
WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IJCNN

Real Time On-Chip Implementation of Dynamical

Systems with Spiking Neurons

Francesco Galluppi, Sergio Davies and Steve Furber
Advanced Processor Technologies Group

University of Manchester, United Kingdom

Terry Stewart and Chris Eliasmith
Centre for Theoretical Neuroscience

University of Waterloo, Ontario, Canada

Email: francesco.galluppi@cs.man.ac.uk

Abstract- Simulation of large-scale networks of spiking neu­
rons has become appealing for understanding the computational
principles of the nervous system by producing models based on
biological evidence. In particular, networks that can assume a
variety of (dynamically) stable states have been proposed as the
basis for different behavioural and cognitive functions.

This work focuses on implementing the Neural Engineering
Framework (NEF), a formal method for mapping attractor net­
works and control-theoretic algorithms to biologically plausible
networks of spiking neurons, on the SpiNNaker system, a massive
programmable parallel architecture oriented to the simulation
of networks of spiking neurons. We describe how to encode and
decode analog values to patterns of neural spikes directly on
chip. These methods take advantage of the full programmability
of the ARM968 cores constituting the processing base of a
SpiNNaker node, and exploit the fast Network-on-chip for spike
communication.

In this paper we focus on the fundamentals of representing,
transforming and implementing dynamics in spiking networks.
We show real time simulation results demonstrating the NEF
principles and discuss advantages, precision and scalability. More
generally, the present approach can be used to state and test
hypotheses with large-scale spiking neural network models for a
range of different cognitive functions and behaviours.

I. INTRODUCTION

Construction of large-scale spiking neural models is pos­

sible thanks to the emergence of unified approaches that are

able to scale up seamlessly. These models can be simulated

taking advantage of recent developments in computational

infrastructure that can equally be scaled up. Some models

aim to find emerging functions from the structural data known

from biology. For example, quantitative descriptions of cortex

based on anatomical data [4] can be used to model sys­

tems that naturally scale up [19], due to the regularity of

the laminar organization of the thalamo-cortical system [35].

Other approaches can be considered more functional, where

neural dynamics and quantities act as biological constraints

in modelling specific cognitive functions [7]. Some functions

can be modelled using attractor networks [1], networks that

can represent information by settling to a (dynamically) stable

state with their self-sustained, persistent activity. For example

functions like memory can be associated to brain areas that

are believed to use attractor representation such as the hip­

pocampus [37].

Simulating large scale networks of biologically plausible

neurons is a challenging task which require scalable compu-

U.s. Government work not protected by U.S. copyright

tational and communication resources. Therefore simulations

usually take place on supercomputers [2], general purpose

hardware as FPGAs [24] or dedicated neuromorphic hard­

ware [28] [36]; every approach has different scalability, pro­

grammability, precision and power consumption characteris­

tics.

In this context we describe how to map the principles

of the Neural Engineering Framework (NEF) [10], a unified

approach for implementing complex neuro-dynamical systems

and mapping control-theoretic algorithms with the neural

connections between a highly heterogeneous population of

spiking neurons, to the SpiNNaker System [13], a massively

parallel programmable architecture oriented to the simulation

of large scale models of spiking neural networks.

The paper describes the approach taken to encode and

decode values directly on-chip, taking advantage of the pro­

grammability of the SpiNNaker system and exploiting the fast

on-chip spike-based interconnect for communication between

neural populations.

We show how a variety of networks can be built using

encoding/decoding methods. In short, the approach presents

the basis for testing large-scale neural models built with the

NEF integrating SpiNNaker as the computational back-end in

the existing framework and tools.

The rest of the paper is structured as follows: we introduce

the Neural Engineering Framework and the SpiNNaker System

in the first two sections. We then present the approach used

to port the NEF on SpiNNaker, and present results obtained

with the approach in sections IV and V respectively. Finally,

discussion about how to expand the work and conclusions are

drawn in the last two sections.

II. NEURAL ENGINEERING FRAMEWORK

The Neural Engineering Framework [10] describes how bi­

ologically relevant variables can be encoded and processed in

the dynamic neural activity of recurrently connected networks.

This approach can be used to introduce complex control theo­

retic models into spiking neural networks, including standard

attractor network models [8]. The NEF is captured by three

principles:

1) Representation in neurons is defined by the combi­

nation of nonlinear encoding (exemplified by neuron

tuning curves) and weighted linear decoding.

2) Transformations of neural representations are func­

tions of variables that are represented by neural pop­

ulations. Transformations are determined using an al­

ternately weighted linear decoding which describes the

transformation.

3) Neural dynamics are characterized by considering neu­

ral representations as control theoretic state variables.

Thus, the dynamics of neurobiological systems can be

analysed using control theory.

