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Abstract- Simulation of large-scale networks of spiking neu
rons has become appealing for understanding the computational 
principles of the nervous system by producing models based on 
biological evidence. In particular, networks that can assume a 
variety of (dynamically) stable states have been proposed as the 
basis for different behavioural and cognitive functions. 

This work focuses on implementing the Neural Engineering 
Framework (NEF), a formal method for mapping attractor net
works and control-theoretic algorithms to biologically plausible 
networks of spiking neurons, on the SpiNNaker system, a massive 
programmable parallel architecture oriented to the simulation 
of networks of spiking neurons. We describe how to encode and 
decode analog values to patterns of neural spikes directly on 
chip. These methods take advantage of the full programmability 
of the ARM968 cores constituting the processing base of a 
SpiNNaker node, and exploit the fast Network-on-chip for spike 
communication. 

In this paper we focus on the fundamentals of representing, 
transforming and implementing dynamics in spiking networks. 
We show real time simulation results demonstrating the NEF 
principles and discuss advantages, precision and scalability. More 
generally, the present approach can be used to state and test 
hypotheses with large-scale spiking neural network models for a 
range of different cognitive functions and behaviours. 

I. INTRODUCTION 

Construction of large-scale spiking neural models is pos

sible thanks to the emergence of unified approaches that are 

able to scale up seamlessly. These models can be simulated 

taking advantage of recent developments in computational 

infrastructure that can equally be scaled up. Some models 

aim to find emerging functions from the structural data known 

from biology. For example, quantitative descriptions of cortex 

based on anatomical data [4] can be used to model sys

tems that naturally scale up [19], due to the regularity of 

the laminar organization of the thalamo-cortical system [35]. 

Other approaches can be considered more functional, where 

neural dynamics and quantities act as biological constraints 

in modelling specific cognitive functions [7]. Some functions 

can be modelled using attractor networks [1], networks that 

can represent information by settling to a (dynamically) stable 

state with their self-sustained, persistent activity. For example 

functions like memory can be associated to brain areas that 

are believed to use attractor representation such as the hip

pocampus [37]. 

Simulating large scale networks of biologically plausible 

neurons is a challenging task which require scalable compu-
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tational and communication resources. Therefore simulations 

usually take place on supercomputers [2], general purpose 

hardware as FPGAs [24] or dedicated neuromorphic hard

ware [28] [36]; every approach has different scalability, pro

grammability, precision and power consumption characteris

tics. 

In this context we describe how to map the principles 

of the Neural Engineering Framework (NEF) [10], a unified 

approach for implementing complex neuro-dynamical systems 

and mapping control-theoretic algorithms with the neural 

connections between a highly heterogeneous population of 

spiking neurons, to the SpiNNaker System [13], a massively 

parallel programmable architecture oriented to the simulation 

of large scale models of spiking neural networks. 

The paper describes the approach taken to encode and 

decode values directly on-chip, taking advantage of the pro

grammability of the SpiNNaker system and exploiting the fast 

on-chip spike-based interconnect for communication between 

neural populations. 

We show how a variety of networks can be built using 

encoding/decoding methods. In short, the approach presents 

the basis for testing large-scale neural models built with the 

NEF integrating SpiNNaker as the computational back-end in 

the existing framework and tools. 

The rest of the paper is structured as follows: we introduce 

the Neural Engineering Framework and the SpiNNaker System 

in the first two sections. We then present the approach used 

to port the NEF on SpiNNaker, and present results obtained 

with the approach in sections IV and V respectively. Finally, 

discussion about how to expand the work and conclusions are 

drawn in the last two sections. 

II. NEURAL ENGINEERING FRAMEWORK 

The Neural Engineering Framework [10] describes how bi

ologically relevant variables can be encoded and processed in 

the dynamic neural activity of recurrently connected networks. 

This approach can be used to introduce complex control theo

retic models into spiking neural networks, including standard 

attractor network models [8]. The NEF is captured by three 

principles: 

1) Representation in neurons is defined by the combi

nation of nonlinear encoding (exemplified by neuron 

tuning curves) and weighted linear decoding. 



