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One of the grand challenges that the National Academy of Engineers 
identifi ed is to reverse engineer the brain. Neuroscientists and psychol-
ogists would no doubt agree that this is, indeed, a grand challenge.

But what exactly does it mean to “reverse engineer” a brain? In gen-
eral, reverse engineering is a method by which we take an already made 
product and systematically explore its behavior at many levels of de-
scription so as to synthesize (that is, build) a similar product. We at-
tempt to identify its components and how they work, as well as how 
they are composed to give rise to the global behavior of the system. With 
systems as complex as the brain (or a competitor’s silicon chip), the syn-
thesizing step is usually carried out as a soft ware simulation.

Reverse engineering the brain could bring many benefi ts. For in-
stance, it would allow us to better understand the biological mecha-
nisms that the brain employs and how they tend to fail in disease. At 
a more abstract level, reverse engineering the brain might allow us to 
discover eff ective information- processing strategies that we can import 
into our own engineered devices. Perhaps more surprisingly, our un-
derstanding of the basic properties of physical computation also stand 
to benefi t from such research— neurons, aft er all, do not compute like 
a typical digital chip. In short, reverse engineering the brain will allow 
us to: (1) understand the healthy and unhealthy brain and develop new 
medical interventions, (2) develop new kinds of algorithms to improve 
existing machine intelligence, and (3) develop new technologies that ex-
ploit the physical principles exhibited by neural computation.

Th ere are currently several large- scale brain simulations already 
being developed, each aiming to understand the actions of a million 
neurons or more. One project, supported by the Defense Advanced 
Research Projects Agency (DARPA), is IBM’s SyNAPSE project, which 
aims to build a new kind of computer patterned aft er the brain. Th at 
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team recently announced a fi ve- hundred- billion- neuron simulation 
(the human brain has about one hundred billion neurons). Th e individ-
ual neurons in SyNAPSE resemble actual neurons in that they generate 
neural action potentials (or “spikes”) to communicate, and they incor-
porate some elements of individual neuron physiology (although they 
are much simpler than their biological counterparts in that they have 
no spatial extent and model only a few of the many currents found in a 
cell). A second high profi le brain model is the €1 billion Human Brain 
Project, which grew out of the Swiss Blue Brain project, a simulation of 
(thus far) one million neurons. Although the total number of neurons 
simulated is small by comparison to the SyNAPSE project, the Human 
Brain Project aspires to model individual neurons in considerable de-
tail, capturing neuron shape, hundreds of currents, and the dynamics of 
neural spiking for each cell. Th e trade- off  for this increase in biological 
detail is that each neuron is far more computationally costly to simulate. 
Compared to the few equations per neuron in the SyNAPSE project, the 
Human Brain Project simulations have hundreds of equations per neu-
ron. While this level of detail can be surpassed by adding more detailed 
molecular dynamics or including the important contributions of glial 
cells, at present this degree of biological fi delity is much higher than in 
other large- scale models.

From a reverse engineering perspective, large- scale simulations are 
an important step forward. Th ey establish the computational feasibility 
of simulating large numbers of components. However, existing large- 
scale brain simulations like SyNAPSE and the Human Brain Project lack 
a key ingredient for successful reverse engineering: showing how the 
vast array of neural components relate to behavior. As yet, these models 
do not remember, see, move, or learn, so it is diffi  cult to evaluate them 
in terms of what is, arguably, the purpose of the brain.

Behavior and the Brain

My group has taken a diff erent approach, aimed at understanding the 
neural underpinnings of behavior. Our most recent model, called Spaun 
(Semantic Pointer Architecture Unifi ed Network), has a single eye, 
which takes digital images as input, and a single, physically simulated 
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arm, which it moves to provide behavioral output (see fi gure 1a). Inter-
nally, its 2.5 million neurons generate neural spikes to process the input 
(for example, recognize and remember digits) and generate relevant out-
put (for example, draw digits with its arm; see fi gure 1b). Th ese neurons 
are organized to simulate about twenty out of the approximately one 
thousand diff erent areas typically identifi ed in the brain (see fi gure 2a). 
Th ese areas were chosen to provide a suitably rich set of functions while 
remaining computationally tractable. Th e biophysical model of individ-
ual neurons that Spaun uses is quite simple. As in the SyNAPSE project, 
only a few equations are needed to describe each neuron. Th ese neurons 
communicate using neural action potentials (spikes). When impacting 
a neighboring neuron’s synapse, these spikes elicit a simulated version of 
one of four neurotransmitters (out of the tens or hundreds of diff erent 
kinds) found in the brain. Again, this level of physiological and ana-
tomical detail provides a practical compromise between computational 
simplicity and functionality.