Nonlinear encoding is obtained by translating an analog value

to a spike train for each neuron i in the encoding population

as follows:

(1)

where the spiking activity 15(t-tin) is given by Gi, a nonlinear

function describing the neural model, a gain factor O:i (which

in the scalar case is either 1 or -1), the value x to be encoded,

the encoder e and a bias current Jfias. Encoding can be viewed

as capturing the characteristic response (tuning curve) of a

neuron to a specific stimulus space, demonstrated, for example,

by tuning curves found in the visual system for orientation [6].

Tuning curves express the relation between the value of the

stimulus and the spike response of a neuron, according to its

preference (tuning) to the stimulus value.

An example of encoding is illustrated in fig. 1, which depicts

the response of two example neurons out of a large population

to an input stimulus x: the first neuron (blue tuning curve on

the left) responds to negative values of x, by increasing its

firing rate as the input tends to -1; the second neuron (green

tuning curve on the right) responds to positive values of the

input x instead. The response of the two neurons to a step

input is shown in figure: the first neuron fires steadily when

the input is negative, while it goes silent when the input is

positive, as encoded by the second neuron which starts firing

steadily. The original stimulus vector can be estimated by

using decoding vectors d which can be found by a least square

method [10], and coupled with a simple model of the post­

synaptic current h(t) (a decaying exponential). Together, these

give the following decoding scheme:

(2)

i,n

where h(t-tn) is the convolution of the original spike train

with the post-synaptic current (PSC) [29].

Encoding and decoding together define the neural popula­

tion code. Conveniently, we can use encoding and decoding

to compute neural connection weights. Specifically, we can

calculate connection weights knowing the decoders for the

source population and the encoders of the target population.

Suppose we want to compute the function y = x, and we

define representations for x and y as above. We can then

determine connection weights to compute this function in the

� ����I neuron 1 /1neuron21
� 150

go 100

� 50

.P
1
� .0
:------""'

0
-::.S--- ---::

0
'"'
.0
=---....L...

0
="

.
=-S ------='

1.0

Input Value (a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (msee) (b) ro

:g l.°arm : 1

� 0.8

i i ::� ","ro"'1
::;: O·S.o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (msee) (e)
m r-�--�--r--'--�-�--�-�

l i i i[, _ : ,,"ro02 I : : : .
::;: O·S.O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (msee) (d)

Fig. 1: (a) Two example neurons out of a heterogenous

encoding population to an input stimulus x: the first neuron

(blue tuning curve) responds to negative values of x, by

increasing its firing rate as the input tends to -1; the second

neuron (green tuning curve) responds to positive values of x

by increasing its firing rate as the input tends to + 1 (b) input

stimulation (c, d) The sub-threshold voltage response of the

two neurons to a step input is shown in figure: the first neuron

fires steadily when the input is negative, while it goes silent

when the input is positive, as encoded by the second neuron

which starts firing steadily

y population as:

15(t - tjm) =Gj[O:j ((Y = x) . ej) + Jjias]
= Gj[O:j (x . ej) + Jjias]
= Gj[O:j (L h(t - tn)di . ej) + Jjias]

i,n
= Gj[O:j LWijh(t - tn) + Jjias]

i,n
So, in a fully spiking network with connection weights Wij =
(di . ej), we can decode the output of the Y population to

determine the input values x (i.e., it is computing y = x).
Critically, decoders can also be estimated to compute an

arbitrary function f(x) other than identity, thus permitting a

broad class of computations through transformational decoders

d{(x). All such computations will be feedfoward, however, and

it should be noted that the accuracy of the computation is

NEF/LiF
encoder f(x)

Standard
LlF

NEF
decoder

. �
100 nodes 100 nodes

f(t) •• �.� •• :: ••• 1------•• ---•• :: • •• f----•• ---.. Y origin input e x A e x
input A B output

Fig. 2: Approach: Encoding and decoding processes happen directly on the SpiNNaker chip, through the use of two ad-hoc

populations: the LIFINEF-encoder and the NEF-decoder populations. The former translates values into spike trains for neurons

in the population accordingly to eq. (1), while the latter collects spikes and estimates the output value using the decoders for the

population connected to it, following eq. (2). On the rest of the chip, spikes travel in the neural space (consisting of standard

LIF neurons) where the weights implement a functionf(x) and are calculated starting from equation (4)

dependent on the number of neurons in the two populations

and their neural properties. In particular, mean squared error

is proportional to lIN, where N is the number of neurons in

the neural population [8].

Introduction of neural dynamics allows variables repre­

sented by a neural population to be control theoretic state vari­

ables and hence apply modern control theory [23] methods to

engineer and analyse time dynamics of network models, thus

integrating standard attractor models and complex control [8].

