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Abstract

Noise and heterogeneity are both known to benefit neural coding. Stochastic resonance
describes how noise, in the form of random fluctuations in a neuron’s membrane voltage,
can improve neural representations of an input signal. Neuronal heterogeneity refers to
variation in any one of a number of neuron parameters, and is also known to increase the
information content of a population. We explore the interaction between noise and hetero-
geneity and find that their benefits to neural coding are not independent. Specifically, a
neuronal population better represents an input signal when either noise or heterogeneity is
added, but adding both does not always improve representation further. To explain this phe-
nomenon, we propose that noise and heterogeneity operate using two shared mechanisms:
1) temporally desynchronizing the firing of neurons in the population, and 2) linearizing
the response of a population to a stimulus. We first characterize the effects of noise and
heterogeneity on the information content of populations of either leaky integrate-and-fire or
FitzHugh-Nagumo neurons. We then examine how the mechanisms of desynchronization
and linearization produce these effects, and find that they work to distribute information
equally across all neurons in the population, both in terms of signal timing (desynchroniza-
tion) and in terms of signal amplitude (linearization). Without noise or heterogeneity, all
neurons encode the same aspects of the input signal; adding noise or heterogeneity allows
neurons to encode complementary aspects of the input signal, thereby increasing informa-
tion content. The simulations detailed in this paper highlight the importance of heterogene-
ity and noise in population coding, demonstrate their complex interactions in terms of the
information content of neurons, and explain these effects in terms of underlying mecha-
nisms.

Keywords: Heterogeneity; stochastic resonance; population coding
Source code: https://github.com/ctn-archive/hunsberger-neco2014
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1 Introduction

The term stochastic resonance (SR) refers to the beneficial effects of noise, specifically the
phenomenon whereby a non-zero amount of stochastic fluctuation over time in the system
improves some measure of performance (McDonnell and Abbott, 2009). Since its concep-
tion, the idea of stochastic resonance has developed into a field of its own, a field which has
found increasing relevance for neuroscience.

The early stochastic resonance literature dealt mainly with subthreshold stochastic res-
onance (Gammaitoni et al., 1998). In a deterministic setting, systems which only respond to
inputs above a certain threshold—such as neurons—cannot transmit any information about
subthreshold input signals (i.e., input signals which are entirely below the system’s thresh-
old). In contrast, a noisy input signal (i.e., a signal with an added stochastic offset) will
occasionally cross the system’s threshold, and thereby allow the system to transmit more
information about the input signal. Too much noise, however, causes the input signal to be-
come lost in random fluctuations. A moderate amount of noise—not too much, and not too
little—is needed to optimize the information about the input signal contained in the system
(Wiesenfeld et al., 1994; Longtin and Chialvo, 1998).

A new form of stochastic resonance—called suprathreshold stochastic resonance
(SSR)—has emerged in the past decade (McDonnell and Abbott, 2009; McDonnell and
Ward, 2011). In neuroscience, SSR looks at the benefits of noise to populations of nonlin-
ear neurons receiving a common signal of which a significant portion is above the systems’
firing threshold(s). This concept was first introduced by Stocks (2000), who looked at
groups of binary threshold units and found that noise increases information transmission
in such systems. Subsequent research has examined the SSR effect in populations of more
sophisticated simulated neurons (Stocks and Mannella, 2001).

The fact that neurons are heterogeneous—with variation across a wide range of
parameters—has largely been ignored in the stochastic resonance literature. It is well
known that neurons vary widely across the nervous system. Even neurons in the same
brain area and of the same qualitative type vary across numerous parameters. Though this
diversity in neural systems was documented by some of the first researchers in the field,
it is only recently that neuroscientists have begun to illuminate the functional role of het-
erogeneity. Early work by Eliasmith and Anderson (2003) demonstrated that heterogeneity
increases both the ability of a population to represent an input signal and the range of func-
tions computable by the population. More recent work showed that heterogeneity allows
neurons to use combinatorial coding schemes (Osborne et al., 2008) and in general increase
the information encoded by a population (Shamir and Sompolinsky, 2006; Chelaru and
Dragoi, 2008; Padmanabhan and Urban, 2010; Ecker et al., 2011). In the field of stochas-
tic resonance, the effects of noise in a heterogeneous population have been examined, but
only in specific cases such as for input signals much larger than the range of heterogene-
ity (Stocks, 2000) or for very large levels of noise (McDonnell et al., 2006). Furthermore,
research into stochastic resonance with heterogeneity has focused on populations of binary
threshold units, which fail to capture the dynamics of actual neurons.

The purpose of this paper is to compare how noise and heterogeneity help a neuronal
population to represent an input signal. Previous studies have looked at the individual ben-
efits of noise and heterogeneity in population coding, but the interplay of these two factors
has not been examined in detail. We find that noise and heterogeneity exhibit complex in-
teractions, and though they both help to increase the information contained in a population,
adding both does not always increase information content further, as compared with adding
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only one or the other. We argue that the similar benefits of noise and heterogeneity, as well
as their complex interactions, occur because they operate on the dynamics of a neuronal
population through shared mechanisms.

We explore this hypothesis in the context of two neuron models: the FitzHugh-Nagumo
(FHN) neuron model, a common model in SR research (Wiesenfeld et al., 1994; Collins
et al., 1995; Longtin and Chialvo, 1998; Stocks and Mannella, 2001), and the leaky
integrate-and-fire (LIF) neuron model, a typical model of cortical neurons (Koch, 1999).
We drive the population of FHN or LIF neurons with a common aperiodic random signal
s(t), and vary the levels of internal noise and heterogeneity in the population. Finally, we
decode an output signal from the population by summing and filtering the spikes from indi-
vidual neurons and compare the similarity of the decoded output signal with the input signal
using mutual information. Stochastic offset is modeled as zero-mean Gaussian white noise
with standard deviation ση, independently and identically distributed across all neurons (see
MODELS AND METHODS). Heterogeneity is added by randomly selecting the bias voltages
bi from a uniform interval of varying width. This type of heterogeneity has been used in
previous studies (e.g., Brody and Hopfield, 2003), and captures the inherent variation in
excitability among neurons in vivo (Mejias and Longtin, 2012) due to variations in neuron
physiology or differences in the background activity of afferent neurons.