One of Spaun’s virtues, relative to SyNAPSE and the Human Brain Proj-
ect, is its global, brain- like structure. Whereas the neurons in SyNAPSE 
form a largely undiff erentiated, or statistically uniform mass, in Spaun 
they are organized to refl ect the known anatomy and function of the 
brain. One set of neurons is modeled aft er those in the frontal cortices, 
playing important roles in working memory and the tracking of task con-
text. Other neurons make up a simulated basal ganglia, where they help 
the model learn new behavioral strategies and control the fl ow of infor-
mation throughout much of the cortex. Still others are modeled aft er the 
neurons in the occipital lobe, allowing Spaun to visually recognize hand-
written digits it has never seen before. Neurons in Spaun are physiologi-
cally similar (that is, using the kinds of neurotransmitters found in that 
part of the brain, spiking at similar rates, and such), functionally similar 
(that is, are active in similar ways under similar behavioral circumstances 
as in the brain), and are connected in a similar manner (that is, receiving 
inputs from and projecting out to some of the same brain areas that a 
real neuron would) to neurons in the corresponding area of a biological 
brain (see fi gure 2a). For example, there are two diff erent kinds of me-
dium spiny neurons in the simulated basal ganglia that receive cortical 
projections and are inhibitory, but they have diff erent kinds of dopamine 
receptors and project to diff erent parts of the globus pallidus.
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Figure 1. A serial working memory task in Spaun. a. A conceptual description of the 
processing Spaun performs. It is fi rst shown a randomly chosen handwritten digit that 
it compresses through its visual system, allowing it to recognize the digit and map it 
to a conceptual representation (or “semantic pointer,” SP). Th at representation is then 
further compressed by binding it to its position in the list and storing the result in 
working memory. Any number of digits can be shown in a row and will be processed 
in this manner. Once a question mark is shown, Spaun proceeds to decode its working 
memory representation by decompressing the items at each position and sending them 
to the motor system to be written out, until no digits remain. b. A screen capture from 
the simulation movie of this task, taken 2.5 s into the simulation time course shown in 
c. Th e input image is on the right; the output is drawn on the surface beside the arm. 
Spatially organized (neurons with similar tuning are near one another), low- pass- 
fi ltered model neuron activity is approximately mapped to the relevant cortical areas 
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To evaluate the model we compared it to a range of empirical data, 
drawn from both neurophysiological and behavioral studies. For in-
stance, a common reinforcement learning task asks rats to fi gure out 
which of several actions is the best one, given some probabilistic re-
ward (as if it were choosing between better-  and worse- paying tables in 
a casino). Single neuron spike patterns can be recorded from the ani-
mals while they are performing this task. Spaun matches the behavioral 
choice patterns of the rat, but in addition, the fi ring patterns of neurons 
in the ventral striatum of both the model and the rodent exhibit similar 
changes during delay, approach, and reward phases of this task.

Th ere are several examples of Spaun’s neural fi ring patterns reproduc-
ing those found in real brains. In comparing to spiking data gathered 
from monkeys performing a simple working memory task, Spaun ex-
hibits the same spectral power changes of populations of neurons (and 
of single neurons) while performing the same task. Similarly, by com-
paring to data from a monkey visual task, we have shown that the tun-
ing of neurons in the primary visual area of the model matches those 
recorded in monkeys. In each case, the spiking data from the model and 
the animal were analyzed using exactly the same methods, to generate 
appropriate comparisons.

While matches to single neuron data can help build confi dence in 
the basic mechanisms of the model, if we want to understand human 
cognition, it is oft en the case that such data is unavailable. As a result, 
in studying humans we must oft en rely more on behavioral compari-
sons. Here again, Spaun provides a good fi t in many cases. For example, 

