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Abstract— Living organisms are capable of autonomously
adapting to dynamically changing environments by receiving
inputs from highly specialized sensory organs and elaborating
them on the same parallel, power-efficient neural substrate.
In this paper we present a prototype for a comprehensive
integrated platform that allows replicating principles of neural
information processing in real-time. Our system consists of (a)
an autonomous mobile robotic platform, (b) on-board actuators
and multiple (neuromorphic) sensors, and (c) the SpiNNaker
computing system, a configurable neural architecture for ex-
ploration of parallel, brain-inspired models. The simulation
of neurally inspired perception and reasoning algorithms is
performed in real-time by distributed, low-power, low-latency
event-driven computing nodes, which can be flexibly config-
ured using C or specialized neural languages such as PyNN
and Nengo. We conclude by demonstrating the platform in
two experimental scenarios, exhibiting real-world closed loop
behavior consisting of environmental perception, reasoning and
execution of adequate motor actions.

I. INTRODUCTION

The nervous system shows a rich repertoire of responses
to dynamic contexts using many individual, yet interacting,
computing units, which together exhibit extraordinarily co-
ordinated adaptive behaviors. Neuro-physiological models
of increasing complexity have been proposed to explain
perception and cognition in behaving systems; most of such
models, however, are typically simulated only in restrained
or virtual environments. Emerging cognitive architectures,
capable of solving some classical cognitive tasks by flexibly
coordinating perceptual, cognitive and motor areas, hint to
the ability of organisms to solve a variety of tasks using
the same universal, parallel neural substrate in different
contexts [7]. Simulating biological systems is a resource-
intense task, and power consumption is a relevant issue when
considering autonomous agents embodying such models. In-
spired by the parallelism and power frugality characteristics
of the nervous system, a new class of neuromorphic devices
and sensors have been developed in the last years [11].

In this paper we present an integrated robotic platform
(shown in Figure 1) to explore the behavior of complex,
biologically-inspired models; the platform is equipped with
neuromorphic sensors and with SpiNNaker [8], a digital,
configurable event-driven system that can interpret incoming
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Fig. 1. The SpiNNaker robotic platform, comprising a mobile robot, two
silicon retinas and a 48 node SpiNNaker board to perform neural control.

events and translate them into neural spikes, using them to
control the robotic platform. SpiNNaker offers a combination
of off-the-shelf, low-power RISC processors, and a custom
packet-switched network infrastructure, aimed at the sim-
ulation of large neural network models in real time. The
platform is configurable at various levels of abstraction, from
C programming to the use of specialized neural description
languages, making it user-friendly. The result is a system
for implementing and testing event-based neuronal models
on mobile robots in an accessible way. The use of cognitive
architectures can enhance the capabilities of autonomous
agents to rapidly adapt to dynamic environments and sit-
uations, while the low-power consumption of neuromorphic
sensors and devices can increase their autonomy.

The rest of the paper is structured as follows: the next Sec-
tion introduces related work exploring the brain inspiration.
Section III presents SpiNNaker, the robotic platform and the
sensors. Section IV shows two experiments performed with
the platform, demonstrating its flexibility; finally Section V
concludes with a brief discussion summarizing the results
and the novel characteristics of the platform.

II. RELATED WORK

Simulating large portions of neural tissue is a resource-
intensive task, mainly due to the cost of message (spike)
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Fig. 2. System overview: a SpiNNaker chip (octagon) is connected to
the robot and sensors using an interface board, responsible of translating
events into spikes and motor commands. The interface board is connected
on one of the 6 asynchronous links connecting SpiNNaker chips together;
each chip sees the robot and sensors as other SpiNNaker chips.

delivery, particularly on supercomputers using MPI [17].
Recently, in a report called “1014”, IBM showed the results
of a structural simulation of the brain comprising 53× 1010

neurons and 1.37 × 1014 synapses, running 1542× slower
than real time on their Sequoia BlueGene system [27]
(1,572,864 cores, 17,173 TFlops/s and a power consumption
of 7,8 MW). Interestingly, they report that the time spent
communicating spikes via MPI messaging is the biggest
cost. As simulation of large parallel systems on standard (or
clusters of) computers is such a power- and communication-
intense task, the cognitive architectures running on them
cannot easily be embodied in a real-time robotic platform.