Notably, the post synaptic currents dominate the dynamics of

the neural system, so we can determine a general mapping

between any dynamical system and a recurrently connected

network that accounts for the difference in dynamics between

our PSC model and ideal integration. For the simple case of

an exponential PSC and a linear time-invariant (LTI) system,

recurrent and feedforward weights can be computed from the

input and dynamics matrices of the LTI system.

Specifically, a widely used model for the PSC with a time

constant T is the exponential function [29] in the form h(t) =
e-t/r /T, which has as a Laplace transform h'(s) = 1/(1 +
ST). We can then transform the input and dynamics matrices

(respectively A and B) of LTI systems to neural equivalents,

obtaining

A' =TA + I (3)

B' =TB

where A' and B' are transformation matrices describing the

dynamics in the neural system. These can be included directly

in the recurrent and feed forward connection weights derived

above. For example, the recurrent weights would be Wij =
(diA' . ej) .

More in general weights are the result of the multiplication

of 3 matrices:

(4)

where terms are: the decoding matrix from an input population

f3 which can be written as d[!3, decoding some function F;

the encoding matrix for the target population 0: written as ej;

the transformation matrix Mo:!3 that defines the transformation

between populations. In the case of feed-forward computations

Mo:!3 is the identity matrix and the function is computed by

the transformational decoders d[!3; in the case of recurrent

connections, 0: and f3 index the same population of neurons;

in the case of mono-dimensional representation encoders and

decoders are scalar; in the case of multidimensional represen­

tation d[!3 and ej are vectors. Functions and transformations

are then defined only by weights in the neural space.

The Neural Engineering Framework offers a unified ap­

proach to building complex dynamical systems in the neural

space, using only spiking neuron models, PSC models, and

connection weights. These models can represent arbitrary

functions, while considering biological characteristics (e.g.

tuning curves) as constraints. All parameters are estimated

directly from neural data, or using the representation method

described above. In this sense no parameters need to be tuned,

as they either are calculated using the framework or estimated

from neurobiological data. The NEF has been successfully

used in modelling a wide variety of neural systems including

those involved in sensory processing [11], motor control [20],

and cognitive functions [9] such as decision making [32],

both matching experimental data (neural and behavioral), and

making a variety of novel predictions [33].

III. SPINNAKER SYSTEM

The SpiNNaker System [14] is an asynchronous, multi-chip,

multi-core, massive, programmable parallel system oriented

to the simulation of heterogeneous large-scale models of

spiking neural networks [27]. Each SpiNnaker chip contains 18

ARM968 cores embedded in a programmable, packet based,

network on chip [26], where spikes are encoded as source­

based AER [22] event packets and transmitted through a

Multicast Router. Every core is equipped with a local Tightly­

Coupled Memory (TCM - 32Kb for instruction and 64Kb for

data), while each chip has access to 1 Gb SDRAM shared by

the 18 ARM cores, containing all the post synaptic information

needed locally and eliminating problems of memory sharing

A B OUT

f(t)�::.�::.�::. y
input • • • output

I IN
� ::. f(t) • input

Fig. 3: Structure of the communication channel: the input value

is encoded by population A (green, encoding population),

which translates it into a population spike train. A is connected

to B (standard LIF population) with an all to all connection.

Weights between A and B are set to compute y = x in

the communication channel experiment and y = x2 in the

transformation experiment.

across the system. Each chip can be connected to 6 neighbour

nodes in a toroidal mesh, supporting reconfigurable arbitrary

connectivity through a multicast packet based routing system

and 6 bi-directional asynchronous links [13]. From a compu­

tational and communication point of view each ARM core can

be programmed to simulate in real time up to a 1000 simple

neurons, receiving 1000 connections each and firing at a mean

firing rate of 10 Hz, embedded in a configurable network based

on the Multicast Router. In fact the number of neurons which

can be modelled on a single core depends on factors including

the activity of the neurons, the computational power needed to

solve the neural dynamics equation in real time, the number of

synapses and memory occupancy. Bigger populations are split

across cores if needed, by using a hierarchical representation

based on the Population abstraction [16]. The full system is

designed to contain up to 65,536 chips and more than a million

cores [15].

While not reaching the low power consumption [18] or

speed [28] of dedicated analog hardware, due to its archi­

tecture the SpiNNaker System offers a compromise between

performances of neuromorphic chips [17] and programmable,

standard computing systems [2], within a low power budget

of 1 Watt/SpiNNaker Chip [15]. Moreover it offers a custom

packet switch network based on a Multicast Router [26], which

is easily reconfigurable and less power consuming than a

circuit-switched architecture [24] [5], and a memory system

which is local to every chip, circumventing the challenges

needed on GPUs to access memory [3] and maintain process

coherency [25], while at the same time keeping power con­

sumption lower than such systems. In this sense the SpiNNaker

architecture is ideal for exploratory studies on large scale mod­

els which require programmability and fast reconfigurability

within a tolerable power budget.

