
Springer LATEX template

A new paradigm for probabilistic

neuromorphic programming

P. Michael Furlong1* and Chris Eliasmith1

1Centre for Theoretical Neuroscience, University of Waterloo, 200 

University Ave., Waterloo, N2L 3G1, Ontario, Canada.

*Corresponding author(s). E-mail(s):
michael.furlong@uwaterloo.ca;

Contributing authors: celiasmith@uwaterloo.ca;

Keywords: probability, Bayesian modelling, vector symbolic architecture,
fractional binding, spatial semantic pointers

1 Introduction

Since it was first introduced neuromorphic hardware has held the promise of
capturing some of the efficiency of biological neural computation, which is 3-
6 orders of magnitude more efficient than engineering solutions. To attempt
to capture this efficiency, one key feature of biological neural computation
that has been replicated in current neuromorphic hardware is its event-based
nature. Neural ‘spikes’ are used to transmit information both in neuromor-
phic hardware and many neurobiological systems to minimize long distance
communication energy costs.

However, the use of such spiking neural networks (SNNs) brings with it
challenges for programming the hardware. While there are a variety of tech-
niques for tackling this challenge (Eliasmith and Anderson, 2003; Sussillo and
Abbott, 2009; Denève and Machens, 2016), none have shown convincingly how
the broad and powerful class of probabilistic algorithms can be efficiently real-
ized in a spiking neural network. In our recent work, we have been exploring
the connection between hyper-dimensional computing (HDC), also known as
Vector Symbolic Architectures/Algebras (VSAs), and probabilistic computa-
tion in order to solve this problem. When we couple this new approach with

1



2 A new paradigm for probabilistic neuromorphic programming

our past work on systematically building spiking neural networks using the
Neural Engineering Framework (NEF; Eliasmith and Anderson, 2003), a new
paradigm for building spiking, probabilistic neural networks arises.

In this brief note, we outline these new methods and describe how they
relate HDC to various probabilistic operations. Our particular algebra is based
on a VSA known as holographic reduced representations (HRRs; Plate, 1994)
but focuses on using it in a continuous manner, giving rise to what are called
Spatial Semantic Pointers (SSPs; Komer, 2020; Dumont and Eliasmith, 2020).
A more in-depth version of this work can be found in (Furlong and Eliasmith,
2022).

2 A Method for Probabilistic Programming

2.1 Preliminaries

Kernel Density Estimators (KDEs) estimate the probability of a query point
x based on the average of its similarity to members of a dataset of n
observations D = {x1, . . . , xn}. Similarity is measured using kernel func-
tions, k(·, ·), which are typically valid density functions. KDEs are defined
fX(x) = 1

nh

∑n
i=1 kh (x,xi) for kernel bandwidth h ∈ R+.

A problem with KDEs is the memory required to maintain the dataset, D,
which can grow without bound, as does the time to compute a query. Rahimi
et al. (2007) addressed this problem for KDEs and other kernel machines with
the introduction of Random Fourier Features (RFFs). RFFs project data into
vectors so that the dot product between two vectors approximates a kernel
function, i.e., k(x, y) ≈ ϕ(x) · ϕ(y). The data projection is computed ϕ(x) =
(eiω1x, . . . eiωdx)T , where the frequency components ωi are i.i.d samples from
some probability distribution G(ω). The choice of G(ω) determines the kernel
induced by the dot product.

With RFFs, linear methods can approximate nonlinear kernel methods.
Kernels that can be approximated with RFFs of dimensionality d < n improve
the memory and time complexity of querying a KDE from linear in the number
of samples (n) to linear in the feature representation dimensionality (d).

