instead. A general
outline of the algorithm is as follows:

1. Set the nonlinear output as the initial estimate of the linear output,
x̂0(t) = z(t)

2. Estimate the linear kernel hk(τ) using the LS method, with x̂k(t) as the
system output

3. Determine the linear response of the system x(t) = (u ∗ hk)(t)

4. Estimate the nonlinearity mk(·), using x(t) as the input and z(t) as the
output

5. Compute the mean-squared error (MSE) of the model, and if this has
increased since last iteration, stop

6. Otherwise, update the estimate of the linear output

x̂k+1 = x(t) + α(z(t)−mk(x(t))) (18)

and return to step 2.
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The rate parameter α ∈ [0, 1] controls the rate of convergence. Higher α
will allow the algorithm to converge quickly, but can also make it unstable.
In practice, I found that a low α ≈ 0.01 ensured stability, and the algorithm
still typically converged in under five iterations.

When performing the Paulin algorithm with least-squares, as described
above, the computation time is not equivalent to performing the whole LS
method at each iteration. This is because the autocorrelation matrix Φuu is
the same for every iteration, and only needs to be computed and inverted
once. Also, the parameters found for the static nonlinearity can be used as
the initial conditions for the curve-fitting algorithm, allowing it to converge
more quickly.

2.3.4 General Iterative Least-Squares Methods

The final type of method proposed by [3] for nonlinear system identification
applies the large family of nonlinear optimization literature to the problem.
Many iterative nonlinear optimization methods are based off the gradient
descent algorithm, which uses the gradient of the objective (cost) function to
iteratively pick parameters that minimize the objective function.

For our problem, we use a least-squares cost function

C(θ) =
1

2N

T∑
t=1

(z(t)− ŷ(t, θ))2 (19)

where θ is a vector of all the model parameters (including parameters for both
the linear kernel and static nonlinearity), z(t) is the actual system output,
ŷ(t, θ) = mθ((u ∗ hθ)(t)) is the output of the LN model, and N is the number
of time points. Taking the derivative of this equation with respect to the
linear kernel parameters gives the gradient

∂C(θ)

∂hi
= − 1

N

T∑
t=1

u(t)(z(t+ i)− ŷ(t+ i, θ))
∂m(x(t+ i))

∂x(t+ i)
. (20)

The gradient for the linear kernel is dependent on the derivative of the
nonlinearity m(·) with respect to its input. It is therefore important to
choose a nonlinearity that is everywhere differentiable for the optimization
to succeed. The LIF function used with the previous system identification
methods (Equation 3) does not have this property. Instead, I chose to use
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a nonlinearity that I call the noisy LIF approximation function, since it is
similar to the nonlinearity produced by a LIF neuron with membrane noise,
which allows the LIF function to occasionally fire below its firing threshold
resulting in a smooth transition from the silent regime to the firing regime.
The equations for the noisy LIF approximation nonlinearity are:

g(x) =

[
tref + τRC log

(
1 +

Vth
Rj(x)

)]−1

(21)

j(x) = σ log

[
1 + exp

(
a(x)

σ

)]
(22)

a(x) = αx+ β. (23)

where σ is analogous to the standard deviation of the membrane noise, insofar
as larger σ results in a smoother function, and as σ → 0 the function g(x)
approaches an LIF tuning curve, but the scaling of σ is in no way tuned to
correspond to the response of an actual LIF neuron with a particular level of
membrane noise. Taking the derivatives of this function with respect to the
model parameters:

∂g(x)

∂x
=
∂g(a(x))

∂a(x)
α (24)

∂g(x)

∂α
=
∂g(a(x))

∂a(x)
x (25)

∂g(x)

∂β
=
∂g(a(x))

∂a(x)
(26)

∂g(x)

∂τRC
= −

log
(

1 + 1
j(x)

)
[
tref + τRC log

(
1 + 1

j(x)

)]2 (27)

∂g(a(x))

∂a(x)
=

τRC[
tref + τRC log

(
1 + 1

j(x)

)]2
[j(x)(1 + j(x))]

[
1 + exp

(
−a(x)
σ

)] .
(28)

These gradient equations can be used with any gradient-based optimization
algorithm. For my experiments, I chose the limited-memory BFGS algorithm
(L-BFGS) [6]. This algorithm is a common and general optimization routine
that in addition to using gradient information generates an approximation
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of the Hessian (second derivatives) of the objective function. I used the
implementation of the algorithm included in the open-source SciPy library
[7].