We report how noise and heterogeneity both act to increase information content in these
populations, but in a complex, non-independent manner. They achieve this using two com-
mon mechanisms—linearizing the response of a population of neurons to a stimulus and
desynchronizing neuronal firing—that we examine in detail.

2 Results

We performed numerical experiments analyzing how noise and heterogeneity affect the
information capacity of populations of both FitzHugh-Nagumo (FHN) neurons and leaky
integrate-and-fire (LIF) neurons. Heterogeneity was added to a population by selecting the
firing thresholds bi from a uniform distribution U(−br, br), where br controls the degree of
heterogeneity, with larger br corresponding to a more heterogeneous population (on aver-
age). Noise was added to the voltage parameter of the neuron model via a stochastic offset
η(t), Gaussian distributed with zero-mean and standard deviation ση, and independent and
identically distributed for each neuron. For the remainder of this paper, we will use the
term “noise” to refer specifically to this stochastic offset. At each level of heterogeneity
and noise, 100 trials were performed to achieve an accurate estimate of the mean infor-
mation content, with each trial using a unique set of random biases and a unique set of
stochastic offsets added to the membrane voltages.

Each trial consisted of presenting a population ofN = 64 FHN or LIF neurons with 4.5
seconds of aperiodic random signal with zero mean and standard deviation σs = 0.1. The
aperiodic signal was created by convolving a Gaussian white noise signal with an α function
(α(t) = (t/τ)e−t/τ ), with the correlation time τ = 20 ms (Mainen and Sejnowski, 1995).
The population was divided into 32 “on” neurons and 32 “off” neurons, where each “on”
(“off”) neuron received a positive (negative) version of the aperiodic input signal as input.
The FHN or LIF neurons were simulated using their respective differential equations, and
the output was decoded using a simple summing neuron that summed and low-pass filtered
the outputs of the individual neurons to obtain the population output (outputs from “off”
neurons were multiplied by -1 before summing). Finally, the mutual information between
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Figure 1: The experimental setup. In our experiment, neurons are fed a common aperiodic
input. Each neuron also has an independent white noise process and a randomly chosen
bias that are added to the input. Varying the amplitude of the noise and the width of the
interval from which the biases are randomly drawn allows us to control the amount of
noise and heterogeneity in the experiment, respectively. Additionally, some “off” neurons
invert their input (not shown). The output of each FHN or LIF neuron model is summed
and filtered to produce the population output; this is compared with the input signal using
mutual information as a metric.

the aperiodic input signal and the decoded output signal was calculated. The mutual in-
formation for each level of heterogeneity and noise was computed as the average mutual
information from all 100 trials at those levels. We also performed experiments for different
sizes of neuronal population, and found that population size does not significantly affect
the results presented here. Using smaller populations simply lowers the overall information
content of the system slightly and makes single-trial results more variable because there are
fewer neurons to average across. The experimental setup is summarized in Figure 1; see
MODELS AND METHODS for further details.

Figure 2 summarizes the effect of neuronal heterogeneity on the information content of
a population of neurons. At low noise levels, we observe a resonance effect in the hetero-
geneity parameter—there is an optimal level of heterogeneity that maximizes the informa-
tion content of the population. Furthermore, this optimal level of heterogeneity is around
one to two times the root-mean-square amplitude of the input signal. This indicates that op-
timal heterogeneity corresponds to having neuron firing thresholds that span the full range
of input signal values. Too little heterogeneity means that some input signal components
cannot be uniquely encoded by the population, since these values will be either well below
or well above the firing thresholds of all neurons in the population, and all neurons will fire
approximately constantly for these values. Too much heterogeneity results in some neurons
that have firing thresholds well below or well above all signal values, causing them to either
fire tonically independent of the input signal value, or to fire for no part of the input signal,
respectively. This type of resonance in heterogeneity was recently observed by Mejias and
Longtin (2012), both theoretically and in numerical experiments.

Higher levels of noise reduce or completely eliminate the benefits offered by hetero-
geneity (Figure 2). To examine the interactions between noise and heterogeneity further,
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Figure 2: Heterogeneity increases information content of a population of neurons, and
exhibits a resonance effect. Adding some heterogeneity (x-axis) to a population of LIF or
FHN neurons increases their ability to represent an input signal (y-axis), while too much
heterogeneity decreases representational ability. This effect is only observed at lower noise
levels; at higher levels of noise, the noise alone is able to fully desynchronize neuronal
firing and linearize neuron responses, so adding heterogeneity offers no additional benefit.

we conducted the same experiment across a wide range of noise and heterogeneity values.
Figure 3 illustrates the effects of these interactions on the information content of a popula-
tion of LIF or FHN neurons. We measured both the absolute information content (in bits)
and the information content per spike, or information rate (in bits per spike).

LIF neurons are best able to represent the input signal with a moderate amount of het-
erogeneity (br ≈ 1.5 × 10−1) and no noise (ση = 1.0 × 10−4). This was true when mea-
suring both the absolute information content and the information per spike. FHN neurons,
on the other hand, required both heterogeneity and noise to achieve maximum information
content, because heterogeneity alone is not able to fully desynchronize FHN neurons (see
DESYNCHRONIZATION). However, heterogeneity alone was able to maximize the informa-
tion rate of the system.

