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We provide an overview and comparison of several recent

large-scale brain models. In addition to discussing challenges

involved with building large neural models, we identify several

expected benefits of pursuing such a research program. We

argue that these benefits are only likely to be realized if two

basic guidelines are made central to the pursuit. The first is that

such models need to be intimately tied to behavior. The second

is that models, and more importantly their underlying methods,

should provide mechanisms for varying the level of simulated

detail. Consequently, we express concerns with models that

insist on a ‘correct’ amount of detail while expecting interesting

behavior to simply emerge.
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Introduction
One central goal of neuroscience is to understand how

complex processes in the brain give rise to complex

behavior. Only recently has our understanding of the

processes at work in the brain, and our ability to simulate

complex processes in general, progressed to the point that

this goal seems realistic. Advances in hardware have made

the simulation of millions or even billions of neurons

possible. Resources aimed at whole brain data collection

have provided unprecedented views of brain anatomy and

function that can help us to construct and verify large-

scale models [1–3]. The quality of such data sets is only

likely to improve with the progress of billion dollar

projects such as the recently announced Brain Activity

Map project (aka the Brain Research through Advancing

Innovative Neurotechnologies (BRAIN) initiative) [4],

which intends to develop experimental methods for

recording unprecedented numbers of neurons in an active

neural circuit.

As such resources become available, it is critical to ask:

How can we best make use of these resources to
www.sciencedirect.com 
succinctly quantify our understanding of brain function?

We believe that, given the analytic intractability of a

system as complex and nonlinear as the brain, large-scale

modeling will play a crucial role. That is, we must build a

brain to know one. As Richard Feynman famously noted:

‘‘That which I cannot create, I do not understand’’ [5].

However, there are a wide variety of ways we might

proceed in creating a simulated brain. Consequently,

we review several past large-scale models to characterize

different approaches (see also [6,7] for reviews), describe

the benefits we might expect of such models, and ulti-

mately discuss what lessons can be drawn regarding the

continued development of ever larger and more sophis-

ticated brain models. To be specific, we are focussing on

large-scale brain models that span multiple brain areas

and whose output is the product of large numbers of

simulated neurons (e.g. over a million). These large-scale

brain models are a subclass of large-scale neural simu-

lations.

Notable large-scale brain models
Izhikevich and Edelman

One of the first brain-scale models ever developed was

the 100 million neuron thalamocortical model developed

by Izhikevich and Edelman [8]. It included 22 different

types of multi-compartmental neurons in cortex and

thalamus, wired together by about 500 million synapses,

which captured synaptic dynamics including short-term

plasticity and STDP. The model exhibited phenomena

that are known to exist in the human brain, such as

spontaneous activity and rhythms of spiking activity.

The Human Brain Project

One of the most highly publicized large-scale brain

models is the Blue Brain Project, started in 2005 [9].

The Human Brain Project (HBP) [10��], which was

recently approved for one billion euros of funding from

the European Union, has the Blue Brain model as its

centerpiece. The stated goal of the HBP is to build a

working simulation of the entire human brain. The model

is focused on simulating cortical columns, hypothesized

cylindrical groups of approximately 100,000 neurons that

make up the cerebral cortex of mammals [11,12], but see

also [13]. The largest simulations of this model to date

have included about a million neurons. Each neuron and

synapse is simulated in a great deal of detail, taking into

account ion channel composition, spatial morphology and

detailed physiological data [14]. The majority of data

used in the model is gathered from rodent slice exper-

iments and connectivity is determined by the statistical

properties of observed connectivity across slices [15]. The
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2 Theoretical and computational neuroscience
project is expected to allow ‘‘tracking the emergence of

intelligence’’ [9].

The DARPA Synapse Project

Another large-scale model currently under development

is part of the DARPA Synapse project [16]. This project

was started in 2008, and the cortical model included in

this project is based upon previous work simulating

hundreds of millions of cortical neurons [17]. In contrast

to the HBP, the Synapse project uses a simpler neuron

model that includes neural spikes and spike-time-de-

pendent plasticity (STDP), but little in the way of spatial

morphology or ionic dynamics. As a result, many more

individual neurons can be simulated simultaneously.

They have recently reported a model with 500 billion

neurons (5 times more than are in the human brain)

[18��].

Spaun

Spaun [19��] is a large-scale brain model developed in our

lab in 2012. In terms of the single neuron model

employed, Spaun is similar to Synapse; it uses a simplified

spiking model. In terms of number of cells, it is similar in

scale to the HBP, as it uses 2.5 million neurons. The

method used to design and construct the model combines

the Neural Engineering Framework [20, NEF] and the
Figure 1
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A high-level overview of the parts of the brain included in the Spaun model. 

specific to a single task. The implementation of a particular function by each

data (see [19��]). The many subsystems are coordinated by a combination of

by the basal ganglia (figure adapted from [19��] with permission).