IV. INT EGRAT ING THE NEURAL ENGINEERING

FRAMEWORK ON SPINNAKER

The NEF allows representation and computation of values

and functions entirely in the neural space once the values are

encoded/decoded using the framework. Hence it is possible

to build a system that communicates only with spikes, by

inputting and collecting them on a host machine which is

responsible for the encoding and decoding process. This

approach however, while being very efficient for spike/AER

based systems [22], does not scale up seamlessly as the size

or firing rates (and consequently spikes needed to be sent

from/to the system) of the encoding and decoding populations

increase. Moreover the computational cost increases with the

number of neuron: for example 3,000,0000 neurons running

on two Quad Core Intel Xeon E5540 processors with Hyper­

Threading at 2.53GHz take 3 hours to produce 1 second worth

of data; simulating it within a GPU environment leads to a 20x

speedup (6-9 minutes per simulated second).

For this reason we exploit the programmability of the

ARM968 cores constituting the computational heart of the

SpiNNaker system [13] by implementing the encoding and

decoding process directly on the SpiNNaker chip, through the

use of two ad-hoc populations based on the leaky integrate­

and-fire (LIF) neuron: the NEFILlF-encoder and the NEF­

decoder populations. The former translate values into spike

trains for neurons in the population accordingly to principle 1,

while the latter collects spikes and estimates the value using

the decoders for the source population. In other words, the

NEFILlF-encoder population is implementing neurons that

obey to equation (1) where the neural dynamics obey the

standard LIF equation dVldt = I IC-VI RC, while the NEF­

decoder population is decoding values using equation (2). This

kind of neural population is only used when the value repre­

sented needs to be explicitly represented, otherwise decoders

are implicit in the connection weights, since communication

between all other populations on the chip is done using spikes

and standard LIF neurons. Those are weighted using NEF

connection weights computed as described in equation (4). The

approach is summarized in figure 2. Compared to a standard

LIF model it adds a bias current proportional to the encoder

and stimulus values.

Precision in encoders and decoders (and therefore in inter­

connection weights) is crucial to avoid information corruption.

Digital systems have the advantage of being programmable

with a finite precision that can be evaluated. In this work

we use a 32 bit fixed point implementation for neural state

variables and parameters, including encoders and decoders,

and 20 bit precision for the weights.

Spikes are therefore produced and collected only onboard,

by taking advantage of the fast custom interconnect charac­

terizing the SpiNNaker machine. This reduces the bandwidth

and the load needed on a host, by sending and receiving

only values to/from SpiNNaker. This approach tends to avoid

difficulties and bottlenecks in translating and sending/receiving

spikes directly from an host machine or from an FPGA

by porting the encoding/decoding process onto SpiNNaker.

Moreover it offers a "c1osed" spike system, where the interface

communication consists in sending and receiving values for

example from Nengo [34] (the softwarel that implements the

NEF principles), or from a sensor or to a robotic arm while

neural based computation is carried on board.

I available at http://nengo.ca

Ulir

- input
- output

Q!
.2
m >

-2
3.208 time (sec)

(a)
101 1 - - y-x I I I - • spiNNaker I

0.5

0.0

-0.5

10 0.5

4.208

0.0
Input Value

Ie)

� ::J
.8-::J 0 -2

0.5

Ulir

/
-2

input
(b)

10

Fig_ 4: Representation Principle: Communication channel:

weights between A and B are set so that B represents the same

value as A, representing the function Y = X_ The value is

then decoded by population OUT (decoding population)_ The

value represented by A is decoded by decoding population

IN to verify correct encoding. (b) Input value plotted (blue)

against output (black) value using Nengo, showing the linear

relation (c) Precision evaluation of the communication channel

in the range of interest Each value is sampled for 1 second

and activity is averaged and standard deviation is showed.

V. RESULT S

A. Representation: Communication Channel

In order to test the representation of values in spike trains,

we have implemented a communication channel with the

structure illustrated in figure 3_ The communication channel

experiment shows how information can be represented using

the NEF, as to be able to encode/decode information directly

within the SpiNNaker System. This is done by a population

which encodes a scalar value into neural activity and then

decodes it with another population, equipped with represen­

tational decoders able to extract the original value_ Such

encoders/decoders are used to compute the function f(x)=x

in the connection weights between the two populations (see

fig. 2).

Population A comprises 150 LIF-encoder neurons. Popula­

tion B is a standard LIF population comprises 150 neurons_ IN

and OUT are populations of 150 NEF-Decoder neurons each.