In order to circumvent performance and power limitations,
biologically inspired - or neuromorphic [13] - parallel VLSI
circuits have been produced. Such platforms are based on
the organization principles of the nervous system: they take
inspiration from the inherent parallelism and the communi-
cation mechanism of the brain to execute computation more
efficiently in terms of power and performances. They do so
by instantiating arrays of simple, neuron-like units, commu-
nicating asynchronously in the network through means of all-
or-non signals called spikes, as their biological counterparts.
Silicon retinas, for instance, only produce events if a local
change of light is detected, hence having a very fast response
(low latency) and reducing visual information redundancy
[12][21].

Brain-style parallel processing architectures (as Stan-
ford’s Neurogrid [15], or the EU funded BrainScaleS hard-
ware [20]), and neuromorphic sensory systems such as arti-
ficial retinas [14] and cochleas [26], have been successfully
developed and used to run event-driven simulations. These

sensors and systems use an Address-Event Representation
(AER) scheme, where each unit produces a stereotypical
message identifying its source coordinates, mimicking the
biological spike mechanism. Messages are delivered to neu-
rons through synapses (the point of contact of two neurons),
which are usually located close to the destination (post-
synaptic) neuron.

The use of such systems and methods has generated
a research environment where large-scale, truly parallel
platforms where real-world, real-time sensory processing,
learning, and generation of complex motor output can be
explored. Silicon neurons are low power, efficient systems for
neural-inspired computation, but their availability is scarce
and they are often tailored for a particular neural model
[20] or network topology [15], as specific circuit solutions
depend on requirements of an application [11]. Projects such
as CAVIAR [21] have demonstrated the advantages of the
integration of neuromorphic sensory perception compared to
standard, frame-based mechanisms.

FPGAs and GPUs are more readily available, configurable
hardware platforms which have been used for neural simula-
tions [1][16]. Neural simulation is however often bounded by
communication, while GPUs and FPGAs are typically better
suited for tasks where the ratio communication/computation
favours the latter; additionally their power requirements
hamper the possibility to use them in autonomous agents.

Current systems using dedicated hardware are specialized
to particular tasks or models, and are accessible only through
a steep learning curve, making them scarce resources in the
scientific community. This leads to a gap between neural
modellers and neuromorphic, parallel platforms. In an effort
to narrow this gap we present an integrated neuro-style com-
puting system directly interfaced to multiple neuromorphic
sensors mounted on-board of a mobile robot (Figure 1),
accessible at different abstraction levels.

III. THE ROBOTIC PLATFORM

This section describes the SpiNNaker system (A), the de-
veloped autonomous mobile robot platform (B) the on-board
available event-based vision sensors (C) and the interface
between robot, sensors and the SpiNNaker computing system
(D). All required devices operate on board of the mobile
robot for several hours with the provided battery pack and a
WLAN connection for system boot-up and monitoring.

A. SpiNNaker

1) Hardware: SpiNNaker [8] is a digital multi-core multi-
chip architecture oriented to the simulation of large neural
networks in real-time. Each SpiNNaker chip (octagons in
Figure 2) is equipped with 1Gbit SDRAM, storing synap-
tic information and accessible by parallel DMA requests
(for an aggregate bandwidth of 900 MBytes/s [18]), by
18 programmable ARM968 cores embedded in a config-
urable packet-switched asynchronous fabric, based on an
on-chip Multicast (MC) Router capable of handling one-to-
many communication of spikes (packets) very efficiently, and
linked to 6 neighbour chips through asynchronous links [19].