2) Transformations of neural representations are func

tions of variables that are represented by neural pop

ulations. Transformations are determined using an al

ternately weighted linear decoding which describes the 

transformation. 

3) Neural dynamics are characterized by considering neu

ral representations as control theoretic state variables. 

Thus, the dynamics of neurobiological systems can be 

analysed using control theory. 

Nonlinear encoding is obtained by translating an analog value 

to a spike train for each neuron i in the encoding population 

as follows: 

(1) 

where the spiking activity 15(t-tin) is given by Gi, a nonlinear 

function describing the neural model, a gain factor O:i (which 

in the scalar case is either 1 or -1), the value x to be encoded, 

the encoder e and a bias current Jfias. Encoding can be viewed 

as capturing the characteristic response (tuning curve) of a 

neuron to a specific stimulus space, demonstrated, for example, 

by tuning curves found in the visual system for orientation [6]. 

Tuning curves express the relation between the value of the 

stimulus and the spike response of a neuron, according to its 

preference (tuning) to the stimulus value. 

An example of encoding is illustrated in fig. 1, which depicts 

the response of two example neurons out of a large population 

to an input stimulus x: the first neuron (blue tuning curve on 

the left) responds to negative values of x, by increasing its 

firing rate as the input tends to -1; the second neuron (green 

tuning curve on the right) responds to positive values of the 

input x instead. The response of the two neurons to a step 

input is shown in figure: the first neuron fires steadily when 

the input is negative, while it goes silent when the input is 

positive, as encoded by the second neuron which starts firing 

steadily. The original stimulus vector can be estimated by 

using decoding vectors d which can be found by a least square 

method [10], and coupled with a simple model of the post

synaptic current h(t) (a decaying exponential). Together, these 

give the following decoding scheme: 

(2) 

i,n 

where h(t-tn) is the convolution of the original spike train 

with the post-synaptic current (PSC) [29]. 

Encoding and decoding together define the neural popula

tion code. Conveniently, we can use encoding and decoding 

to compute neural connection weights. Specifically, we can 

calculate connection weights knowing the decoders for the 

source population and the encoders of the target population. 

Suppose we want to compute the function y = x, and we 

define representations for x and y as above. We can then 

determine connection weights to compute this function in the 

� ����I neuron 1 /1neuron21 
� 150 

go 100 

� 50 

.P
1
� .0
:------""'

0
-::.S--- ---::

0
'"'
.0
=---....L...

0
="

.
=-S ------='

1.0 

Input Value (a) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Time (msee) (b) ro 

:g l.°arm : 1 

� 0.8 

i i ::� ","ro"'1 
::;: O·S.o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Time (msee) (e) 
m r-�--�--r--'--�-�--�-� 

l i i i[ , _ : ,,"ro02 I : : : . 
::;: O·S.O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Time (msee) (d) 

Fig. 1: (a) Two example neurons out of a heterogenous 

encoding population to an input stimulus x: the first neuron 

(blue tuning curve) responds to negative values of x, by 

increasing its firing rate as the input tends to -1; the second 

neuron (green tuning curve) responds to positive values of x 

by increasing its firing rate as the input tends to + 1 (b) input 

stimulation (c, d) The sub-threshold voltage response of the 

two neurons to a step input is shown in figure: the first neuron 

fires steadily when the input is negative, while it goes silent 

when the input is positive, as encoded by the second neuron 

which starts firing steadily 

y population as: 