Therefore the whole communication channel is then composed

of 450 neurons firing in the 40-100 Hz range. Each Population

lives on a dedicated core within the same chip_ A value X is

encoded by population A, the NEF-LIF encoder population.

Q)
.2 '" >

Ulir

- input

-2 - output
3.515 time (sec) 4.515

(a)

1.4. 1 - - y=x�2 I I - • spiNNaker I

�

1.2

1.0 \

� 0.8
>
o
c. � 0.6
o

0.4

0.2

0.0

,
,

-10

,
,

,
,

,

\
,

,
,

, ,

'f." " /,;r

-0.5

1- - __ t __ - -r '
0.0

Input Value
Ie)

0.5

,
,

,
,

Ulir

-2
input

(b)

,

J'
,

,
,

,
,

,
,

10

Fig. 5: Transformation Principle: Computing the Square

(a) The blue line represents the direct decoding from the input

sent to SpiNNaker and represents the ability of SpiNNaker to

encode and decode input The black line is the decoded result

of the square operation implemented in the weights from A to

B (b) The quadratic relation can also be observed when the

input is plotted against the output within Nengo (c) Precision

evaluation of the square computation in the range of interest

Each value is sampled for I second and activity is averaged

and standard deviation is showed.

This population encodes values in spike trains according to

the tuning curves of its neurons. Spikes travel to population

B through an all to all connection with weights implementing

the communication channel function y=x_ Spike trains are then

passed to the OUT population that converts them back into a

value Y and outputs it to the external world. In particular it

is possible to integrate SpiNNaker as a back-end simulator

in Nengo by communicating with ethernet attached chips.

Results are shown in figure 4 where precision of the encoding

is evaluated and integration with Nengo is shown_ All the

experiments presented run in real time.

B. Transformation: Computing the Square

In order to show computation we implemented the function

y = x2 in the NEF, using the same network structure as

that for the communication channel. Only the decoders of

(and subsequently the connection weights to) population B

are changed, implementing the function to be computed. Such

decoders are called transformational decoders in the sense

that they compute a (feedforward) transformation, as opposed

to the representational decoders used for the communication

channel experiment

input A ----+�--A -----J�-----O

·2

�
,

�
,
0.
0

0

o.

o.

o.

o.

o.

-0.

-0.

-0.

A

time (sec)
8

-

6

4

2
.

. 7
0 -/
2

4

6 - - real integrator I - spiNNaker
8 -0. 0 500

(a)

·1
o

(b)

1000
Time

Ie)

time (sec)

1- inputl
0.4

0.2

'� 0.0

-0.2

-0.4
-

1500 2000

Fig. 6: Dynamics: Neural Integrator (a) Structure of the

integrator network: An input is fed into population A, which

travels through a communication channel to population B.

Population B then computes the integral of the input received

by A by means of recurring connection. (b) Integration in

Nengo (c) Integration of the input value compared to an ideal

integrator.

Results are shown in figure 5: the blue line represents the

direct decoding from the input sent to SpiNNaker. The black

line is the decoded result of the operation implemented in the

weights from A to B. When the input is 0 (leftmost plot)

the output from SpiNNaker is 0 as well (black line). When

input is shifted to 1 both input (blue) and output go to 1.

When input is shifted to -1 the result of squaring stays at 1.

The quadratic relation is particularly evident when the input

is plotted against the output, as done in figure 5(b) and 5(c).

The network consists of 500 neurons as in the Communication

Channel example (to be clear, it is the same network with the

weights between A and B changed so as to compute the square,

by estimating transformational decoders for B).

C. Dynamics: Integrator

In order to show an implementation of neural dynamics

within the NEF we implemented a neural integrator. Such

a mechanism has been proposed as the neuronal basis of

oculomotor control [12] where it is used as a velocity to

position integrator: the input of the system represents the

eye movement velocity and which is integrated to represent

the final eye position. More generally the integrator can be

considered a line attractor in the higher dimensional neural

state space, letting the network maintain a value (representing

1.5

1.0
1.5

0.5
� �

, , � � 1.0 0.0 , , % � 0
-0.5

0.5

0.OL-::-:20�00::--lL-:-30""0"'"0 ----:4""' 00""" 0----:5=-=0-::-:00,---�60"='00�=�
lime (msec)

Fig. 7: Cyclic Attractor: Oscillator response of a neural

oscillator to a perturbation; after the system is 'shocked' it

starts oscillating at its characteristic frequency in Nengo and

SpiNNaker. Only one dimension of the oscillating population

is represented for clarity's sake.

for instance the eye position) through self-sustained activity

in an abstract space over a period of time. The integrator has

also been proposed to be the basis of working memory in

neurons [30].