We explain this difference between the information content and information rate of FHN
neurons with the fact that noise increases the firing rates of neurons. While noise offers
some benefit to the information content of a population of FHN neurons (given an optimal
level of heterogeneity), this effect disappears when examining information per spike, since
noise also increases the number of spikes. In Figure 4, we examine more closely the effects
of noise on information content and rate in the absence of heterogeneity. Noise shows a
clear resonance effect when measuring the absolute information content of the population,
but this resonance effect is reduced when measuring the information per spike. We conclude
that noise operates partially by increasing the firing rates of neurons, and indeed this effect
can be observed when measuring the tuning curves of neurons under noise (see Figure 7).

The information landscapes of Figure 3 demonstrate that the effects of noise and het-
erogeneity are not independent. This is most apparent when examining the absolute infor-
mation content of LIF populations (top left), and the information rate of FHN populations
(bottom right). For example, LIF neurons show a resonance in heterogeneity in the absence

5



10-4

10-3

10-2

10-1

100

n
o
is

e
 (
σ
η
)

LIF neurons [bits]

0.30
0.60

0
.9

0

0
.9

0

1
.2

0

FHN neurons [bits]

0.30
0
.6

00
.9

0

0
.9

0

10-3 10-2 10-1 100

heterogeneity (br )

10-4

10-3

10-2

10-1

100

n
o
is

e
 (
σ
η
)

LIF neurons [bits/spike]

0.30
0.60

0
.9

0

1
.2

0

1
.5

0

1.80

10-3 10-2 10-1 100

heterogeneity (br )

FHN neurons [bits/spike]

0.30

0
.6

0

0
.9

0

0
.9

0

1
.2

0

Figure 3: The benefits of noise and heterogeneity to information representation are
not independent. We measured the information content (top, in bits) and information
rate (bottom, in bits per spike), across many levels of noise and heterogeneity. In LIF
neurons, both noise and heterogeneity show independent resonance effects: given that only
one of noise or heterogeneity is present, there is a non-zero and finite level of noise or
heterogeneity that optimizes information content. Setting both noise and heterogeneity
to their (independent) optimal levels fails to further improve the representational ability
of the population, showing that these effects are not independent. We propose that both
parameters use the same underlying mechanisms of desynchronization and linearization,
so once the population has been desynchronized and linearized by one parameter, adding
the other cannot further improve information content. Heterogeneity is unable to fully
desynchronize FHN neurons (see DESYNCHRONIZATION), so information content in these
neurons is maximized for a specific combination of heterogeneity and noise. However, this
effect is not seen when examining the information rate, indicating that noise benefits neural
systems partly through increasing firing rates.
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Figure 4: Noise increases information content of homogeneous populations of FHN
and LIF neurons. A) In homogeneous populations, noise exhibits a resonance effect on
information content. B) The resonance effect of noise is less pronounced when measuring
the information rate, indicating that noise operates partially by increasing firing rates.

of noise, but they also show a resonance in noise in the absence of heterogeneity (see also
Figure 4). However, if we choose the optimal levels of noise and heterogeneity in the ab-
sence of the other factor (ση ≈ 10−2 and br ≈ 2 × 10−1), this combined level of noise
and heterogeneity does not further increase the information content of the system. This
indicates that the effects of noise and heterogeneity are not independent: the optimal level
of noise depends on the level of heterogeneity, and vice versa.

We propose that both noise and heterogeneity improve the information representation
ability of a population of neurons by 1) desynchronizing the firing of neurons in the pop-
ulation and 2) linearizing the response of the population to an input signal. These shared
mechanisms result in the non-independent interaction between noise and heterogeneity in
terms of information content: once either noise or heterogeneity has adequately desyn-
chronized a population, the addition of the other cannot further desynchronize or linearize,
and therefore provides no additional increase in information representation. In the follow-
ing two sections, we present additional experimental results to investigate and quantify the
mechanisms of desynchronization and linearization.

2.1 Desynchronization

Consider the following: a group of perfectly homogeneous neurons with no noise, such that
their dynamics are completely deterministic. Begun with the same initial conditions, they
will follow exactly the same trajectory in phase space because they all receive the same
input signal and obey the same set of differential equations. Such a population of simulated
neurons will exhibit perfectly synchronized firing events, and therefore the neurons con-
tribute redundant information. Any signal that could be decoded from the firing events of
this population of neurons could also be decoded from the spikes of a single neuron. These
neurons are perfectly synchronized; at any time, they are all in the same phase of their firing
cycle, and in the same position in phase space.
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Figure 5: Noise and heterogeneity both desynchronize neurons. To measure whether
noise and heterogeneity have a desynchronizing effect on populations of neurons, we mea-
sured the standard deviation of neuron phases across the population (see MODELS AND

METHODS), where a smaller standard deviation indicates increased synchronization. Het-
erogeneity (individual traces) is seen to significantly desynchronize both FHN and LIF neu-
rons, specifically across low to moderate levels of noise. At high levels of noise, the noise
itself is sufficient to desynchronize neurons, and additional heterogeneity has no effect.

Adding independent noise to each neuron desynchronizes the firing events of the pop-
ulation by causing diffusion of the neuronal phases (Stocks, 2001). A small random per-
turbation causes a slightly advanced or delayed firing of a neuron, creating a small shift in
the phase of that neuron. Specifically, a firing neuron follows a stable limit cycle attractor
in phase space; perturbations tangent to the limit cycle result in diffusion along the limit
cycle, while perturbations perpendicular to the limit cycle rapidly return the the stable at-
tractor (Tomita et al., 1974). Over time, this diffusion along the limit cycle results in the
population of neurons having a wide distribution of phases (Figure 5), and the neurons fire
asynchronously (Figure 6).