15(t - tjm) =Gj[O:j ((Y = x) . ej) + Jjias] 
= Gj[O:j (x . ej) + Jjias] 
= Gj[O:j (L h(t - tn)di . ej) + Jjias] 

i,n 
= Gj[O:j LWijh(t - tn) + Jjias] 

i,n 
So, in a fully spiking network with connection weights Wij = 
(di . ej), we can decode the output of the Y population to 

determine the input values x (i.e., it is computing y = x). 
Critically, decoders can also be estimated to compute an 

arbitrary function f(x) other than identity, thus permitting a 

broad class of computations through transformational decoders 

d{(x). All such computations will be feedfoward, however, and 

it should be noted that the accuracy of the computation is 
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Fig. 2: Approach: Encoding and decoding processes happen directly on the SpiNNaker chip, through the use of two ad-hoc 

populations: the LIFINEF-encoder and the NEF-decoder populations. The former translates values into spike trains for neurons 

in the population accordingly to eq. (1), while the latter collects spikes and estimates the output value using the decoders for the 

population connected to it, following eq. (2). On the rest of the chip, spikes travel in the neural space (consisting of standard 

LIF neurons) where the weights implement a functionf(x) and are calculated starting from equation (4) 

dependent on the number of neurons in the two populations 

and their neural properties. In particular, mean squared error 

is proportional to lIN, where N is the number of neurons in 

the neural population [8]. 

Introduction of neural dynamics allows variables repre

sented by a neural population to be control theoretic state vari

ables and hence apply modern control theory [23] methods to 

engineer and analyse time dynamics of network models, thus 

integrating standard attractor models and complex control [8]. 

Notably, the post synaptic currents dominate the dynamics of 

the neural system, so we can determine a general mapping 

between any dynamical system and a recurrently connected 

network that accounts for the difference in dynamics between 

our PSC model and ideal integration. For the simple case of 

an exponential PSC and a linear time-invariant (LTI) system, 

recurrent and feedforward weights can be computed from the 

input and dynamics matrices of the LTI system. 

Specifically, a widely used model for the PSC with a time 

constant T is the exponential function [29] in the form h(t) = 
e-t/r /T, which has as a Laplace transform h'(s) = 1/(1 + 
ST). We can then transform the input and dynamics matrices 

(respectively A and B) of LTI systems to neural equivalents, 

obtaining 

A' =TA + I (3) 

B' =TB 

where A' and B' are transformation matrices describing the 

dynamics in the neural system. These can be included directly 

in the recurrent and feed forward connection weights derived 

above. For example, the recurrent weights would be Wij = 
(diA' . ej) . 

More in general weights are the result of the multiplication 

of 3 matrices: 

(4) 

where terms are: the decoding matrix from an input population 

f3 which can be written as d[!3, decoding some function F; 

the encoding matrix for the target population 0: written as ej; 

the transformation matrix Mo:!3 that defines the transformation 

between populations. In the case of feed-forward computations 

Mo:!3 is the identity matrix and the function is computed by 

the transformational decoders d[!3; in the case of recurrent 

connections, 0: and f3 index the same population of neurons; 

in the case of mono-dimensional representation encoders and 

decoders are scalar; in the case of multidimensional represen

tation d[!3 and ej are vectors. Functions and transformations 

are then defined only by weights in the neural space. 

The Neural Engineering Framework offers a unified ap

proach to building complex dynamical systems in the neural 

space, using only spiking neuron models, PSC models, and 

connection weights. These models can represent arbitrary 

functions, while considering biological characteristics (e.g. 

tuning curves) as constraints. All parameters are estimated 

directly from neural data, or using the representation method 

described above. In this sense no parameters need to be tuned, 

as they either are calculated using the framework or estimated 

from neurobiological data. The NEF has been successfully 

used in modelling a wide variety of neural systems including 

those involved in sensory processing [11], motor control [20], 

and cognitive functions [9] such as decision making [32], 

both matching experimental data (neural and behavioral), and 

making a variety of novel predictions [33]. 