We can use the third principle as described in section II

to translate the dynamics of an integrator defined by standard

control theory input and dynamics matrices [10]. Using equa­

tions 3, by setting A = 0 and B = 1 (as in standard control

theory A = 0 and B = 1 correspond to a linear attractor)

we obtain A' = 1 and B' = T, where T is the synaptic time

constant. We can then compute the neural connection weights

using eq. 4. The integrator structure is shown in figure 6:

an input is fed into population A, and it travels through a

communication channel to population B. Population B then

computes the integral of the input received by A by means

of recurrent connections. The Input population comprises 150

NEF-encoder neurons firing at 80-100 Hz. The integrator is

composed of 200 neurons fully recurrently connected (40000

connections) firing at 80-150 Hz. Weights for this connections

are computed using the encoders and decoders as described

above. For simplicity, the weights are imported directly from

Nengo and loaded on board. Population A is an encoding

population as described in the section above.

Results from a simulation run, sending non-encoded input

values to SpiNNaker and getting decoded output back is

displayed in figure 6: population B integrates the positive pulse

represented by input population A and holds the integrated

value. Then a negative pulse input is received and integrated.

Between the two pulses the integrator is able to hold the value

with little drifting. The difference in the response of the neural

integrator to the ideal one is due to the fact that the neural

integrator has a PSC filter applied.

1.sl-------�--------�-------�--------�--___;::====::;_]
1.0
0.5

-1.0

� �
o �

.5 �_+-+-_l -l

-2
'-1 -----,------"

-1.s0l-=== =-------:------------::1'="0 -----------::1'="s-----------::2'="0 ----------J25-3
lime (sec)

Fig. 8: Non-linear system: Frequency Controlled Oscillator. The oscillator has its orbit period (frequency of the oscillation)

controlled by another input neural population. Only one dimension of the oscillating population is represented.

D. Cyclic attractors: Oscillator

All the models presented so far use a scalar representation

for encoders, decoders and transformation. It is possible to

extend the representation to vectors in an n-dimensional space

by choosing neurons with preferred direction vector in the

space, and hence employ n-dimensional encoders and decoders

and transformational matrices for dynamical systems. It is then

possible to evaluate neurobiological evidence to choose the ap­

propriate kind of representation. By doing this it is possible to

build another class of attractors: cyclic attractors. Rather than

stabilising on a fixed point, line or plane, cyclic attractors settle

on a periodic pattern of activity being dynamically stable.

Such attractors can be used to explain repetitive behaviours

like walking, flying, chewing or swimming; in particular a

(more complex) cyclic attractor built accordingly to the NEF

principles has been used as the basis to model swimming

behaviour in the lamprey eel [10]. A cyclic attractor can be

defined by the control equation i; = Ax + Bu where

A = [�w �]
implementing a cyclic attractor with an harmonic oscillator.

The results are shown in figure 7: after the system is 'shocked'

it starts oscillating at its characteristic frequency w.
Using the framework it is possible to manipulate the param­

eters that control attractor properties by modifying the matrix

Ma.{3 using a control signal represented by another population:

if the signal is a function of time the system described is

linear time-varying system; if A is an input then the system

becomes non linear. In this example we use a population to

control the frequency of the oscillator, therefore controlling

the speed of the cyclic attractor (eg. controlling the swimming

speed in the zebra fish [21]) by increasing the dimensionality

of the space encoded by the population to accommodate for a

frequency control input. Results are shown in figure 8. In both

experiments inputs and oscillating populations are composed

by 150 neurons each firing in the 80-120 Hz range.

VI. DISCUSSION

The work presented in this paper constitutes the basis for

building real-time, large scale neural systems using the Neural

Engineering Framework on SpiNNaker. The programmability

of the ARM cores makes the integration of SpiNNaker with

the existing tools and software possible in a seamless way.

It needs to be considered that the advantages of running

large-scale models in real-time are strongly reduced if such

models take a long time to be compiled and loaded on a

computational back-end. In fact in the experiments have shown

that the most computationally expensive task is to compute

the weight connection matrices (described by eq. 4) and map

them on a parallel system such as SpiNNaker. However it

is possible to exploit the possibility to program SpiNNaker

cores to parallelize this job and run it on board. Once the

neural populations are mapped to specific cores, connections

can be generated by sending them just encoders, decoders

and transformational matrices, having each core doing the

matrix multiplications, self-configuring and indexing its own

local connections. We have shown how to map multidimen­

sional encoders and decoders in the weight space so as to

represent transformations in the neural space; it is however

possible to implement n-dimensional NEFILIF-encoder and

NEF-decoder populations. Such high dimensional inputs can

be used to manipulate complex, symbol-like structures such as

language [31]. Such high dimensional spaces can be mapped to

large scale populations of neurons so as to represent a large

variety of symbols, having each neuron mapping a fraction

of the high dimensional space. Running such models in real

time makes possible to test them and embed them in real

world, interactive scenarios, like decision making [33] or other

cognitive functions as working memory, recognition and fluid

reasoning [9].