2.4 LN Estimation Considerations

In addition to the algorithm used to fit a model to a system, there are a number
of additional considerations when performing system identification. One
consideration is the choice of input signal used to stimulate the system. It is
important for the input signal to activate all the relevant system dynamics; for
the ALIF neuron, this includes activating the adaptation dynamics. Another
consideration that is specific to our system is firing rate estimation.

2.4.1 Input Signals

Section 2.3 examined a number of methods for system identification with
linear-nonlinear models, some of which required a specific type of input
(i.e., white) and some of which could deal with more general types of input.
Furthermore, it is possible to use a different input to identify the linear kernel
than to fit the nonlinearity. Here I describe the different types of input that I
experimented with for system identification of the ALIF model, namely white
noise, pink noise, an equal-power signal, and a Poisson-switching signal.

White noise refers to a random signal where, in discrete time, all samples
from the signal are independently and identically distributed (i.i.d.). This
results in a signal with no correlation between any points in the signal.
Equivalently, the signal’s autocorrelation is a Dirac delta function, and thus
the signal has a flat power spectral density (PSD), or equal power at all
frequencies. Many types of white noise exist, depending on the probability
distribution used to generate the i.i.d. samples. The three examined in this
report are Gaussian white noise, where a Gaussian (normal) distribution is
used, uniform white noise, where a uniform distribution is used, and binary
white noise, where a Bernoulli distribution is used.

Coloured noise refers to random signals where there is a specific correlation
between signal elements. Brownian noise is the integral of white noise, and
has a 1/f 2 power spectral density (-20 dB per decade). Pink noise is in
between white noise and Brownian noise in terms of correlation, and has a
1/f power spectral density (-10 dB per decade). Different types of Brownian
noise are possible, depending on the distribution of the white noise used
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for integration. Theoretically, different types of pink noise should also be
possible, but literature on the generation of pink noise is limited, and no such
methods were found. For the purposes of this work, pink noise was generated
by creating Fourier coefficients with the desired PSD and a random phase
component, and then transferring this signal into the time domain.

Other types of input signals can be generated to better mimic the types
of signals observed by neurons. One such signal, often used by [1], is the
equal-power signal. This signal has equal power at all frequencies below a
given cutoff frequency, and no power at any frequency above the cutoff. This
can equivalently viewed as perfectly-filtered white noise. Such signals are
generated in the Fourier domain, by creating Fourier coefficients with the
described PSD and random phase.

One problem with the equal-power signal is that it does not contain any
higher frequencies. These higher frequencies are needed to fully activate
the adaptation dynamics of the neuron; otherwise, the neuron settles to an
adapted steady state, where the adaptation variable n(t) remains relatively
constant. To activate the adaptation dynamics of the neuron, I developed
what I call the Poisson-switching signal. This signal draws values from an
arbitrary distribution, but rather picking a new value every time step like
white noise, the signal only switches values occasionally, and otherwise holds
the previous value. The time between switches is exponentially distributed,
so the number of switches in a given time period is Poisson distributed. The
exponential distribution can be offset to create a minimum time between
switches (i.e., a maximum frequency), and its mean determines the mean
time between switches (mean frequency). This process results in a signal
similar to what is seen by the retina and visual cortex as the eye saccades
around a scene. Though a similar signal can be created with a fixed length
of time between switches, such a signal is ill-suited for system identification
because it has notches in its PSD at harmonics of the switching frequency, so
these frequencies are not activated in the target system.

2.4.2 Firing Rate Estimation

An important consideration when performing system identification on spiking
neural systems is how to estimate the firing rate from the spiking output of
the system. A number of methods have been developed, with [4] summarizing
some of the basic methods, and more advanced methods are described in [8].