In this work we use a 48-chip SpiNNaker board, for a
total of 864 ARM968 Cores and 48 Gbit of memory, where
every chip has a top power consumption of 1W. A system,
like the one presented in Figure 1, is capable of simulating
up to a quarter million neurons and more than 80 million
synapses in real time, within a power budget of less than
40W [25]. Typically the most expensive process in neural
network simulations is the one concerning propagation and
integration of spikes [17][27]; with the current software
infrastructure, the system used in this paper is capable of
delivering 1.8 billion synaptic events per second, using a
few nJ per event and per neuron.

2) Software: Specialized neural languages provide a de-
velopment environment where neurons and synapses are
programming entities: through the use of standard neu-
ral models, their mathematical formulation is abstracted
to the final user, and this guarantees repeatability across
different simulators, promoting model sharing in the com-
munity. Using a specialized neural language to configure
the SpiNNaker platform is a natural choice. PyNN [4]
is a platform-independent description language, capable of
defining the structure of a neural network by instantiating
populations of different models of neurons and connecting
them through projections. Alternatively, neural computation
can be performed in a more functional way, by using the
Neural Engineering Framework (NEF) [6], a method to
encode functions and dynamical systems in networks of
spiking neurons. Using the NEF it is possible to build com-
plex cognitive architectures such as SPAUN [7], currently
the largest functional model of the brain. Known neuro-
physiological data acts as constraints on neural parameters,
making comparisons with human neural and behavioral data
possible. Regardless of the choice of the language, the model
is mapped and distributed to the machine using the Partition
and Configuration Manager (PACMAN) [10], which hides
the complexity of configuring a massively-parallel machine
to the final user, by exposing the system through interfaces
with PyNN and Nengo [9][24], the software that implements
the NEF principles, automatically translating the system in
biologically plausible neural circuitry, and performing all
computation in neurons, as presented in Section IV-B.

The code running on the platform is written in a C-
based API [22], offering an accessible interface to the hard-
ware substrate and to real-time event scheduling facilities.
SpiNNaker applications are loaded into the ARM cores and
executed in parallel; they are used to configure callbacks
that respond to events, such as the arrival of a spike, or a
timer tick initiating the neural update process. Neural kernels
are fully parametrizable and can support different classes of
neural models and connectivity patterns.

B. Mobile Robot

The mobile robot used in this project is a custom devel-
oped omni-directional mobile platform of 26cm diameter,
with embedded low-level motor control and elementary sen-
sory systems. An on-board ARM7 micro-controller receives
desired motion commands in x and y directions and rotation

through a UART communication interface, and continuously
adapts three motor control signals (PID-control) to achieve
desired velocities. The robot’s integrated sensors include
wheel encoders for position estimates, a 9 degrees of freedom
inertial measurement unit (3 accelerometers, 3 gyroscopes,
and 3 compasses) and a bump-sensor ring which triggers
binary contact switches, located at 60◦ intervals on the robot
circumference, upon contact with objects in the environment.

C. Silicon Retinas

The embedded DVS system (eDVS) [2] used as spiking
sensory input in based on an address-event silicon retina
that responds to temporal contrast [12], connected to an
ARM7 micro-controller that initializes the DVS and captures
events. All 128 × 128 pixels operate asynchronously and
illumination changes are signalled within a few microseconds
after occurrence (without having to wait for a frame to
send information) through a spike, representing a quantized
change of log intensity at a particular location. In this project
the micro-controller streams all obtained events over a UART
port through the SpiNNaker interface board.

D. Robot-SpiNNaker Interface Board

Computing nodes in SpiNNaker exchange data on a
proprietary energy and speed efficient asynchronous inter-
face [19]. We designed a generic CPLD/micro-controller
interface board [5] (Figure 1, top left) to receive and to
transmit SpiNNaker data packets, while communicating with
multiple external devices. The on-board micro-controller
translates the protocols between SpiNNaker and peripherals,
integrated into an existing SpiNNaker system as further
computing node (refer to Figure 2).

IV. EXPERIMENTS
This section describes two independent experiments. First

we present a trajectory stabilization task, using perceived
optic flow and a distributed neural information processing
model written in C. In the second task, written in Nengo,
the robot maintains a constant distance and orientation to
the most salient target through stereopsis.