VII. CONCLUSIONS

We have successfully constructed neural circuits using the

Neural Engineering Framework on the SpiNNaker hardware.

We were able to encode and decode values using the NEF

directly on board and implemented feed forward and recurrent

dynamic computations. This approach takes advantages of the

programmability of the ARM968 cores inside a SpiNNaker

chip, letting it encode and decode spikes onboard. This re­

duces the bandwidth and the computational load needed on a

host machine, by sending and receiving only values to/from

SpiNNaker and using it as a fast, scalable, configurable and

power efficient computational back-end. This approach offers

advantages when firing rates and dimension of input and

output neurons increase, letting the system scale up seamlessly

and be integrated in interactive real-time systems. It also

presents the basis for building and testing large-scale neural

models built with the Neural Engineering Framework on the

SpiNNaker architecture.

ACKNOWLEDGMENTS

The work presented in this paper is largely based on

experiments that were carried out at the 2011 Workshop on

Neuromorphic Engineering in Telluride2. The authors would

like to thank the organizers and the sponsors.

The SpiNNaker project is supported by the Engineer­

ing and Physical Science Research Council (EPSRC), grant

EP/4015740/1, and also by ARM and Silistix. We appreciate

the support of these sponsors and industrial partners.

REFERENCES

[1] D.J. Amit. Modeling brain function: The world of attractor neural
networks. Cambridge Univ Pr, 1992.

[2] Rajagopal Ananthanarayanan, Steven K Esser, Horst D Simon, and
Dharmendra S Modha. The cat is out of the bag: cortical simulations
with 109 neurons, 1013 synapses. In Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis, SC
'09, pages 63:1--63:12, New York, NY, USA, 2009. ACM.

[3] M.A. Bhuiyan, Y.K. Pallipuram, and M.e. Smith. Acceleration of
spiking neural networks in emerging multi-core and GPU architectures.
In Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on, pages 1-8. IEEE,
2010.

[4] Tom Binzegger, Rodney J Douglas, and Kevan A C Martin. A
quantitative map of the circuit of cat primary visual cortex. J Neurosci,
24(39):8441-8453, September 2004.

[5] A. Cassidy, A.G. Andreou, and J. Georgiou. Design of a one million
neuron single FPGA neuromorphic system for real-time multimodal
scene analysis. In Information Sciences and Systems (CISS), 2011 45th
Annual Conference on, pages 1-6. IEEE, 2011.

[6] S Celebrini, S Thorpe, Y Trotter, and M Imbert. Dynamics of orientation
coding in area VI of the awake primate. Vis Neurosci, 10(5):811-825,
1993.

[7] S Dehaene, M Kerszberg, and J P Changeux. A neuronal model
of a global workspace in effortful cognitive tasks. Proceedings of
the National Academy of Sciences of the United States of America,
95(24):14529-14534, 1998.

[8] C Eliasmith. A unified approach to building and controlling spiking
attractor networks. Neural computation, 7(6):1276--1314, 2005.

[9] C Eliasmith. How to build a brain: A neural architecture for biological
cognition. Oxford University (in press), 2012.

[10] C Eliasmith and C H Anderson. Neural engineering: Computation,
representation, and dynamics in neurobiological systems. MIT Press,
Cambridge, MA, 2003.

[11] Chris Eliasmith, M Brandon Westover, and Charles H Anderson. A
general framework for neurobiological modeling: an application to the
vestibular system. Neurocomputing, pages 1071-1076, 2002.

[12] K. Fukushima, CR Kaneko, A.F. Fuchs, and Others. The neuronal sub­
strate of integration in the oculomotor system. Progress in neurobiology,
39(6):609, 1992.

[13] S B Furber, S Temple, and A D Brown. High-Performance Computing
for Systems of Spiking Neurons. The AISB06 workshop on GC5:
Architecture of Brain and Mind, 2006.

[14] S B Furber, S Temple, and A D Brown. On-chip and Inter-Chip
Networks for Modelling Large-Scale Neural Systems, 2006.

2https:llneuromorphs.netlnmlwikilngll/results/Spinnaker

[15] Stephen Furber and Andrew Brown. Biologically-Inspired Massively­
Parallel Architectures - Computing Beyond a Million Processors. In
Proceedings of the 2009 Ninth International Conference on Application
of Concurrency to System Design, ACSD '09, pages 3-12, Washington,
DC, USA, 2009. IEEE Computer Society.

[16] F. Galluppi, S. Davies, A. D. Rast, T. Sharp, L.A. Plana, and S. Furber.
A Hierachical Configuration System for a Massively Parallel Neural
Hardware Platform. In Proceedings of the 9th ACM international
conference on Computing frontiers. ACM, 2012.