This previous example is, of course, artificial. It requires that all neurons are exactly
the same and start with exactly the same initial conditions. In a more realistic scenario,
one expects that small differences in neuronal parameters or small amounts of noise will
cause neurons to desynchronize over a long period of time. This is not the case, because
signals below the firing thresholds of a group of neurons have a synchronizing effect on
the group. By stopping neuronal firing, these signals push all the neurons in the group
towards their stable equilibrium points. When the signal returns to an amplitude above the
firing thresholds of neurons in the group, all neurons will begin firing at approximately the
same time, and will be once again in phase. Signals with higher frequency components
are able to cross larger ranges of firing thresholds in quick succession, and have a stronger
synchronizing effect than purely low frequency signals. Thus, more negative (positive)
portions of the input signal repeatedly act to synchronize “on” (“off”) neurons, and groups
of neurons must be able to desynchronize quickly after these synchronization events in
order to remain out of phase with one another.

Similar to noise, heterogeneity acts to desynchronize neurons (Burton et al., 2012).
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Figure 6: The effects of noise and heterogeneity on LIF neuron firing. Spike rasters illus-
trate the effects of noise and heterogeneity parameters on neuronal firing in a population of
32 LIF neurons. With low noise and heterogeneity, neuronal firing is highly synchronized.
Adding a moderate amount of noise or heterogeneity desynchronizes this firing. Adding a
moderate level of both parameters cannot provide further desynchronization, since firing is
already quite desynchronized. High levels of noise cause rapid firing in almost all neurons,
degrading the ability of the population to represent the input signal. High levels of hetero-
geneity cause the signal to be entirely above or below the firing thresholds of many neurons,
again degrading representational ability. Noise: ση =10−3 (low), 10−2 (moderate), 10−1

(high). Heterogeneity: br =10−2 (low), 10−1 (moderate), 100 (high).
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Adding heterogeneity to a population increases the range of distribution of neuron phases
(Figure 5), indicating desynchronized firing for both FHN and LIF neurons (Figure 6).
Homogeneous populations exhibit synchronized firing because changes in the input signal
cross the common firing threshold of all neurons at the same time. Contrast this with a het-
erogeneous population, where changes in the input signal sequentially cross the thresholds
of neurons, causing some to begin firing before others. For example, an increasing input
signal will cause neurons with lower thresholds to begin firing before those with higher
thresholds, resulting in desynchronized firing within the population of neurons.

High frequency input signals may cross the thresholds of many neurons in a heteroge-
neous population in a short period of time, causing a large group of neurons to begin firing
simultaneously. LIF neurons are still able to desynchronize quickly after such a stimulus,
since the LIF tuning curves used have different firing rates for different sizes of suprathresh-
old signal (Figure 7). Specifically, a high-frequency increase in signal amplitude starts neu-
rons firing at approximately the same time, but starts them firing at different rates, allowing
them to quickly desynchronize. FHN neurons, however, all have around the same firing
rate regardless of the strength of the suprathreshold signal (Figure 7). In the presence of
higher-frequency input signals heterogeneity has a reduced effect in these neurons, since
such input signals cause many neurons to begin firing at once, and they are unable to desyn-
chronize due to their common firing rate. This discrepancy between LIF and FHN neurons
results in heterogeneity having a large effect on phase in LIF neurons (Figure 5A), whereas
the desynchronizing effect of heterogeneity in FHN neurons is more modest (Figure 5B).

This difference in the ability of heterogeneity to desynchronize LIF versus FHN neurons
explains why LIF neurons achieve maximum information content with only heterogeneity,
whereas FHN neurons require both heterogeneity and noise (Figure 3). Since heterogeneity
does not desynchronize FHN neurons as well as noise does, adding noise to a heterogeneous
population of FHN neurons further desynchronizes them and increases information content.

2.2 Linearization

Intrinsic noise makes neuron tuning curves more linear (Figure 7); this phenomenon under-
lies many results in the stochastic resonance literature (Chialvo et al., 1997). Noise allows
a neuron to respond to input signals below its firing threshold, by occasionally raising the
neuron’s membrane voltage high enough to cross the threshold and trigger an action po-
tential. This results in a non-zero firing rate for subthreshold signals, with the firing rate
proportional to the strength of the signal. In type II neuron models (e.g. the FHN model),
noise can also slow firing for signals slightly above the firing threshold by momentarily
pushing the neuron away from its limit cycle and back toward its weakly unstable equilib-
rium. Overall, the addition of noise has the effect of linearizing the response of the neuron
near its firing threshold, resulting in a smoother transition from the silent to tonic firing
regimes. This result has been previously observed and extensively studied (Stocks et al.,
1996; Chialvo et al., 1997; Chance et al., 2002; Prescott and De Koninck, 2002; Shu et al.,
2003).

Neuron heterogeneity has a linearizing effect similar to noise, but unlike the noisy case,
where it made sense to talk about noise linearizing an individual neuron’s tuning curve,
here we will discuss how heterogeneity linearizes the population’s tuning curve. The popu-
lation’s tuning curve is the set of points connecting the input signal strength to the decoded
output. Since our model uses a simple summing decoder, the population tuning curve is
equal to the sum of the individual neuron tuning curves. For a population of neurons with
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Figure 7: Noise linearizes neuron tuning curves. We measured the tuning (stimulus-
response) curves of LIF and FHN neurons under various levels of noise. We observe that
noise linearizes the neuron tuning curves, Specifically, noise eliminates the sharp threshold
in the tuning curve by occasionally pushing the neuron above its firing threshold for stimuli
that are below the threshold. Noise also increases neuron firing rates across some or all
stimuli.

uniformly varied random firing thresholds, the population tuning curve is much more lin-
ear than a single neuron’s tuning curve, whereas in the homogeneous case the population’s
tuning curve is the same as the neurons’ tuning curve (Figure 8). The linearizing effect
of heterogeneity thereby allows for better representation of an input signal. This result is
related to the original idea from Hubel and Wiesel (1962) that variation in neural receptive
fields provides a better basis for representing an input signal, and reappears in the recent
heterogeneity literature (Angelo et al., 2012).