For this work, I experimented with both fixed kernel methods [4] and
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adaptive kernel methods [8], but I was not pleased with the performance
of these methods and decided to use an alternate method not described in
either of these sources. This method estimates the firing rate between two
spikes as the inverse of the inter-spike interval (ISI) between the spikes. These
measurements can then be interpolated using any interpolation method. I
found that zero-order interpolation, where the rate between two spikes is
constant at the inverse of the ISI between those spikes, to be both very efficient,
and to yield good results in system identification. The main disadvantage of
the ISI method is that it will never predict a firing rate of zero in the middle
of a signal, since there will always be some finite time between the last spike
and the next spike, though this did not appear to adversely affect the system
identification.

3 Results

The following section presents the results of applying the LN model fitting
methods Section 2.3 to the ALIF neuron model. For the ALIF model, the
parameters α = 0.244, β = 1.219, τRC = 0.02, tref = 0.002, τn = 0.2, and
incn = 0.05 were used. The corresponding initial firing rate is 40 Hz (when
the input signal is 1.0) and x-intercept is -0.9; both these parameters only
apply before adaptation. The parameters were chosen because they clearly
demonstrate the adaptation of the neuron with a reasonable time constant of
adaptation, and otherwise roughly fit what is known about the parameters of
cortical neurons.

3.1 Correlation-based Methods

Correlation-based methods are based on the assumption that the input used
to identify the linear kernel is white. Using white noise to then identify the
nonlinearity leads to very poor results. Figure 1 shows that the kernel itself
is not the problem; the problem is with the nonlinearity. Using the same
kernel with a Poisson input signal to fit the nonlinearity demonstrates that
correlation-based methods can provide a LN model that captures most of the
features of the neuron firing rate.

I also investigated three different types of white noise—Gaussian, uniform,
and binary—to determine if this had any effect on the accuracy of system
identification. Figure 2 shows that the type of white noise used does have an
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Figure 1: Comparison of using white noise versus a Poisson signal
for fitting the nonlinearity. When using the correlation method, the
linear kernel must be found using white noise as the input signal, but the
nonlinearity can be found using any type of input. The top figures show
the nonlinearity in each case, and how well it fits the points. Fitting the
nonlinearity using a Poisson input produces points that are well-fit by the
LIF curve; the points produced from a white input cannot be well-fit by any
nonlinearity. The bottom figure shows the difference in signal reconstruction.
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effect; the kernels produced by binary white noise are very different from those
produced by Gaussian or uniform white noise, and results from a number of
trials indicate that the performance of binary white noise is generally worse
than the other types of white noise. The kernels produced by Gaussian and
uniform white noise are typically quite similar, and neither type of noise
appears to have a consistent advantage.

It is important to note that though the kernels approach zero for large
delays (time values), when examined closely the average of most kernels
over long time periods (τ ∈ [0.1, 1]) is slightly below zero. This is how the
kernels achieve the smooth firing rate decrease over time seen in the signal
reconstructions from the Gaussian and uniform kernels (Figure 2, bottom).
Interestingly, the binary kernel does not show this smooth decrease, indicating
that unlike the other kernels, it approaches zero quickly for τ > 0.05.

3.2 Least-squares Method

The least-squares (LS) method of system identification is able to offer sig-
nificantly better results than the correlation based methods, by taking into
account the exact autocorrelation of the input signals, rather than assuming
they obey an ideal autocorrelation. One of the first steps in applying the LS
method is to determine the amount and type of regularization to apply when
solving the least-squares problem. I investigated three types of regularization:
zero-order, first-order, and second-order. Of the three, second-order is the
most intuitive for this problem, and also yields slightly better results. The
optimal level of regularization depends on the amount of input data used
in the system identification, specifically the number of trials n and length
of each trial t. Generally, using more data results in a better estimate of
the kernel, so less regularization is necessary because there is less chance of
over-fitting. Despite this dependence on the amount of input data, setting
λ ∈ [101, 102] provided good results for lower number of trials (n = 10 trials
each t = 10 seconds, see Figure 3), and did not have an adverse effect on
performance for large numbers of trials (n > 100), when regularization was
unnecessary.