[17] K M Hynna and K Boahen. Neuronal Ion-Channel Dynamics in Silicon.
In Proc. 2006 Int'l Symp. Circuits and Systems (ISCAS 2006), pages
3614-3617, 2006.

[18] G Indiveri, E Chicca, and R Douglas. A V LSI array of low-power
spiking neurons and bistable synapses with spiketiming dependent
plasticity. IEEE Transactions on Neural Networks, 17:211-221,2006.

[19] E M Izhikevich and G M Edelman. Large-scale model of mammalian
thalamocortical systems. Proc. National Academy of Sciences of the
USA, 105(9):3593-3598, March 2008.

[20] Dethier J, Gilja V, Nuyujukian P, Elassaad S, Shenoy KV, and Boahen K.
Spiking neural network decoder for brain-machine interfaces. In Proc.
of the 5th International IEEE EMBS Conference on Neural Engineering,
Cancun, Mexico, pages 396-399, 2011.

[21] P Dwight Kuo and Chris Eliasmith. Integrating behavioral and neural
data in a model of zebrafish network interaction. Biological Cybernetics,
93(3):178-187, 2005.

[22] J Lazzaro, J Wawrzynek, M Mahowald, M Silviotti, and D Gillespie. Sil­
icon Auditory Processors as Computer Peripherals. IEEE Transactions
on Neural Networks, 4(3):523-528, May 1993.

[23] F.L. Lewis and EW Kamen. Applied optimal control and estimation.
IEEE Transactions on Automatic Control, 39(8):1773-1773, 1994.

[24] L P Maguire, T M McGinnity, B Glackin, A Ghani, A Belatreche, and
J Harkin. Challenges for Large-Scale Implementations of Spiking Neural
Networks on FPGAs. Neurocomputing, 71, December 2007.

[25] J M Nageswaran, N Dutt, J L Krichmar, and A Nicolau. A configurable
simulation environment for the efficient simulation of large-scale spiking
neural networks on graphics processors. Neural Networks, 22(5-6),
2007.

[26] L Plana, S Furber, S Temple, M Khan, Y Shi, J Wu, and S Yang.
A GALS Infrastructure for a Massively Parallel Multiprocessor. IEEE
Design & Test of Computers, 24(5):454-463, 2007.

[27] Alexander Rast, Francesco Galluppi, Sergio Davies, Luis Plana,
Cameron Patterson, Thomas Sharp, David Lester, and Steve Furber.
Concurrent heterogeneous neural model simulation on real-time neu­
romimetic hardware. Neural Networks, (O):In Press, 2011.

[28] Johannes Schemmel, Daniel Briiderle, Andreas GrUbl, Matthias Hock,
Karlheinz Meier, and Sebastian Millner. A wafer-scale neuromorphic
hardware system for large-scale neural modeling. In Proc. 2010 Int'l
Symp. Circuits and Systems (ISCAS 2010), pages 1947-1950, 2010.

[29] Erik De Schutter. Computational Modeling Methods for Neuroscientists.
The MIT Press, 1st edition, 2009.

[30] Ray Singh and Chris Eliasmith. Higher-dimensional neurons explain the
tuning and dynamics of working memory cells. Journal of Neuroscience,
26(14):3667-3678, 2006.

[31] TC Stewart, T Bekolay, and C Eliasmith. Neural representations of
compositional structures: representing and manipulating vector spaces
with spiking neurons. Connection Science, 23(2):145-153, 2011.

[32] TC Stewart, C Eliasmith, and L Carlson. Neural Cognitive Modelling: A
Biologically Constrained Spiking Neuron model of the Tower of Hanoi
Task. In 33rd Annual Conference of the Cognitive Science Society,
Austin, TX, USA, 2011.

[33] Terrence C Stewart and Chris Eliasmith. Neural Symbolic Decision
Making: A Scalable and Realistic Foundation for Cognitive Architec­
tures. In BICA'lO, pages 147-152,2010.

[34] Terrence C Stewart, Bryan Tripp, and Chris Eliasmith. Python scripting
in the Nengo simulator. Frontiers in Neuroinformatics, 3(0), 2009.

[35] AM Thomson and C Lamy. Functional maps of neocortical local
circuitry. Frontiers in neuroscience, 2007.

[36] J H B Wijekoon and P Dudek. Integrated Circuit Implementation of a
Cortical Neuron. In Proc. 2008 Int'l Symp. Circuits and Systems (ISCAS
2008), pages 1784-1787,2008.

[37] T.J. Wills, C. Lever, F. Cacucci, N. Burgess, and J. O'Keefe. Attractor
dynamics in the hippocampal representation of the local environment.
Science, 308(5723):873, 2005.