3 Discussion

Our results show that noise and heterogeneity both improve neuronal representation of an
input signal, and that these benefits are not independent. Adding noise to a homogeneous
neuronal population increases information content, while the same amount of noise de-
grades information contained by a heterogeneous population (Figures 3 and 4). This sug-
gests that the benefits of noise and heterogeneity to information content can be explained in
terms of shared mechanisms, which we identify as 1) desynchronizing the neurons within a
population, and 2) linearizing the response of the population.

The dynamics of a neuron can be viewed as a combination of temporal properties and
rate properties. The rate view of neurons treats them as being no more than input-output
(or tuning) curves. That is, all temporal dynamics are ignored, and a neuron is reduced to
a nonlinear function which turns an input signal into an output signal. The mechanism of
linearization affects only the rate properties of neurons, and it is these linearization benefits
that are observed in suprathreshold stochastic resonance studies that examine the benefits
of noise in populations of binary threshold units (Stocks, 2000, 2001; McDonnell et al.,
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Figure 8: Heterogeneity linearizes the response of a neuronal population to a stimulus.
A) Tuning curves for a heterogeneous population of N = 9 neurons. B) The population
response of the heterogeneous population (heavy solid line) is much closer to a linear re-
sponse (heavy dot-dashed line) than a single LIF tuning curve (heavy dashed line), even
though the heterogeneous thresholds are far from evenly spaced.

2006). This is because binary threshold units have no temporal properties—they are either
on or off depending on the current input signal and noise—and cannot be affected by the
temporal benefits of noise. The linearization effects of noise on nonlinear systems have
been previously studied (see Stocks et al. (1996) for a review). We have observed that
heterogeneity also achieves these linearization effects across a population of neurons, as
previously reported by Eliasmith and Anderson (2003).

Desynchronization operates by affecting the temporal properties of neuronal firing, and
is only observed in spiking neuron models such as the FHN and LIF models examined in this
paper. The output of these models depends not only on the the output firing rate for a given
input signal, as determined by the neuron tuning curve, but also by the timing of individual
spike events. When nonlinear dynamical models of neurons are examined in a stochastic
resonance simulation, as in Stocks and Mannella (2001), the results are a combination of
the temporally-based desynchronizing and response-time effects of noise, as well as the
rate-based linearizing effects of noise. Desynchronized neurons provide a better temporal
basis for representing a signal, since each neuron is able to fire independently and code for
a different temporal component of the signal. Even mild correlations between neurons are
known to impede a population’s representational ability (Zohary et al., 1994).

Our experimental setup was motivated by stochastic resonance experiments such as
Stocks and Mannella (2001), as well as computational (Brody and Hopfield, 2003) and
experimental (Padmanabhan and Urban, 2010) work looking at heterogeneity. All these
experiments present a common input signal to a number of neurons, with added noise or
heterogeneity. The common input signal may seem artificial, but it allows us to exam-
ine how the properties of individual neurons—including the sign of the input signal (“on”
versus “off” neurons) and the bias current—affect the ability of the neuronal population
to encode an input signal. These heterogeneities in the neurons can be viewed as modu-
lating the input signal presented to each neuron, such that each neuron receives a unique
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input current. In the case of homogeneous populations, all neurons do receive the same
input current. This is clearly artificial, and emphasizes why theoreticians should include
heterogeneity when modeling neural behaviour.

In our experiments, we saw significantly different results for the LIF neuron model ver-
sus the FHN neuron model. Specifically, given an optimal level of heterogeneity, the FHN
neurons still benefited from the addition of noise, whereas LIF neurons did not. This raises
two questions: why is there a difference between the two models, and does either model bet-
ter describe the neural systems we wish to study? One way to differentiate between the two
models is with bifurcation theory, which classifies the LIF model is a type I neuron model
and the FHN model is a type II neuron model (though LIF neurons are not prototypical
type I neurons (Mato and Samengo, 2008), they are qualitatively more similar to this cate-
gory). The difference is that type I models undergo a saddle-node bifurcation as the input
current (the bifurcation parameter) increases, whereas type II models undergo a subcritical
Hopf bifurcation (Mato and Samengo, 2008). Qualitatively, this means that type I models
have continuous tuning curves and can have arbitrarily small firing rates, whereas type II
models have a discontinuity at their firing threshold and when firing cannot fire slower than
a given rate. The fact that the LIF model is a type I neuron model has traditionally made it a
better model of cortical neurons (Koch, 1999), though studies indicate that some neurons in
mammalian (rat) cortex exhibit both type I and type II properties (Tateno et al., 2004; Tsubo
et al., 2007). Previous numerical experiments that have examined stochastic resonance and
heterogeneity together have used binary threshold units in their simulations (Stocks, 2000;
McDonnell et al., 2006), which are qualitatively very similar to type II neurons but without
the temporal component. The results of these experiments may have limited applicability
to cortical neural systems.