III. SPINNAKER SYSTEM 

The SpiNNaker System [14] is an asynchronous, multi-chip, 

multi-core, massive, programmable parallel system oriented 

to the simulation of heterogeneous large-scale models of 

spiking neural networks [27]. Each SpiNnaker chip contains 18 

ARM968 cores embedded in a programmable, packet based, 

network on chip [26], where spikes are encoded as source

based AER [22] event packets and transmitted through a 

Multicast Router. Every core is equipped with a local Tightly

Coupled Memory (TCM - 32Kb for instruction and 64Kb for 

data), while each chip has access to 1 Gb SDRAM shared by 

the 18 ARM cores, containing all the post synaptic information 

needed locally and eliminating problems of memory sharing 
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Fig. 3: Structure of the communication channel: the input value 

is encoded by population A (green, encoding population), 

which translates it into a population spike train. A is connected 

to B (standard LIF population) with an all to all connection. 

Weights between A and B are set to compute y = x in 

the communication channel experiment and y = x2 in the 

transformation experiment. 

across the system. Each chip can be connected to 6 neighbour 

nodes in a toroidal mesh, supporting reconfigurable arbitrary 

connectivity through a multicast packet based routing system 

and 6 bi-directional asynchronous links [13]. From a compu

tational and communication point of view each ARM core can 

be programmed to simulate in real time up to a 1000 simple 

neurons, receiving 1000 connections each and firing at a mean 

firing rate of 10 Hz, embedded in a configurable network based 

on the Multicast Router. In fact the number of neurons which 

can be modelled on a single core depends on factors including 

the activity of the neurons, the computational power needed to 

solve the neural dynamics equation in real time, the number of 

synapses and memory occupancy. Bigger populations are split 

across cores if needed, by using a hierarchical representation 

based on the Population abstraction [16]. The full system is 

designed to contain up to 65,536 chips and more than a million 

cores [15]. 

While not reaching the low power consumption [18] or 

speed [28] of dedicated analog hardware, due to its archi

tecture the SpiNNaker System offers a compromise between 

performances of neuromorphic chips [17] and programmable, 

standard computing systems [2], within a low power budget 

of 1 Watt/SpiNNaker Chip [15]. Moreover it offers a custom 

packet switch network based on a Multicast Router [26], which 

is easily reconfigurable and less power consuming than a 

circuit-switched architecture [24] [5], and a memory system 

which is local to every chip, circumventing the challenges 

needed on GPUs to access memory [3] and maintain process 

coherency [25], while at the same time keeping power con

sumption lower than such systems. In this sense the SpiNNaker 

architecture is ideal for exploratory studies on large scale mod

els which require programmability and fast reconfigurability 

within a tolerable power budget. 

IV. INT EGRAT ING THE NEURAL ENGINEERING 

FRAMEWORK ON SPINNAKER 

The NEF allows representation and computation of values 

and functions entirely in the neural space once the values are 

encoded/decoded using the framework. Hence it is possible 

to build a system that communicates only with spikes, by 

inputting and collecting them on a host machine which is 

responsible for the encoding and decoding process. This 

approach however, while being very efficient for spike/AER 

based systems [22], does not scale up seamlessly as the size 

or firing rates (and consequently spikes needed to be sent 

from/to the system) of the encoding and decoding populations 

increase. Moreover the computational cost increases with the 

number of neuron: for example 3,000,0000 neurons running 

on two Quad Core Intel Xeon E5540 processors with Hyper

Threading at 2.53GHz take 3 hours to produce 1 second worth 

of data; simulating it within a GPU environment leads to a 20x 

speedup (6-9 minutes per simulated second). 

For this reason we exploit the programmability of the 

ARM968 cores constituting the computational heart of the 

SpiNNaker system [13] by implementing the encoding and 

decoding process directly on the SpiNNaker chip, through the 

use of two ad-hoc populations based on the leaky integrate

and-fire (LIF) neuron: the NEFILlF-encoder and the NEF

decoder populations. The former translate values into spike 

trains for neurons in the population accordingly to principle 1, 

while the latter collects spikes and estimates the value using 

the decoders for the source population. In other words, the 

NEFILlF-encoder population is implementing neurons that 

obey to equation (1) where the neural dynamics obey the 

standard LIF equation dVldt = I IC-VI RC, while the NEF

decoder population is decoding values using equation (2). This 

kind of neural population is only used when the value repre

sented needs to be explicitly represented, otherwise decoders 

are implicit in the connection weights, since communication 

between all other populations on the chip is done using spikes 

and standard LIF neurons. Those are weighted using NEF 

connection weights computed as described in equation (4). The 

approach is summarized in figure 2. Compared to a standard 

LIF model it adds a bias current proportional to the encoder 

and stimulus values. 