Current Opinion in Neurobiology 2014, 25:1–6 
Semantic Pointer Architecture [21�, SPA]. The NEF

provides a quantitative, general approach for implement-

ing high-dimensional nonlinear dynamical systems in

networks of spiking neurons. It acts as a ‘neural compiler’

allowing high-level functional specifications to be

mapped to connection weights in low-level spiking neural

networks. The SPA provides a particular functional spe-

cification that captures central aspects of cortical and

subcortical organization and behavior. The SPA defines

a neurally plausible representational format (i.e. semantic

pointers) that captures perceptual, motor, and cognitive

representations. Spaun itself is a specific model that

adheres to the SPA and was generated using the NEF.

The model includes several cortical and subcortical struc-

tures, receiving input in the form of images through a

single eye, and generating output by moving its single,

physically modeled, arm (see Figure 1). Spaun is able to

perform eight different perceptual, motor, and cognitive

tasks in any order, without any changes to the model

between tasks.

A comparison

The different choices regarding how to construct a large-

scale model reflected in these examples has resulted in

some friction. Henry Markram has criticized Modha’s cat-

scale neural model, calling it ‘‘trivial’’ and stating: ‘‘It is
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Each brain area helps extend the functionality of Spaun, though none is

 area is well-supported by a variety of functional imaging and/or cellular

 their default connectivity and the flexible effective connectivity controlled
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Table 1

A comparison of large-scale brain models

Model Neurons Synapses Neuron complexity Hardware Behaviors

Izhikevich 1.0 � 108 5.0 � 108 Moderate Beowolf Cluster (60 3 GHz processors) Neural level phenomena

HBP 1.0 � 106 5.0 � 108 High IBM Blue Gene Neural level phenomena

Synapse 5.0 � 1011 1.0 � 1014 Low IBM Blue Gene Neural level phenomena

Spaun 2.5 � 106 1.0 � 1012 Low 8 Core Xeon processor (2.53 GHz) Simple perceptual, motor,

and cognitive tasks
highly unethical of Mohda to mislead the public in

making people believe they have actually simulated a

cat’s brain’’ [22�]. As well, Markram commented of the

Spaun model: ‘‘It is not a brain model’’ [23].

In both cases, Markram is taking issue with what he sees

as a lack of biological realism. Such disagreements about

how to construct large-scale neural models are important.

If we build a model that does not capture relevant aspects

of the system, it will not be explanatory or predictive, and

hence not useful. What kind of explanations and predic-

tions do the current generation of models provide?

All of the discussed models are concerned to some extent

with simulating complex neural activity and replicating

neural phenomena found in the brain (see Table 1). They

have all replicated some standard measurable properties

of the brain including spike patterns, activity waves, and

rhythms. However, only the Spaun model connects its

complex neural activity to complex behavior. If, indeed,

the purpose of neuroscience is to make such a connection,

then the ability of a model to explain and predict behavior

must be part of determining what is and what is not a good

brain model. But, is making such a connection really the

purpose of such models? And, if so, what does that mean

for the role of biological realism?

Why build large-scale brain models?
Many reasons have been offered as to why large-scale

models are important to build. These include the ability

to understand mysterious brain disorders, from autism to

addiction [24], to develop and test new kinds of medical

interventions, be they drugs or stimulation [25], and to

provide a way to organize and unify the massive amounts

of data generated by the neurosciences [26]. As well,

there are studies that are impractical or immoral to per-

form on living subjects over the long-term [27]. Using

brain models can allow us to study neural development

without these constraints.

Beyond such practical and ethical considerations, there

are basic research questions that can be addressed in new

ways in large-scale models. Questions such as: What is the

role of neural spiking? If we can construct a large-scale

model and demonstrate little to no change in behavior

when using non-spiking neurons, suggestions that spikes

are for long-distance communication alone [28] will seem
www.sciencedirect.com 
more reasonable. If the model fails to function, we would

be in an excellent position to understand why. Similar

approaches can be taken to other questions, including:

‘‘What kinds of learning can take place without adversely

affecting the stability of the whole brain?’’ ‘‘What kinds of

oscillatory patterns are intrinsic, and which are generated

by large cortical network interactions?’’ ‘‘Which simpli-

fied neuron model best approximates the behavior of a

real neuron [29]?’’ ‘‘What is the role of heterogeneity in

populations of functionally related neurons [30]?’’

However, no question seems to loom larger in the minds

of modelers than: ‘‘How do brains control behavior?’’