We found that heterogeneity was better able to desynchronize LIF neurons than FHN
neurons (Figure 5), given that heterogeneity was added only to the firing threshold bi. We
hypothesize that this is due to key differences in the shape of the neuron tuning curves.
The FHN model, being a type II neuron model, has a tuning curve that is qualitatively
similar to a binary threshold unit, with a discontinuous increase in firing rate at the firing
threshold and minimal change in firing rate for signals above the threshold (Figure 7A).
On the other hand, the LIF model, being a type I neuron model, has a continuous and
monotonically increasing tuning curve, specifically one that increases smoothly with the
strength of a suprathreshold signal (Figure 7B). If a high-frequency signal crosses the firing
thresholds of many FHN neurons in quick succession, all the neurons will begin firing both
at approximately the same time and with approximately the same rate, taking a long time
to desynchronize. With LIF neurons, the high-frequency signal can still cross the firing
thresholds of many neurons simultaneously, causing them to begin firing at approximately
the same time. However, the signal will result in higher firing rates for neurons with lower
firing thresholds than for those with higher firing thresholds, allowing the group of neurons
to desynchronize quickly. This key difference between the tuning curves of FHN and LIF
neurons results in better desynchronization for LIF neurons.

In our experiments, we added heterogeneity only to the firing threshold bi. While this
does capture the variable levels of excitability seen in in vivo neurons (Mejias and Longtin,
2012), due to variations in neuron physiology or differences in the background activity of
afferent neurons, there are clearly many other types of heterogeneity in neurons that also
deserve attention. We hypothesize that if heterogeneity were added to other neuron param-
eters, the information content of a population of FHN neurons could be optimized without
noise, as with LIF neurons. For example, adding variation to the maximum firing rates of
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FHN neurons would allow them to desynchronize as quickly as LIF neurons. A system
with this level of heterogeneity would require a more complex decoding system than the
simple summing neuron model used in this paper, perhaps using the tuning curves to solve
for the optimal linear decoders as described by Salinas and Abbott (1994) or Eliasmith and
Anderson (2003). Such a decoding scheme could take advantage of a key difference be-
tween noise and heterogeneity: The variability produced by heterogeneity is reproducible
from trial to trial, whereas the variability due to noise is not. Heterogeneity thereby allows
for more complex decoding schemes, such as the combinatorial decoding scheme examined
in Osborne et al. (2008). We leave the extension of heterogeneity to additional neural pa-
rameters, and the requisite implementation of more complex decoding schemes, for future
work.

Noise and heterogeneity have a fundamental similarity that goes deeper than their mu-
tual ability to increase information transmission in neuronal populations, which is that noise
and heterogeneity are both a form of random variation. Specifically, noise corresponds to
variation within the phase space (state space) of a system over time, and heterogeneity
corresponds to variation within the parameter space of a system across a population. It is
important to emphasize that the heterogeneity used in this paper was completely random;
the heterogeneous firing thresholds did not have to be specifically chosen or fine-tuned in
any way, suggesting that random heterogeneity may be a natural implementation scheme
adopted by a biological system like the brain. Finally, in analogy to stochastic resonance
with noise, there is a critical level of heterogeneity that optimizes information transmission
(Figure 2). Noise and heterogeneity should therefore be thought of as analogous mecha-
nisms, but in different parts of the neuronal model (the state space versus the parameter
space, respectively).

Despite the similarities between noise and heterogeneity, there are also considerable
differences. Perhaps the most important is that the response of a heterogeneous population
is reproducible from trial to trial, whereas the response of a noisy population is only re-
producible on average. Though we do not examine this effect here, due to our simplistic
decoding method, many authors have commented the prevalence of reproducibility in neural
systems (e.g., Mainen and Sejnowski, 1995). Another significant difference between noise
and heterogeneity is that noise increases the firing rate of neurons, whereas heterogeneity
does not (on average). This results in noise being beneficial to the absolute information
content of a population, but having a reduced effect on the information per spike (Figure 4).
A third difference is that under some conditions (LIF neurons) heterogeneity alone is able
to optimize information content, whereas under others (FHN neurons) both heterogeneity
and noise are required.

Both our results here and the results of numerous other researchers suggest that noise
and heterogeneity may be important vehicles used by neural systems to optimize informa-
tion flow. Yet the extent to which actual biological neural systems exploit either heterogene-
ity or stochastic resonance for improved information encoding and transmission remains un-
clear. A number of recent studies show that heterogeneity can be very important in encoding
sensory information, such as for certain electric fishes (Marsat and Maler, 2010) or in the
rodent olfactory system (Padmanabhan and Urban, 2010; Burton et al., 2012). Another re-
cent study shows stochastic resonance effects in human auditory cortex, specifically that
noise can increase correlation both within and between some cortical regions (Ward et al.,
2010). More studies of this nature are required to determine both what neural systems show
evidence of heterogeneity or stochastic resonance, and more importantly, whether these
systems actually take advantage of them for improved population coding. The differences
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between noise and heterogeneity suggest that the extent to which they are exploited may
vary significantly from one neural system to another, depending on the physiology of the
neurons involved and whether factors like firing rate are a significant constraint. The work
presented here demonstrates the complex interaction between noise and heterogeneity due
to the shared underlying mechanisms of desynchronization and linearization, and explains
how these mechanisms lead to improved information processing characteristics.

4 Models and Methods

Our model consists of an input signal s(t) encoded by a population of neurons, specifically
having the same signal injected into the soma of all cells in the population (see Equa-
tions 1 and 2). We ran simulations using both the FitzHugh-Nagumo (FHN) neuron model
and the leaky integrate-and-fire (LIF) neuron model. Signal decoding is modeled by sum-
ming the spikes of each neuron in the population and low-pass filtering the result to obtain
the output signal r(t). This is analogous to determining the somatic current of a single
receiving neuron, where the filtering is performed by synapses. The input and output sig-
nals are then compared using mutual information, to measure how well the output signal
encodes the input signal. Independent and identically distributed (i.i.d.) additive Gaussian
noise processes are added to each neuron, with standard deviation ση used to modulate the
noise level in each experiment. Heterogeneity is also added by choosing neuron biases bi
from a random uniform distribution, where the width of the distribution controls the degree
of heterogeneity.