2.2 Probabilistic Programming with HDC

Here we describe the particular algebra we use and its mapping to probabilistic
representations and computations. We use three operators, bundling, binding,
and unbinding, to construct latent probabilistic representations, and a fourth,
similarity, to realize quasi-probabilities, which can later be converted to exact
probabilities. These are the same operators as used for the HRR VSA (Plate,
1994), but here with a mapping to continuous representations and an imple-
mentation in spiking neurons. Manipulating VSA-represented data using these
operators constructs and manipulates representations that induce kernels for
structured data, generalizing the method of RFFs.



A new paradigm for probabilistic neuromorphic programming 3

2.2.1 Operators

Binding, ⊛, implemented with circular convolution, is at the core of our
approach — in VSAs, binding is used to combine two symbols or state represen-
tations together to produce slot-filler pairs, e.g., combining a sensing modality
type with a sensor value, or an edge in a graph with the edge’s traversal cost.
We employ an extension of binding, called fractional binding (Komer, 2020;
Dumont and Eliasmith, 2020; Plate, 1992), to represent data in a continuous
domain, X ⊆ Rm, into a high-dimensional vector representation (eq. (1)).

ϕX(x/h) = F−1
{
eiΘXx/h

}
(1)

Where x ∈ X and h is a length scale parameter, as in kernel density estimation,
and ΘX are the frequency components of what we refer to as the “axis vector”,
which can be selected in a number of different ways. ΘX and h define a “type”
representation in the high-dimensional space for the low-dimensional space.

Similarity between two VSA-encoded objects is computed with the vector
dot product, ·. For SSPs similarity has a strict mathematical meaning through
the connection to RFFs, the dot product between two SSPs approximates a
kernel function, like those used in kernel density estimation (Voelker, 2020;
Frady et al., 2021). Importantly for probabilistic modelling, depending on the
selection of ΘX , the dot product between SSPs will induce different kernel (or
similarity) functions on the encoded data, expressed:

k(x,x′) ≈ ϕX(x/h) · ϕX(x
′/h). (2)

Bundling is used in VSA literature to construct vectors that represent
sets of objects, where similarity between a vector and a bundle gives a mea-
sure of membership in the set. We use bundles of fractionally-bound objects
to represent a distribution, and when we compute the similarity between a
query point encoded as an SSP with a bundle of SSPs, we get a quantity that
approximates the probability of the query point. In math:

f̂(x | D) ≈ ϕX(x/h) ·
1

nh

∑
xi∈D

ϕX(xi/h) (3)

where we can replace the normalized sum 1
nh

∑
xi∈D ϕX(xi/h) with a memory

vector that represents the dataset, MX,n. This memory can be updated online,
allowing for changes in the distribution that reflect the experience of an agent.

Depending on the choice of ΘX , similarity can take on negative values.
Indeed, in the method used by Furlong and Eliasmith (2022), the dot product
between SSPs approximates the quasi-kernel sinc function (Voelker, 2020).

Consequently, f̂(x | D) is not a probability distribution, but the special-case
Fourier Integral Estimtor (FIE; Davis, 1975, 1977). However, probabilities can



4 A new paradigm for probabilistic neuromorphic programming

be recovered from FIEs through the correction developed by Glad et al. (2003):

fX(x) ≈ max {0, ϕX (x/h) ·MX,n − ξ} . (4)

The conversion in eq. (4) unveils a connection between the VSA encoding we
use and how individual ReLU neurons can be used to model probability.

Unbinding is the inverse of binding, and is implemented by binding with
the pseudoinverse of the argument, ϕX(x)⊛ ϕY(y)⊛ ϕ−1

Y (y) ≈ ϕX(x). In cog-
nitive modelling, unbinding can be used to select from bundles a subset where
the querying vector matches. We have found that unbinding can be used to
condition memory vectors, MXY =

∑
(xi,yi)∈D ϕX(xi)⊛ ϕY(yi), selecting only

those elements where yi ≈ y, that is:

f(x | y,D) ∝ ϕX ·
(
MXY ⊛⊛ϕ−1

Y (y)
)
. (5)

In addition to the above operations, we have also been able to exploit the
sparsity of these representations to construct compositional kernels, as binding
multiplies kernels and bundling adds them. Exploiting sparsity is a general
feature of HDC. Representations of more structured data, like trajectories,
graphs, or trees, constructed in VSAs consequently define kernels for those data
objects, making this tool for designing neural network a general probabilistic
programming framework.