A. Trajectory stabilization using optic flow

In this first experiment the autonomous mobile robot
traverses a man-made corridor composed of vertically-striped
misaligned card-board boxes (shown in Figure 3a; overhead
sketch of spatial layout in Figure 3b). The robot stays
centered exclusively based on real-time locally computed
optic flow (OF), with raw visual information solely provided
by two laterally mounted event-based vision sensors. The
complete setup resembles similar flight experiments per-
formed with bees [23].

While forward-traversing the corridor marked with black
and white stripes on both walls (Figure 3a), two laterally
mounted eDVS report perceived illumination changes as
spike trains: the upper left panel in Figure 3c (corresponding
to the robots left-facing eDVS) clearly shows a lower spatial
frequency compared to the lower left panel (the robots right-
facing eDVS), because of the robots position close to the
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Fig. 3. Trajectory stabilization using optical flow: (a) photograph of experiment arena, front end the mobile robot; (b) top-down tracking view of arena
and robot path in three consecutive experiments; (c) left: display of observed events from eDVS, middle: derived horizontal local optic flow (green and
white indicate different polarities), right: combined flow estimate equal to lateral motion motor command; (d) time series of one experiment showing global
optic flow (blue, green and combined in red) and resulting motor commands.

left wall (Figure 3a). While driving, all spike trains are
processed retinotopically in multiple distributed computing
nodes on SpiNNaker. Each node estimates local horizontal
OF, within a limited region of the total field-of-view. The
resulting horizontal flow vectors are shown in Figure 3c,
center, for the left and right-facing eDVSs respectively, with
green indicating negative flow and white indicating positive
(opposite) horizontal flow.

Local OF is computed by estimating time differences
between nearby local events, which is inversely-proportional
to underlying motion velocity, and hence to local OF. All
local OF computations contribute to a common global OF
estimate, as we assume a stationary world in which only the
robot moves. In a generic mobile robot task such a trans-
formation might be an under-constrained operation; here,
however, we assume that neither vertical OF nor rotational
OF exist, because of the construction and motion of the
wheeled robot. We compute an individual horizontal global
OF estimate for each retina by summing all local OF into a
leaky integrator. The position/height of the red bar in Figure
3c, right box, represents the current overall OF for each of
the two eDVS.

The robotic control loop is closed by computing and
executing desired motor commands based on those horizontal
OF estimates to keep both OF estimates balanced and thus
the robot centered. Assuming identical spatial frequencies of
the patterns on both walls of the corridor, we also expect
to perceive equal amounts of OF from the left and the right
eDVS. We add the two sign-corrected global flow estimates
(Figure 3d, blue and green trace) into a combined flow-
mismatch signal (red trace), which upon passing a threshold
triggers a sideways motor response (black trace) to correct
the robots motion.

The high frequency oscillations in all estimates can be
traced back to the heterogeneous structure of the observed
environment, and could be compensated for by a light low-
pass filtering. In multiple independent experiments the robot
stays centered within the hallway, even in scenarios with
turns and detours, as confirmed by overhead tracking (Figure
3b).

B. Stimulus tracking in Nengo

While it is possible to write custom applications, or define
a particular network structure to perform a task, using the
NEF it is possible to rapidly build networks representing
functions in populations of neurons and their interconnection
parameters. The interface with Nengo exposes the robot and
sensors directly in the neural language.

The network embodied in the agent is presented in Figure
4, and the task here is to keep the most salient stimulus at
a fixed distance and orientation using stereopsis [3]. There
are five groups of neurons, each representing different values
needed in this algorithm, with the NEF giving a biologically
plausible method for representing scalar values and functions
in a distributed manner across populations of spiking neu-
rons. The retina input is a combination of information from
the 128 × 128 × 2 silicon neurons representing the retinas
of the robot. The input population estimates the angle of the
most salient object by averaging the number of events in its
field of view; an LED, blinking at 100 Hz and thus producing
a large number of events, is used as the stimulus to track.
This input is connected to the 200 neurons in the angles
population to form a distributed representation of the relative
angles α and β between the retinas and the stimulation,
trying to keep α = β and the stimulation in the center of the
field of view, as illustrated in Figure 4.