The type of input used for system identification can greatly affect the
results. I tested the LS method using four different types of input—white
noise, pink noise, equal-power, and Poisson-switching—to identify the linear
kernel. The nonlinearity was always found using a Poisson-switching input,
so that the effects of each input could be evaluated only on their ability to fit
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Figure 2: Effects of using different types of white noise in
correlation-based system identification. Using binary white noise to
fit the LN model produces less accurate kernels than using Gaussian or
uniform white noise.
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Figure 3: The effects of different levels of second-order regulariza-
tion. Top: Second-order regularization penalizes changes in slope. The kernel
with no regularization (blue) has sharp spikes, increasingly regularized kernels
are flatter. Bottom: A moderate level of regularization (λ ∈ [101, 102]) is
optimal for fitting this new signal.
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white pink equal-power Poisson
equal-power test 6.89 6.43 8.37 6.20
Poisson test 3.72 3.60 7.66 3.39

Table 1: Root mean-squared errors for LN models fit with various types of
input (columns), when tested using two different types of input (rows). The
type of input used can greatly affect the identification results; the kernels
identified using Poisson-switching noise generally show the best results.

the linear kernel. (As we have previously seen, some types of input, namely
white noise, are very poor at fitting the nonlinearity.)

The results of these experiments are shown in Figure 4. The largest
difference in kernel is between the equal-power input and the other types of
input: the equal-power input creates a kernel with a large degree of resonance
around 40-50 Hz, resulting in an oscillatory estimate of the neuron’s firing
rate. The results of a quantitative comparison of the algorithms are shown
in Table 1. These results show that using Poisson-switching inputs produces
the best results when tested with both Poisson-switching inputs and equal-
power inputs. This suggests that Poisson-switching inputs are best able
to activate all modes of the neural dynamics, capturing both the adaptive
and non-adaptive properties of the ALIF neuron, creating a robust kernel.
One concern related to the results is that using white noise, pink noise,
and Poisson-switching inputs all result in good performance, but the kernels
found from using Poisson-switching inputs is quite different from those found
by white and pink noise. It is possible that one of the types of inputs is
capturing additional neural dynamics that are missed by the others, and
that if the kernels are tested on additional types of input (other than the
equal-power and Poisson-switching inputs used for testing), one kernel will
perform significantly better than the others.

3.3 Iterative Methods

Ideally, the iterative methods should be able to provide better results than
the LS method, since the LS method is biased by the nonlinearity in the
system. The Paulin method does show an improvement over LS, especially
when using a limited amount of data for the system identification. A dramatic
result for one such neuron is shown in Figure 5. The first iteration of LS
provides a relatively poor fit of the system. The second iteration shows
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Figure 4: Results of using different types of input for fitting the
linear kernel with the LS method. Using different types of input results
in significantly different inputs (top). Kernels identified using white noise,
pink noise, and Poisson-switching inputs all perform well, but those identified
using an equal-power input show oscillations (bottom).
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Figure 5: An example of the improvement from repeated Paulin
iterations. The first iteration provides only a rough fit of the data. The
second iteration provides a much better fit, and the third and fourth iterations
offer further fine-tuning.

significant improvement, to the point that the LN model captures all the
relevant neural dynamics. The third and fourth iterations perform fine-tuning
to remove some of the noise in the kernel. Though the Paulin method does
not show such dramatic improvements on all neurons, it is not uncommon.
Furthermore, it will always reduce the MSE of the LN model fit, because the
MSE is measured after each iteration, and the algorithm only continues if
performance continues to increase (i.e., MSE decreases).