2.2.2 Spiking implementation

While we will not describe the NEF method of implementing these oper-
ations in spiking neurons in detail here, this has been done elsewhere at
length (Eliasmith and Anderson, 2003; Dumont and Eliasmith, 2020; Furlong
and Eliasmith, 2022; Eliasmith, 2013). As well, there is a widely used neural
simulator, Nengo (https://nengo.ai) that incorporates the NEF directly. To
summarize, the method allows any nonlinear dynamical system defined over
any dimensionality of vector space to be embedded in a spiking neural network
to a degree of precision determined by the neural resources available. These
techniques naturally apply to the operators described above.

3 Discussion and Conclusion

The above connection of HDC and VSAs to probability models show that
we can understand them as a probabilistic model of computation that unifies
analytical models with neural networks, expanding on other approaches to
modelling probability in VSAs (e.g., Frady et al., 2021; Joshi et al., 2017).
VSA representations are differentiable allowing for integration with standard
machine learning methods. More importantly, descriptions of data under VSAs
give practitioners, for free, kernel functions that can be used in probabilistic
models, using simple linear operations.

https://nengo.ai


A new paradigm for probabilistic neuromorphic programming 5

While we have only briefly outlined the approach here, we and others have
successfully used it to demonstrate that, for example, Bayesian Optimization
can be performed much more efficiently that using standard methods while
preserving and generally improving the accuracy of the inference on standard
benchmark functions (Furlong et al., 2022). As well, the methods have been
used for optimal path planning for drones (unpublished), the unification of bio-
logical models of simultaneous localization and mapping with a probabilistic
framing of the problem (Dumont et al., under review), as well as the coordina-
tion of paths across multiple actors (Furlong et al., 2023). This latter example
demonstrates that the technique can be used to combine continuous and dis-
crete probability spaces. While we have focused on the continuous case because
it is newer, the methods we have used are well-established for representing
symbol-like structures in spiking neurons and performing inference over them
(Eliasmith, 2013; Eliasmith et al., 2012).

While we have not discussed specific neuromorphic implementations, NEF
models have a long history of being implemented on a variety of neuromorphic
hardware (Bekolay et al., 2014), and Nengo has been used with a number
of hardware backends, including Loihi (DeWolf et al., 2020) and SpiNNaker
(Davies et al., 2013). As a result, all of the critical elements for compiling from
a probabilistic program to neuromorphic hardware executables are in place. We
look forward to exploring a wide variety of applications using these methods,
allowing us to reap the benefits of low power neuromorphic hardware while
realizing the effectiveness of probabilistic computation.

References

Eliasmith, C. and Anderson, C.H.: Neural engineering: Computation, repre-
sentation, and dynamics in neurobiological systems: MIT press (2003)

Sussillo, D. and Abbott, L.F.: Generating coherent patterns of activity from
chaotic neural networks.: Neuron 63(4), 544–57 (2009), URL http://dx.doi.
org/10.1016/j.neuron.2009.07.018

Denève, S. and Machens, C.K.: Efficient codes and balanced networks: Nature
Neuroscience 19(3), 375–382 (2016), URL http://dx.doi.org/10.1038/nn.
4243

Plate, T.A.: Distributed representations and nested compositional structure:
University of Toronto, Department of Computer Science (1994)

Komer, B.: Biologically Inspired Spatial Representation: Ph.D. thesis, Univer-
sity of Waterloo (2020)

Dumont, N. and Eliasmith, C.: Accurate representation for spatial cognition
using grid cells.: In: CogSci (2020)

http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://dx.doi.org/10.1038/nn.4243
http://dx.doi.org/10.1038/nn.4243