FitzHugh-Nagumo (FHN) model. The FHN model is a simplification of the Hodgkin-
Huxley model (Fitzhugh, 1961). We chose to use the standard formulation presented by
Izhikevich and FitzHugh (2006), given for the i-th neuron by two coupled ordinary differ-
ential equations:

v̇i = vi − 1
3v

3
i − wi + βi + eis(t) + ηi(t)

ẇi = 0.08(vi − 0.8wi + 0.7),
(1)

where vi(t) is a fast (voltage) variable, wi(t) is a slow (recovery) variable, βi is a constant
bias voltage, ei is a simple encoder equal to 1 for “on” neurons and −1 for “off” neurons,
s(t) is an input signal common to all neurons, and ηi(t) is a Gaussian white noise process
with autocorrelation 〈ηi(t)ηj(t+ τ)〉 = σ2ηδijδ(τ). We chose βi = 0.3216 − bi, with the
offset 0.3216 chosen such that the bias bi corresponds to the threshold at which the neuron
begins firing.

Originally, we took the FHN neuron output to be equal to the positive part of the mem-
brane voltage. This resulted in spikes that were not discrete, stereotyped events, but rather
extended events that could transmit information in their amplitude. Although some re-
searchers have argued that in vivo neurons do transmit information in spike amplitude, we
found that this approach did not provide sensible results when the FHN model was pushed
to the limits of its operating range, specifically for high levels of noise and wide ranges of
heterogeneity.

We therefore developed a basic method to determine when the FHN model was spiking,
and transmitting an instantaneous stereotyped spike when this occurred. The FHN neuron
model was considered to spike when the voltage was above the threshold Vth = 0 for a
time of 1 ms, and was not allowed to spike again until the voltage was below the threshold
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for 1 ms. This 1 ms buffer time was necessary so that brief membrane voltage threshold
crossings due to noise were not counted as spikes.

Leaky integrate-and-fire (LIF) model. The LIF model describes a neuron as a mem-
brane with resistance R and capacitance C, which fires spikes when the membrane voltage
v(t) crosses the threshold Vth. It is governed by the differential equation

τRC v̇i = −vi + βi + α (eis(t) + ηi(t)) , (2)

where vi(t) is the membrane voltage, τRC = RC is the membrane time constant, α is the
input signal gain, βi is a constant bias voltage, ηi(t) is a delta-correlated Gaussian white
noise process (as with the FHN neuron model), and s(t) is an input signal common to all
neurons. When a neuron voltage reaches the threshold voltage Vth = 1, the neuron fires
a spike and begins a refractory period. The length of the refractory period is given by the
refractory time constant τref , and during this time the neuron voltage is held at zero. Once
the refractory period is finished, the neuron obeys Equation 2 until another spike occurs.

We chose τRC to be 20 ms, which is typical for cortical neurons (McCormick et al.,
1985). We then chose τref to be 33 ms, thus giving a maximum firing rate (30 Hz) approx-
imately the same as the FHN model. We chose α to be 15, to achieve a similar maximum
firing rate to the FHN model over the range of inputs used. We chose βi = Vth − αbi, such
that bi is a bias that corresponds to the threshold at which the neuron begins firing.

Input signal generation. The input signal consisted of Gaussian white noise filtered
with an α function, α(t) = (t/τc)e

−t/τc , which models synaptic firing (Galán et al., 2008).
The signal was normalized to have zero-mean and a standard deviation of σs = 0.1. The
correlation time was chosen to be τc = 20 ms, which is on the upper end of the times used
by Mainen and Sejnowski (1995). This correlation time results in a cutoff frequency of
fc = 7.96 Hz, which is considerably lower than the maximum firing rate of the neurons
(∼ 25 Hz).

Output signal decoding. To determine the output signal r(t), we used the basic model
of a summing neuron similar to the one proposed by Stocks and Mannella (2001). Specifi-
cally, the output signal r is given by

τ ṙ = −r +
N∑
i=1

si(t) (3)

where N is the number of neurons in the encoding population, and si(tj) is 1 if neuron i
is spiking at time tj and 0 otherwise. This model simulates a summing neuron which only
receives discrete, stereotyped spikes from input neurons, and then low-pass filters and sums
these spikes. We chose a time constant τ = 20 ms for the filter. This value was chosen to
optimize the information throughput of the system; it does so likely because it is the same
as the correlation time of the input signal. Other choices of the filter time constant produce
the same qualitative results, but with lower levels of information content.

Mutual information. We use Shannon mutual-information as the measure of similarity
between the input and output signal (Heneghan et al., 1996; Stocks and Mannella, 2001),
where the mutual information I (in bits) between the output signal r and input signal s is
given by

I(s, r) =
∑
s∈S

∑
r∈R

p(s, r) log2

(
p(s, r)

p(s)p(r)

)
, (4)

where S is the domain of the input signal s(t) and R is the domain of the output signal
r(t). To compute the joint probability distribution p(s, r) for discrete signals s(t) and r(t),
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the domains S and R are each divided into equal bins, and a joint histogram of the points
[s(ti), r(ti)] is formed. This histogram is used to approximate the joint probability function
p(s, r) by scaling it so the sum across all s and r is unity (i.e., dividing the histogram by
the total number of points N ). For all simulations, we divided the domains S and R into 19
bins each.