One possible drawback to the algorithm is overfitting the training data,
but this does not seem to be a problem in practice; the kernels generated
from the Paulin method generalize well to other inputs of the same type and
of other types. Another drawback of the algorithm is that it takes longer
than the LS method. The additional computational cost can be minimized by
forming and inverting the autocorrelation matrix Φuu at the beginning of the
algorithm since this matrix is common across all iterations. This computation
is the rate-limiting step of the least-squares algorithm, making the Paulin
LS algorithm is only slightly slower than the LS algorithm, since additional
Paulin iterations are cheap.
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The general method for nonlinear least-squares, using the L-BFGS al-
gorithm of optimization, did not perform well. If starting with untuned
parameters (either random parameters, preset parameters, or some combina-
tion of the two) the algorithm generally did not converge to a solution that
was at least as good as the LS solution. Often the algorithm would find a
solution roughly approximated the actual neuron firing rate, and then get
stuck in a local minimum and terminate. I also applied the algorithm to
solutions already found by the LS algorithm, to see if the general nonlinear
algorithm was able to fine-tune these solutions. The general nonlinear al-
gorithm offered an improvement to the performance metric (MSE) in such
cases, but the improvement was small and the difference in the kernel and
nonlinearity insignificant.

3.4 Population identification

The Paulin method was found to be the most accurate of the system iden-
tification methods investigated, and is only slightly more expensive than
the least-squares method. I applied the Paulin method to the problem of
identifying the kernels of a small population of 20 neurons. The ALIF neuron
parameters were the same as those used in the previous experiments, except
the adaptation parameters were now chosen randomly from the uniform
intervals τn ∈ [0.05, 0.30] and incn ∈ [0.05, 0.5]. These parameters provide a
wide range of adaptation behaviour on the biologically-plausible time-scale of
hundreds of milliseconds.

When fitting LN models to a population of neurons, the input signal must
be chosen either so that it is able to activate the relevant dynamics of all
possible neurons in the population, or individual input signals must be chosen
for each neuron based on that neuron’s parameters. For these experiments,
a Poisson-switching input was used for the identification of both the linear
kernel and the static nonlinearity, with a mean frequency of 1 Hz and a
maximum frequency of 10 Hz. This mean frequency is lower than that used
in previous experiments (3 Hz), because it improved the fit of many of the
neuron models, especially those with higher values of incn.

The kernels found by the population identification are shown in Figure 6.
When viewed in the frequency domain, all the kernels appear to be per-
forming band-pass filtering. The low-frequency cutoff for all the kernels is
approximately the same, approaching zero only for very low frequencies. The
high-frequency cutoff varies greatly between kernels, with some kernels hav-
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Figure 6: Linear kernels for a population of 20 neurons. Linear
kernels for a population in the time and frequency domains. The kernels
all act as bandpass filters. the bottom cutoff frequency remains relatively
constant between filters, whereas the top cutoff frequency varies largely
(bottom left).

ing diminished amplitude for all frequencies above 20 Hz, and other kernels
allowing all frequencies under 100 Hz to pass equally. At around 100 Hz is
where the the second-order regularization begins to come into effect, and
all kernels decay smoothly above this frequency. Many kernels show a mild
double-resonance phenomenon, with peaks in the power spectrum both at a
lower frequency (∼ 20 Hz) and at a higher frequency (∼ 70 Hz).

4 Conclusions

This report demonstrated that system identification techniques can be used
to fit linear-nonlinear models to the adaptive leaky integrate-and-fire neuron
model, and that the linear-nonlinear model is able to capture all the relevant
adaptation dynamics of the neuron model, especially when fit using the Paulin
least-squares algorithm. System identification was performed on all neurons
in an example population, and showed that neurons in the population act as
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band-pass filters.
This work provides the first steps to extending the Neural Engineering

Framework to neuron models with complex dynamics. The next step is to
use the identified linear-nonlinear models to inform the process of solving
for the linear neuron decoders. The user will now have to specify a desired
output not only in terms of a desired output static nonlinearity—as in the
current formulation of the NEF—but also in terms of desired output dynamics.
It remains unclear how best to solve for decoders that will simultaneously
achieve the desired linear dynamics and nonlinearity of the population. Other
future work includes extending the system identification techniques developed
here to other neuron models, for example the Izhikevich neuron model [9]
with bursting dynamics. I also observed that different types of input (e.g.,
pink noise versus Poisson-switching) can identify significantly different kernels
which are both able to provide a good approximation of the neuron’s firing
rate. Further work is needed to determine if one kernel is capturing more of
the neuron’s dynamics than the other.
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