Precision in encoders and decoders (and therefore in inter

connection weights) is crucial to avoid information corruption. 

Digital systems have the advantage of being programmable 

with a finite precision that can be evaluated. In this work 

we use a 32 bit fixed point implementation for neural state 

variables and parameters, including encoders and decoders, 

and 20 bit precision for the weights. 

Spikes are therefore produced and collected only onboard, 

by taking advantage of the fast custom interconnect charac

terizing the SpiNNaker machine. This reduces the bandwidth 

and the load needed on a host, by sending and receiving 

only values to/from SpiNNaker. This approach tends to avoid 

difficulties and bottlenecks in translating and sending/receiving 

spikes directly from an host machine or from an FPGA 

by porting the encoding/decoding process onto SpiNNaker. 

Moreover it offers a "c1osed" spike system, where the interface 

communication consists in sending and receiving values for 

example from Nengo [34] (the softwarel that implements the 

NEF principles), or from a sensor or to a robotic arm while 

neural based computation is carried on board. 

I available at http://nengo.ca 
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Fig_ 4: Representation Principle: Communication channel: 

weights between A and B are set so that B represents the same 

value as A, representing the function Y = X_ The value is 

then decoded by population OUT (decoding population)_ The 

value represented by A is decoded by decoding population 

IN to verify correct encoding. (b) Input value plotted (blue) 

against output (black) value using Nengo, showing the linear 

relation (c) Precision evaluation of the communication channel 

in the range of interest Each value is sampled for 1 second 

and activity is averaged and standard deviation is showed. 

V. RESULT S 

A. Representation: Communication Channel 

In order to test the representation of values in spike trains, 

we have implemented a communication channel with the 

structure illustrated in figure 3_ The communication channel 

experiment shows how information can be represented using 

the NEF, as to be able to encode/decode information directly 

within the SpiNNaker System. This is done by a population 

which encodes a scalar value into neural activity and then 

decodes it with another population, equipped with represen

tational decoders able to extract the original value_ Such 

encoders/decoders are used to compute the function f(x)=x 

in the connection weights between the two populations (see 

fig. 2). 

Population A comprises 150 LIF-encoder neurons. Popula

tion B is a standard LIF population comprises 150 neurons_ IN 

and OUT are populations of 150 NEF-Decoder neurons each. 

Therefore the whole communication channel is then composed 

of 450 neurons firing in the 40-100 Hz range. Each Population 

lives on a dedicated core within the same chip_ A value X is 

encoded by population A, the NEF-LIF encoder population. 
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Fig. 5: Transformation Principle: Computing the Square 

(a) The blue line represents the direct decoding from the input 

sent to SpiNNaker and represents the ability of SpiNNaker to 

encode and decode input The black line is the decoded result 

of the square operation implemented in the weights from A to 

B (b) The quadratic relation can also be observed when the 

input is plotted against the output within Nengo (c) Precision 

evaluation of the square computation in the range of interest 

Each value is sampled for I second and activity is averaged 

and standard deviation is showed. 

This population encodes values in spike trains according to 

the tuning curves of its neurons. Spikes travel to population 

B through an all to all connection with weights implementing 

the communication channel function y=x_ Spike trains are then 

passed to the OUT population that converts them back into a 

value Y and outputs it to the external world. In particular it 

is possible to integrate SpiNNaker as a back-end simulator 

in Nengo by communicating with ethernet attached chips. 

Results are shown in figure 4 where precision of the encoding 

is evaluated and integration with Nengo is shown_ All the 

experiments presented run in real time. 