One shortfall of this comparison method is that it does not account for the delay be-
tween the input and output signals, due to the non-zero reaction time of the neurons. In
neural systems, some delay is to be expected, and we should not penalize our simulated
networks for not being able to encode and decode an input signal instantaneously. The
difficulty in comparing a delayed version of the input signal with the output signal is that
it raises the question of what length of delay should be used. Each pair of noise and het-
erogeneity levels may conceivably have a unique optimal delay, and in order to not favor
either noise or heterogeneity, the optimal delay (i.e., the delay that produces the highest
mutual information) should be calculated and used at each pair of noise and heterogeneity
levels. In the interest of simplicity, we decided to instead compare the input and output
signals with no delay, as is consistent with previous experiments (Stocks and Mannella,
2001). In preliminary experiments, accounting for delay resulted in only a small increase
in information.

We obtain the information per spike by multiplying the mutual information by the
Nyquist rate of the signal (2 times the signal bandwidth of fc = 7.96 Hz). This results
in an information rate (in bits per second), which we then divide by the average number of
spikes per second of a neuron in the population, to obtain the information per spike.

Heterogeneity. To introduce heterogeneity into the population, we varied the bias volt-
ages bi of the neurons. In homogeneous populations, all neurons had bias voltages equal to
zero, the mean of the input signal. Heterogeneous populations had neurons with uniformly
randomly distributed biases chosen from a range U(−br, br), where br is the radius of het-
erogeneity. For the phase plot (Figure 5), three ranges were used: br = 0.01, 0.05, 0.2,
corresponding to small, medium and large levels of heterogeneity. The ranges were chosen
to be roughly logarithmically distributed, with the largest range corresponding to biases that
covered two standard deviations of the input signal.

“On” and “off” neurons. To help minimize subthreshold stochastic resonance effects
from significantly contributing to our results, we used populations that contained an equal
number of “on” and “off” neurons, i.e., neurons that both increase firing rates as the input
signal increases, and increase firing rates as the signal decreases. In terms of our model, this
means that half the neurons of each population had ei = 1, and the other half had ei = −1.
This means that half the population represents the positive and negative parts of the signal,
respectively, and only a small amount of information is gained by the subthreshold SR
effect which allows each half of the population to represent both positive and negative
signal components.

Population phase. To determine how synchronous a population of neurons was, we
measured the standard deviation of the neuron phases around the mean population phase.
FHN neuron phases were determined by measuring the angle of the (V (t),W (t)) point in
phase space around a central point, chosen to be (−0.22, 0.60) since this lies roughly in
the center of the FHN limit cycle. For LIF neurons, the refractory period was scaled to
correspond to the first 180◦ of phase, and if the neuron was out of the refractory period, the
phase was computed as 180◦(1+max(0,min(1, V (t)))). The mean phase θ̄ was computed
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as

θ̄(t) = tan−1

(
1

N

N∑
i=1

cos (θi(t)) ,
1

N

N∑
i=1

sin (θi(t))

)
, (5)

where θi(t) is the phase of neuron i at time t, N is the number of neurons in the population,
and α = tan−1(x, y) is the two-argument arctangent function such that tanα = y/x. The
standard deviation θσ(t) of the population phase is then given by

θσ(t) =

√√√√ 1

N

N∑
i=1

(wrap(θi − θ̄))2, (6)

where the function wrap(α) = (α+π mod 2π)−π converts the angle α to its equivalent
angle in the range [−π, π). Figure 5 presents the mean over all simulation time of the
standard deviation of the phase.

Simulation details. The information transmission plots with a noise axis (Fig-
ures 3 and 4) were computed using noise levels in the range ση ∈ [10−4, 1], with the levels
logarithmically spaced in steps of 100.1. We chose the low end of these ranges to be an
insignificant level of noise—where information content qualitatively the same as the noise-
free case—and increasing until the noise completely overpowered the signal such that only
a negligible amount of signal information could be recovered. For information plots with a
heterogeneity axis (Figures 2 and 3), we chose br ∈ [10−3, 1], with points logarithmically
spaced in steps of 100.1. Again, the low end of this range corresponds to an insignificant
level of heterogeneity (qualitatively the same as the homogeneous case), and the high end
corresponds to the case where either information content reduced to insignificant levels (LIF
neurons), or firing thresholds were so extreme that increasing them further would push the
neuron model outside its valid range of operation (FHN neurons).

For the information and phase plots (Figures 2–5), 100 simulations were performed at
each combination of noise and heterogeneity levels, each having a simulation time of 4.5
seconds. Initial conditions were chosen randomly from across the neuron’s working phase
space (FHN neurons: vi ∈ [−2, 2], wi ∈ [−0.4, 1.2]; LIF neurons: vi ∈ [0, Vth]), with the
first 0.5 seconds of each simulation being discarded to allow any transients created by the
initial conditions to settle. A time step of ∆t = 10−4 was used. For each simulation, new
sets of both random biases bi and noise ηi(t) were generated for each neuron. The final
traces in the figures show the mean over all simulations. The standard error of the mean
at each point was not plotted because it was small in all cases, with statistically significant
differences between the traces.

Simulations for the firing rate plots (Figure 6) were conducted in the same manner as
for the information and phase plots, except that the figure shows the results of single trials,
not averaged trials.

The tuning curve plots (Figure 7) were all calculated empirically by measuring the firing
rate of simulated neurons. The range of inputs measured was [−0.2, 0.2], divided into 51
equally spaced points (intervals of 0.008). At each point, a constant signal at that input value
was presented to N = 30 identical neurons, with a duration of 5.5 seconds. The first 0.5
seconds of neuron output was discarded, to reduce the effects of initial condition transients,
and the average spike rate for each neuron over the remaining time period was calculated.
The tuning curves presented in the plots show the average firing rate of all N = 30 neurons
for each input value.
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