
Introduction
• A prerequisite for neural implementation of MCMC is specification of a neural signal 
that approximately follows a given distribution f.
• Assume linear dendrites, instantaneous axons, and leaky integrate-and-fire somatic 
dynamics.

• Assume that the neural signal is voltage potential on the soma of a neuron that is fully 
connected to a population.

• Assume that current injected into a member of the population is an affine 
transformation of a network signal g (Eliasmith&Anderson 2003).

• Assume that the distribution of g is known.
• Find synaptic weights such that:                         holds approximately,

Observations

MCMC with spiking neurons
Lloyd Elliott1, Chris Eliasmith2

1Gatsby Computational Neuroscience Unit, University College London, 
2Center for Theoretical Neurosceince, Univeristy of Waterloo Abstract

Diverse problems in computational neuroscience are solved by Bayesian models.   
Human sensorimotor control (Todorov 2004; Körding&Wolpert 2004), and some aspects 
of perception and decision making have all been shown to be nearly Bayes optimal 
under appropriately specified loss functions.  Bayesian algorithms in machine learning 
offer ways in which populations of neurons could implement a system that provides 
empirically observed Bayesian optimal behaviour.  In this work, we approximate arbitrary 
distributions with population codes. These codes are necessarily limited by the 
dependency structures, saturation and noise inherent in neural signals. We explore the 
implications for neural implementations of MCMC methods.
We simulate populations of leaky integrate-and-fire neurons and we construct population 
codes to approximate functions with a given distribution.  We examine the integrated 
autocorrelation time of the decoded signal and we report the KS-test statistics and 
quantile/quantile plots.

Methods
•Assume f is uniform distribution.  This distribution has maximal entropy in the set of all 
distributions with a fixed support.
• Use ridge regression to find synaptic weights that minimise the following error:

Solution 1
• Assume                       is Gaussian band limited noise with cutoff frequency L.
• Choose 

• F-1(G(s(T)) is marginally distributed as f.  This is known as inverse sample transformation 
(Devroye 1986). 
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dt

φ(s(t)) = F−1(G(s(t))

s(t) ∼ g

Solution 2
• Assume                  is a band limited bimodal mixture of Gaussians with cutoff frequency L.
• Choose

• Choose 

•This is marginally distributed as f.

s(θ) = (sin θ, cos θ)
θ ∼ g

φ(s(θ)) = F−1(G(arctan(sin(θ)/cos(θ)))

Results
• qq plot divergence is dominated by tails.
• The best approximation is obtained in the delta, theta, alpha rhythm(L ~ 1Hz to 12Hz).
• NMDA receptors produce poor approximations of uniform distributions.
• Injection of network signal into two dimensional space allows transformation of 
bimodal distributions.

Discussion
We have shown a relationship between integrated autocorrelation time in marginally 
uniform neural signals and neural oscillation.  Integrated autocorrelation time yields the 
variance of naïve MCMC: 

From this equation, it is possible to derive the variance of a neural implementation of an 
MCMC method that uses population codes and inverse sample transformations as a 
source of random variables.  We expect to see delta, theta or alpha regime oscillation  
and GABAa or AMPA receptors in areas supporting such implementation.  Faster 
oscillations lose entropy after synaptic dynamics.

Var

[∫ T

0
x(t)dt

]
→ 1 + 2

∫ ∞

0
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Future Work
• Implement more sophisticated MCMC methods.
• Derive experimental predictions.
• Increase dimensionality of sample space.
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Solution 1:
We compare 3 synaptic filter types, and vary L.  Trials span T=100s 
and network size is 500 neurons.  a) Quantile/quantile plot of 
decoded signal against uniform distribution.  NMDA synapses provide 
a poor approximation. Distortion accumulates at tails of distribution. 
b) KS-test statistic of decoded signals shows some trends across 
frequency and synaptic filter.  c) Autocorrelation functions of decoded 
signals.  Characteristics of synaptic filters are visible.   d) Integrated 
autocorrelation time of decoded signal.  Trend across frequency is 
predicted by network wide correlation.

Legend:
e) Histograms of decoded signals with varying L and filter type.  
Uniformity of histograms expose closeness of approximation.  
Row 1: NMDA  synapses.  Row 2: GABAa synapses. Row 3:  
AMPA synapses.  L increases along columns.  Distortion at low 
frequencies is caused by low LT ratio.
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Solution 2:
Simulation spans T=20s.  Network size is 500 neurons. a)  
the network signal is projected onto circle. b) Symmetric 
tuning curves allow accurate decoding of multimodal 
distributions. c) Histogram of decoded signal filtered with 
synaptic dynamics with time constant tau=0.005.  This is 
close to uniform distribution.

b)
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