6 A new paradigm for probabilistic neuromorphic programming

Furlong, P.M. and Eliasmith, C.: Fractional binding in vector symbolic archi-
tectures as quasi-probability statements: In: Proceedings of the Annual
Meeting of the Cognitive Science Society, volume 44 (2022)

Rahimi, A., Recht, B. et al.: Random features for large-scale kernel machines.:
In: NIPS, volume 3, 5, Citeseer (2007)

Plate, T.A.: Holographic recurrent networks: Advances in neural information
processing systems 5 (1992)

Voelker, A.R.: A short letter on the dot product between rotated fourier
transforms: arXiv preprint arXiv:2007.13462 (2020)

Frady, E.P., Kleyko, D., Kymn, C.J., Olshausen, B.A. and Sommer, F.T.: Com-
puting on functions using randomized vector representations: arXiv preprint
arXiv:2109.03429 (2021)

Davis, K.B.: Mean square error properties of density estimates: The Annals of
Statistics 1025–1030 (1975)

Davis, K.B.: Mean integrated square error properties of density estimates: The
Annals of Statistics 530–535 (1977)

Glad, I.K., Hjort, N.L. and Ushakov, N.G.: Correction of density estimators
that are not densities: Scandinavian Journal of Statistics 30(2), 415–427
(2003)

Eliasmith, C.: How to build a brain: A neural architecture for biological
cognition: Oxford University Press (2013)

Joshi, A., Halseth, J.T. and Kanerva, P.: Language geometry using random
indexing: In: Quantum Interaction: 10th International Conference, QI 2016,
San Francisco, CA, USA, July 20-22, 2016, Revised Selected Papers 10,
265–274, Springer (2017)

Furlong, P.M., Stewart, T.C. and Eliasmith, C.: Fractional binding in vec-
tor symbolic representations for efficient mutual information exploration:
In: Proc. ICRA Workshop, Towards Curious Robots, Mod. Approaches
Intrinsically-Motivated Intell. Behav., 1–5 (2022)

Dumont, N.S.Y., Furlong, P.M., Orchard, J. and Eliasmith, C.: Exploit-
ing semantic information in a spiking neural slam system: Frontiers in
Neuromorphic Engineering (under review)

Furlong, P.M., Dumont, N.S.Y., Antonova, R., Orchard, J. and Eliasmith,
C.: Efficient exploration using hyperdimensional bayesian optimization on
trajectory spaces (2023), in submission



A new paradigm for probabilistic neuromorphic programming 7

Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y.
and Rasmussen, D.: A large-scale model of the functioning brain: science
338(6111), 1202–1205 (2012)

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T., Rasmussen,
D., Choo, X., Voelker, A. and Eliasmith, C.: Nengo: A Python tool for
building large-scale functional brain models: Frontiers in Neuroinformatics
7(JAN) (2014), URL http://dx.doi.org/10.3389/fninf.2013.00048

DeWolf, T., Jaworski, P. and Eliasmith, C.: Nengo and Low-Power AI Hard-
ware for Robust, Embedded Neurorobotics: Frontiers in Neurorobotics 14
(2020), URL http://dx.doi.org/10.3389/fnbot.2020.568359

Davies, S., Stewart, T., Eliasmith, C. and Furber, S.: Spike-based learning of
transfer functions with the SpiNNaker neuromimetic simulator: In: Proceed-
ings of the International Joint Conference on Neural Networks (2013), ISBN
9781467361293, URL http://dx.doi.org/10.1109/IJCNN.2013.6706962

http://dx.doi.org/10.3389/fninf.2013.00048
http://dx.doi.org/10.3389/fnbot.2020.568359
http://dx.doi.org/10.1109/IJCNN.2013.6706962

	Introduction
	A Method for Probabilistic Programming
	Preliminaries
	Probabilistic Programming with HDC
	Operators
	Spiking implementation


	Discussion and Conclusion