and shown in gray scale (dark is high activity, light is low). Th ought bubbles show 
example spike trains, and the results of decoding those spikes are in the overlaid text. 
For striatum (Str), the thought bubble shows decoded utilities of possible actions, and 
in globus pallidus internus (Gpi) the selected action is darkest. c. Time course of a 
single trial of the serial working memory task for four digits. Th e stimulus row shows 
input images. “A3” indicates it is performing task 3 (serial working memory), the 
triangles provide structure to the input, and the question mark indicates a response is 
expected. Th e arm row shows digits drawn by Spaun. Other rows are labeled by their 
corresponding anatomical area. Similarity plots (solid gray lines) show the dot product 
(i.e., similarity) between the decoded representation from the spike raster plot and 
concepts in Spaun’s vocabulary. Raster plots in this fi gure are generated by randomly 
selecting 2,000 neurons from the relevant population and discarding any neurons with 
a variance of less than 10 percent over the run. Adapted from Eliasmith (2013).
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Figure 2. Th e architecture of the Spaun model. a. Th e anatomical architecture of the 
model (using standard anatomical abbreviations) drawn on the outline of a brain to 
indicate correspondences between model components and brain areas. Lines with 
circular endings indicate inhibitory projections. Lines with square boxes indicate 
modulatory connections exploited during learning. Other connections are excitatory. 
b. Th e functional organization of the model showing information fl ow between com-
ponents. Th ick lines indicate information fl ow between elements of model cortex, thin 
lines indicate information fl ow between the action selection mechanism (basal ganglia) 
and model cortex, and rounded boxes indicate elements that can be manipulated to 
control the fl ow of information within and between subsystems. Th e circular end of 
the line connecting reward evaluation and action selection indicates that this connec-
tion modulates connection weights. Line styles and fi lls indicate the mapping to the 
anatomical architecture in a. Adapted from Eliasmith (2013).
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Spaun makes the same kinds and frequency of errors as humans dur-
ing a serial working memory task (this task requires remembering and 
repeating back a list of numbers). Th is suggests that the neural mecha-
nisms in the model are plausible, although evidence is indirect. Simi-
larly, Spaun takes the same length of time per count as people do when 
internally counting numbers. Moreover, it also parallels people in show-
ing an increase in the variance of the reaction of time for longer counts, 
reproducing Weber’s famous law from psychophysics. Th ere are many 
tests yet to be run, but as we continue to test the model in a variety of 
ways— both neurally and behaviorally— we strengthen our case that the 
principles we have used for reverse engineering the brain are on the 
right track.

Th is case is made signifi cantly stronger by noting that it is the exact 
same model being used in each of these comparisons. Mathematical 
models, like Spaun, oft en have parameters that are tuned to match spe-
cifi c experimental results. Th is leads to the common worry that a model 
is “overfi t” to a particular experiment or type of experiment. However, 
we have made signifi cant eff orts to allay this concern. For example, the 
decay rate of working memory is set using data from human experi-
ments that are not included in any of the eight tasks that Spaun does. 
Many of the other parameters are set automatically using three prin-
ciples of neural implementation that we have developed over a decade 
of research (Eliasmith and Anderson 2003). But, most importantly, no 
matter how they are set, they remain constant across all of the tasks 
that Spaun performs (or, more accurately, only the model can change 
them itself, through learning). By leaving these parameters untouched 
across experiments, and by testing the model against a wide variety of 
experiments, such concerns of overfi tting become less plausible because 
the parameters are clearly not picked to work only under one or a few 
experimental conditions.

One of the central reasons for constructing such a model is to deter-
mine what it can teach us about how the brain functions. Interestingly, 
Spaun has generated several specifi c predictions that are currently being 
tested. For instance, the model exhibits a particular pattern of errors on 
question answering tasks, despite a constant reaction time in respond-
ing to questions. In particular, questions about either the identity or po-
sition of an item are more likely to be incorrectly answered the closer 
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they are to the middle of the list. To the best of our knowledge this task 
has not yet been run on people, consequently it is an ideal prediction 
to test. Spaun has also given rise to specifi c neural predictions. For ex-
ample, it suggests a particular pattern of similarity between the neural 
activity during encoding of a single item in working memory, versus en-
coding that same item along with other items. Specifi cally, the similarity 
of neural fi ring in Spaun drops off  exponentially as items are added. Th is 
prediction contradicts that from other models of working memory in 
which the similarity stays constant. As a result, this particular predic-
tion is an excellent test of the mechanisms and assumptions of Spaun.

In contrast to large- scale simulations that produce a lot of neural ac-
tivity but little observable behavior, I would argue that Spaun is provid-
ing detailed, quantifi able insights into the organization and function of 
the brain. (Videos of many of the experiments run on Spaun can be 
found at http://nengo.ca/build-a-brain/spaunvideos.)