If the stimulus is converging into the field of view then
the angle value is negative; conversely, if the stimulus is
diverging from the field of view (or on the same direction of
the sensor) the angle is positive. The concept is illustrated
in Figure 5: if the stimulus is present within the central part
of the field of view (as in 1 and 2 in Fig. 4), both angles are
negative and no rotational movement is required. If the angles
are different (as in case 3 and 4) then the angles population
drives the turn population, encoding rotational movements,
trying to keep α = β and the stimulation in the center of the
field of view.

The algorithm was provided to the Nengo software, which
automatically performs the neural optimization and loads
it onto SpiNNaker. The NEF is also used to compute the
connection weights from the 200 angles neurons to the 150



Fig. 4. (Left) Network structure: The angles population receives input from the silicon retinas, and uses it to compute the motor command to turn the
robot (based on the angle difference) and to move forwards and backwards using the distance population, which estimates distance through stereopsis to
keep the stimulus at a constant distance and orientation. (Right) The angles population represents the relative angles α and β between the R1 and R2
retinas and the stimulation. (1-2) if the stimulus is converging into the field of view then the angle value is negative; conversely, if the stimulus is diverging
from the field of view the angle is positive (3-4) when the stimulus is located laterally, α 6= β, and the robot turns, trying to keep α = β.

distance neurons. In this case, the weights are optimized
to take these α and β values and to estimate the distance
to the object via triangulation. The distance neurons are
connected to the forward population with weights encoding
the function “if d > .5: 1; else: -1”. This value is sent to
output neurons to control the movement of the robot keeping
the distance constant. The system for turning the robot to face
the stimulus involves turning left if the mean of α and β is
negative, and otherwise turning right.

All the neurons and connections are simulated directly on
SpiNNaker. The model is effectively a neural computational
module, where values (the spiking retina input) are fed into
the system, manipulated by a sequence of spiking neurons
and their connections, and finally decoded and sent to the
motors (or recorded for display purposes as in Fig. 5). The
operation of the system is presented in Figure 5, and in the
video included in the Proceedings. In total the model uses
10 out of 16 ARM cores in a single SpiNNaker chip (out
of 48 chips present on the board, for a total of 764 neural
cores) for modelling 1,450 neurons firing at 100-150 Hz.

V. CONCLUSIONS
This paper has presented a neuromorphic robotic platform

aimed at the exploration of parallel, event-driven neural
models behaving in real-world scenarios. As the use of cog-
nitive architectures can improve the adaptability of robotic
agents in dynamic contexts, the neuromorphic approach
offers specialized systems for perception and computation,
that improves their autonomy within a low-power budget.

Silicon retinas are used as a sensory front-end, asyn-
chronously delivering visual events to SpiNNaker, a con-
figurable parallel platform that controls the behavior of the
robot. The use of C and alternatively of specialized neural
languages makes the platform accessible at different levels,
hiding the difficulties of configuring a parallel platform from
final users. The optical flow experiment shows how C-based
kernels can be used to solve problems in real-time in a paral-
lel fashion, while using the Neural Engineering Framework
it is possible to encode and process information in spiking
activity, automatically translating a functional description of
the system into neural circuitry, as shown in Section IV-B.
The experiments presented run in real time on the SpiNNaker

robot. Interaction with the environment is possible through
a custom interface which connects SpiNNaker, AER-based-
sensors and the robotic platform. While integration with
AER sensors makes use of the event-driven nature of the
platform, interfacing the system with robots performing in
a real environment makes use of its real-time capabilities.
The integration of such systems provides non-experts with
a standard interface to bring their models to the platform,
ready for exploration of networked computation principles
and applications.

The overall system is a stand-alone, autonomous config-
urable platform with no PC in the loop, provided with a
set of tools and interfaces that make it a usable exploratory
platform for embodied brain-inspired models.
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