B. Transformation: Computing the Square 

In order to show computation we implemented the function 

y = x2 in the NEF, using the same network structure as 

that for the communication channel. Only the decoders of 

(and subsequently the connection weights to) population B 

are changed, implementing the function to be computed. Such 

decoders are called transformational decoders in the sense 

that they compute a (feedforward) transformation, as opposed 

to the representational decoders used for the communication 

channel experiment 
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Fig. 6: Dynamics: Neural Integrator (a) Structure of the 

integrator network: An input is fed into population A, which 

travels through a communication channel to population B. 

Population B then computes the integral of the input received 

by A by means of recurring connection. (b) Integration in 

Nengo (c) Integration of the input value compared to an ideal 

integrator. 

Results are shown in figure 5: the blue line represents the 

direct decoding from the input sent to SpiNNaker. The black 

line is the decoded result of the operation implemented in the 

weights from A to B. When the input is 0 (leftmost plot) 

the output from SpiNNaker is 0 as well (black line). When 

input is shifted to 1 both input (blue) and output go to 1. 

When input is shifted to -1 the result of squaring stays at 1. 

The quadratic relation is particularly evident when the input 

is plotted against the output, as done in figure 5(b) and 5(c). 

The network consists of 500 neurons as in the Communication 

Channel example (to be clear, it is the same network with the 

weights between A and B changed so as to compute the square, 

by estimating transformational decoders for B). 

C. Dynamics: Integrator 

In order to show an implementation of neural dynamics 

within the NEF we implemented a neural integrator. Such 

a mechanism has been proposed as the neuronal basis of 

oculomotor control [12] where it is used as a velocity to 

position integrator: the input of the system represents the 

eye movement velocity and which is integrated to represent 

the final eye position. More generally the integrator can be 

considered a line attractor in the higher dimensional neural 

state space, letting the network maintain a value (representing 
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Fig. 7: Cyclic Attractor: Oscillator response of a neural 

oscillator to a perturbation; after the system is 'shocked' it 

starts oscillating at its characteristic frequency in Nengo and 

SpiNNaker. Only one dimension of the oscillating population 

is represented for clarity's sake. 

for instance the eye position) through self-sustained activity 

in an abstract space over a period of time. The integrator has 

also been proposed to be the basis of working memory in 

neurons [30]. 

We can use the third principle as described in section II 

to translate the dynamics of an integrator defined by standard 

control theory input and dynamics matrices [10]. Using equa

tions 3, by setting A = 0 and B = 1 (as in standard control 

theory A = 0 and B = 1 correspond to a linear attractor) 

we obtain A' = 1 and B' = T, where T is the synaptic time 

constant. We can then compute the neural connection weights 

using eq. 4. The integrator structure is shown in figure 6: 

an input is fed into population A, and it travels through a 

communication channel to population B. Population B then 

computes the integral of the input received by A by means 

of recurrent connections. The Input population comprises 150 

NEF-encoder neurons firing at 80-100 Hz. The integrator is 

composed of 200 neurons fully recurrently connected (40000 

connections) firing at 80-150 Hz. Weights for this connections 

are computed using the encoders and decoders as described 

above. For simplicity, the weights are imported directly from 

Nengo and loaded on board. Population A is an encoding 

population as described in the section above. 

Results from a simulation run, sending non-encoded input 

values to SpiNNaker and getting decoded output back is 

displayed in figure 6: population B integrates the positive pulse 

represented by input population A and holds the integrated 

value. Then a negative pulse input is received and integrated. 

Between the two pulses the integrator is able to hold the value 

with little drifting. The difference in the response of the neural 

integrator to the ideal one is due to the fact that the neural 

integrator has a PSC filter applied. 
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D. Cyclic attractors: Oscillator 

All the models presented so far use a scalar representation 

for encoders, decoders and transformation. It is possible to 

extend the representation to vectors in an n-dimensional space 

by choosing neurons with preferred direction vector in the 

space, and hence employ n-dimensional encoders and decoders 

and transformational matrices for dynamical systems. It is then 

possible to evaluate neurobiological evidence to choose the ap

propriate kind of representation. By doing this it is possible to 

build another class of attractors: cyclic attractors. Rather than 

stabilising on a fixed point, line or plane, cyclic attractors settle 

on a periodic pattern of activity being dynamically stable. 