Coordinated for Flexibility

One key contribution of Spaun relative to many competing architectures 
is that Spaun can perform a variety of diff erent behaviors, much like an 
actual brain. For example, Spaun can use its visual system to recognize 
numbers that it then organizes into a list and stores in its working mem-
ory. It can later recall this list and draw the numbers, in order, using its 
arm. Furthermore, Spaun can use this same visual system to parse more 
complex input and recognize patterns in digits it hasn’t seen before. To 
do so, it uses the same memory system, but in a slightly diff erent way. As 
well, it uses other brain areas that it didn’t use in the list recall task. Th at 
is, Spaun can deploy the same brain areas in diff erent ways depending 
on what task it needs to perform (see fi gure 2b).

Th is kind of “fl exible coordination” is something that sets animal 
cognition apart from most current artifi cial intelligence. Animals can 
determine what kinds of information processing needs to be brought 
“online” in order to solve a given challenging problem. In other words, 
diff erent, specialized brain areas are coordinated in a task- specifi c— that 
is, fl exible— way to meet a challenge presented by the environment. As 
people, this ability comes very naturally to us, so it is an ability that we 
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oft en overlook. When I switch from composing an e- mail to reading a 
book, to making a drink, to chasing my cat, I have coordinated many 
diff erent parts of my brain in many diff erent ways, and oft en with little 
delay in between. Because animals have evolved in a dynamic, challeng-
ing environment, this kind of behavioral fl exibility is critical. In fact, 
Merlin Donald and others have suggested that humans are incredibly 
evolutionarily successful because they exhibit this kind of adaptability 
better than almost any other species.

One of the central goals of the Spaun project is to develop a preliminary 
understanding of how this kind of fl exible coordination occurs in the mam-
malian brain. As a result, there is an important distinction in the model be-
tween midbrain and cortical regions. Th e midbrain regions, dominated by 
the basal ganglia, play a crucial role in coordinating information process-
ing largely carried out in the cortex. So the architecture of Spaun essentially 
consists of an “action selector” (the basal ganglia), which monitors the 
current state of the cortex and determines how information needs to fl ow 
through the cortex to accomplish a given goal. However, the basal ganglia 
itself doesn’t perform complex actions. Instead, it helps organize the cortex, 
so the massive computing power available there can be directed at the cur-
rent problem in the right way. Th is allows Spaun to perform any of eight 
very diff erent tasks in any order, while remaining robust to unexpected 
input and noise. Spaun determines what task to do by understanding its 
input. When it sees the letter “A” followed by a number, Spaun determines 
how to interpret subsequent input (for example, “A3” means that it should 
memorize the list of numbers it is shown next; see fi gure 1b).

The Benefits of Reverse Engineering

It is perhaps not surprising that in the mammalian brain, the basal 
ganglia have been found to be important for selecting what to do next. 
Problems including damage and neurodegeneration in the basal ganglia 
result in behaviors related to addiction, anxiety, and obsessive compul-
sive disorder. As well, the tremors associated with Parkinson’s disease 
fi nd their root in a malfunction of these areas. Consequently, under-
standing the mechanisms that underwrite fl exible coordination have 
signifi cant consequences for health.
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In a similar vein, Spaun has allowed us to cast light on the cogni-
tive decline associated with aging. Th ere is currently a long- standing 
debate about whether or not the known reduction in brain cells with 
aging is related to the measured decline in performance on cognitive 
tests. Th e Raven’s Progressive Matrices (RPM) test is a standard IQ test 
that has oft en been used to track this kind of change. Th e RPM test 
asks subjects to fi gure out how to complete a visual pattern of some 
kind. In fact, one of the tasks that Spaun performs is modeled aft er this 
test (and Spaun has been shown to perform about as well as a human 
of average intelligence). More recently, my lab has developed a model 
using the same architecture as Spaun that is able to perform the exact 
same test as is used on human subjects. Again, it performs about as 
well as average humans. Because the model has neurons, we can, for 
the fi rst time, explore the causal relation between damaging those cells 
(as happens naturally during aging) and performance on the RPM. By 
running hundreds of versions of this kind of model, we can show that 
the performance of the models reproduces the standard “bell curve” of 
human populations, and that neuron loss due to aging can cause a uni-
form shift  downward in that distribution. In short, we have been able 
to show how the cognitive decline due to aging could be a direct result 
of neuron loss.

Less obviously, understanding brain mechanisms is likely to provide 
us with new insights into how to build intelligent artifi cial systems. At 
the moment, most successes in machine intelligence master a single 
ability: machines are good at playing chess, or answering Jeopardy! ques-
tions, or driving a car. People, of course, can be quite good at all of these 
tasks. I believe this is because people can fl exibly coordinate their skills 
in ways not currently available to machines. While most of the specifi c 
tasks that Spaun performs can be reproduced by artifi cial intelligence 
algorithms, the variety of tasks that Spaun performs is atypical of the 
fi eld. Interestingly, Spaun also exhibits a nascent ability to learn new 
behaviors on its own (specifi cally, it can learn to choose diff erent ac-
tions based on rewards in a limited manner), while preserving abilities 
it already has. One focus of future research on Spaun is to expand this 
ability to allow it to learn much more sophisticated tasks on its own, 
either through explicit instruction or through trial and error learning.
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Building a Physical Brain

Even if we did understand the algorithms of the brain, it is not clear that 
we could usefully implement them on the computers of today. Th is is be-
cause the physical strategies the brain adopts for processing information 
lie in stark contrast to those we currently use in our computers. Silicon 
chips in our computing devices are engineered to eliminate uncertainty: 
transistors are either “on” or “off .” Th is precision comes at the price of 
high power usage. Desktop computers of today typically use hundreds 
of watts. Th e brain, in contrast, uses only about 25 watts, and it performs 
far more sophisticated computations. And, it seems, the brain relies on 
highly unreliable, noisy devices: synapses fail much of the time, neu-
rotransmitters are packaged in variable amounts, and the length of time 
it takes an action potential to travel down an axon can change.

Th rough reverse engineering, researchers have noticed these funda-
mental diff erences and have been motivated to develop “neuromorphic” 
silicon chips. Several of these chips arrange basic analog components 
of silicon chips in a manner that models of the behavior of cells in the 
cortex; these models have voltages with dynamics like those of neurons, 
and even communicate using spikes and synapses the way neurons do. 
Millions of such neurons can be arranged into a space smaller than a 
deck of cards and use less than 3 watts of power. In addition, they run 
in real time. Th is is important, since Spaun, for example, takes about 
2.5 hours of real time to simulate 1 second of behavior using a digital 
supercomputer and kilowatts of power.

One reason these chips are promising is that many are currently fab-
ricated with decades- old digital technology. Consequently, as they are 
moved to newer, already available, fabrication facilities they will be able 
to exploit the exponential improvement in component density. Further-
more, the limits on size aff ecting digital technology may not apply in 
the same way to neuromorphic approaches. Th is is because these limits 
are oft en a consequence of noise resulting from unexpected behaviors 
when devices get very small. Neuromorphic technology, being modeled 
aft er the noisy, stochastic brain, has faced such problems throughout 
its development: like the brain, neuromorphic hardware tends to be 
low power, analog, and asynchronous. Th ese features tend to make the 
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eff ects of noise very salient— eff ects usually “engineered away” in digital 
hardware. Consequently, the improvements in computing power and ef-
fi ciency we tend to expect of digital technology may now be more read-
ily realized by brain- based approaches.

However, one challenge in usefully employing such neuromorphic 
hardware has historically been a lack of methods for systematically pro-
gramming noisy, low- power, highly variable hardware of this type. But, 
as we continue to reverse engineer neural algorithms to build large- scale 
brain models, we have been concurrently developing such methods. In-
deed, the same techniques used to build Spaun (called the Neural Engi-
neering Framework, or NEF; Eliasmith and Anderson 2003) have been 
used to program several diff erent kinds of neuromorphic chips. Conse-
quently, the future of both neuromorphic programming and large- scale 
brain modeling are intimately tied. Together I believe they will usher 
in a new era of low- powered, robust, fl exible, and adaptive computing.

In conclusion, eff orts to address the grand challenge of reverse en-
gineering the brain are clearly underway. Large- scale models at various 
levels of biological detail are being developed around the world. Models 
like Spaun— models that connect the activity of individual neurons to 
behavior— are an important part of that eff ort, as they provide fertile, 
specifi c hypotheses that stand to signifi cantly improve our understand-
ing of how the brain works. While Spaun has forty thousand times fewer 
neurons than are in the human brain, it nevertheless provides testable 
and predictive ideas about neural organization and function. As such 
models improve— and they are likely to do so exponentially in the com-
ing years— they will have far- reaching consequences for the development 
of new treatments and new technologies. Th ese models will begin to shed 
light on one of the most complex physical systems we have ever encoun-
tered, and, in so doing, change our basic understanding of who we are.
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