Such attractors can be used to explain repetitive behaviours 

like walking, flying, chewing or swimming; in particular a 

(more complex) cyclic attractor built accordingly to the NEF 

principles has been used as the basis to model swimming 

behaviour in the lamprey eel [10]. A cyclic attractor can be 

defined by the control equation i; = Ax + Bu where 

A = [�w �] 
implementing a cyclic attractor with an harmonic oscillator. 

The results are shown in figure 7: after the system is 'shocked' 

it starts oscillating at its characteristic frequency w. 
Using the framework it is possible to manipulate the param

eters that control attractor properties by modifying the matrix 

Ma.{3 using a control signal represented by another population: 

if the signal is a function of time the system described is 

linear time-varying system; if A is an input then the system 

becomes non linear. In this example we use a population to 

control the frequency of the oscillator, therefore controlling 

the speed of the cyclic attractor (eg. controlling the swimming 

speed in the zebra fish [21]) by increasing the dimensionality 

of the space encoded by the population to accommodate for a 

frequency control input. Results are shown in figure 8. In both 

experiments inputs and oscillating populations are composed 

by 150 neurons each firing in the 80-120 Hz range. 

VI. DISCUSSION 

The work presented in this paper constitutes the basis for 

building real-time, large scale neural systems using the Neural 

Engineering Framework on SpiNNaker. The programmability 

of the ARM cores makes the integration of SpiNNaker with 

the existing tools and software possible in a seamless way. 

It needs to be considered that the advantages of running 

large-scale models in real-time are strongly reduced if such 

models take a long time to be compiled and loaded on a 

computational back-end. In fact in the experiments have shown 

that the most computationally expensive task is to compute 

the weight connection matrices (described by eq. 4) and map 

them on a parallel system such as SpiNNaker. However it 

is possible to exploit the possibility to program SpiNNaker 

cores to parallelize this job and run it on board. Once the 

neural populations are mapped to specific cores, connections 

can be generated by sending them just encoders, decoders 

and transformational matrices, having each core doing the 

matrix multiplications, self-configuring and indexing its own 

local connections. We have shown how to map multidimen

sional encoders and decoders in the weight space so as to 

represent transformations in the neural space; it is however 

possible to implement n-dimensional NEFILIF-encoder and 

NEF-decoder populations. Such high dimensional inputs can 

be used to manipulate complex, symbol-like structures such as 

language [31]. Such high dimensional spaces can be mapped to 

large scale populations of neurons so as to represent a large 

variety of symbols, having each neuron mapping a fraction 

of the high dimensional space. Running such models in real 

time makes possible to test them and embed them in real 

world, interactive scenarios, like decision making [33] or other 

cognitive functions as working memory, recognition and fluid 

reasoning [9]. 

VII. CONCLUSIONS 

We have successfully constructed neural circuits using the 

Neural Engineering Framework on the SpiNNaker hardware. 

We were able to encode and decode values using the NEF 

directly on board and implemented feed forward and recurrent 

dynamic computations. This approach takes advantages of the 

programmability of the ARM968 cores inside a SpiNNaker 

chip, letting it encode and decode spikes onboard. This re

duces the bandwidth and the computational load needed on a 



host machine, by sending and receiving only values to/from 

SpiNNaker and using it as a fast, scalable, configurable and 

power efficient computational back-end. This approach offers 

advantages when firing rates and dimension of input and 

output neurons increase, letting the system scale up seamlessly 

and be integrated in interactive real-time systems. It also 

presents the basis for building and testing large-scale neural 

models built with the Neural Engineering Framework on the 

SpiNNaker architecture. 
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