Interestingly, all of the lead researchers of the models

described earlier have cited a central desire to understand

intelligent behavior [9,31,8]. In essence there is agree-

ment that the vast majority of observed behavior is the

result of the interactions between many brain areas.

Without constructing models that explore these complex

interactions, we are unlikely to be able to understand how

to help a distressed brain, or explain the basic processes

behind biological cognition.

In short, without large-scale models, we cannot test large-

scale hypotheses. Without large-scale hypotheses, we

cannot address what makes us humans – as the pinnacle

of sophisticated behavior – interesting.

But is there a right way to build such models? Is there a

right ‘level of detail’? We believe that this is simply an ill-

posed question. As has long been accepted by those

constructing large-scale climate models, the appropriate

scale is determined by balancing two things [32]: first, the

questions that need to be answered and second, the

available computational resources.

If we are asking questions about how changing the

morphology of neurons relates to changes in its activity

(perhaps to understand the effects of neurofibrillary

tangles in Alzheimer’s disease), our model likely needs

to include neuron morphology. However, if we are asking

questions about how neuronal death in hippocampus

results in memory loss, perhaps our model can simplify

away detailed morphology. The benefit of such simplifi-

cations is that we can simulate more neurons using the

same computational resources. Just as with models of the

weather, larger scale models require more simplifications
Current Opinion in Neurobiology 2014, 25:1–6
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Table 2

Example pros and cons to adopting either a top-down or bottom-up approach to brain modeling

Top-down Bottom-up

� Explicitly test high-level hypotheses � Clear relation of model to measurable detail

Pros � Independence from extensive knowledge of missing biological details � Models are more driven by (biological) data

� Can import expert knowledge from behavioral sciences � Allowable constraints are more domain specific

� Hypotheses can bias proposed models � Reliance on ‘emergence’ for high-level effects

Cons � Must make assumptions that go beyond available data � Must collect missing data

� May not contact relevant biological detail � Difficult to relate models to other behavioral sciences
because of computational constraints. And, critically,

computational constraints will never be removed, as there

are always more details that could be simulated.

Bottom-up modeling versus top-down
modeling
There are two broad kinds of approaches to building

neural models. The ‘bottom-up’ approach exemplified

by the HBP, entails attempting to simulate the biological

processes in the brain in as much detail as possible

allowing one ‘‘to study the steps involved in the emer-

gence of biological intelligence’’ [9]. In contrast, there is

also the ‘top-down’ approach employed by Spaun and

other models [33�,34], which entails identifying hypoth-

eses regarding the behavioral function of a brain area and

then determining how neurons carry out the relevant

computations with networks of spiking neurons (see

Table 2).

The ‘top-down’ approach allows us to use the vast knowl-

edge gained through the behavioral sciences to impose

constraints on the model. This allows us to use the model

to test hypotheses about the functions of different brain

regions. For example, Spaun implements a specific circuit

that models the ability of the basal ganglia to perform

action selection [35]. This network has been tested

against a wide variety of low-level data (e.g. spike patterns

during learning, spike variability, etc.), while exhibiting

useful high-level effects (e.g. selecting an action from

many alternatives). Spaun further demonstrates that such

a model can be used effectively in a large-scale setting. Of

course, there is always the concern that such a top-down

model has embedded implausible assumptions into the

model. However, as with any scientific endeavor, success-

ful comparison of the model to a wide variety of data

increases our confidence that the embedded principles

parallel those discovered by evolution.

The complementary concern with the bottom-up

approach is its reliance on the often mysterious notion

of ‘‘emergence’’ [36] to produce behavior. It is overly

optimistic, if not naive, to assume that simulating neurons

in statistically similar-looking patterns to average data will

allow interesting behavior to emerge, without explicitly

defining a computation for these neurons to perform [37].
Current Opinion in Neurobiology 2014, 25:1–6 
If the brain is able to perform complex, high-dimensional

computations as presumed by many theorists [38�], expli-

citly postulating those computations will significantly

shorten the road to discovery.

To build on Marr’s [39] analogy, consider the task of

building an organism capable of flight. A bottom-up

approach might reduce a bird to minimal component

parts: vanes, barbs, barbules, hackles, or perhaps molecu-

lar components. Unfortunately, at low levels a kiwi is very

similar to a duck. Perhaps more to the point, the details of

feathers are not relevant for understanding flight. The

top-down approach, in contrast, would attempt to mimic

selected structures thought relevant for flying: perhaps

simplified wings, or simplified feathers. The result would

be an earlier understanding of the principles of flight, and

allow subsequent characterization of the role feathers

(and vanes, barbs, etc.). For the brain, we do not know

the right level of detail beforehand, but exploring plaus-

ible levels in the context of behavior is likely to lead, most

efficiently, to a good understanding of the structure/

function relation.

With these considerations in mind, it seems clear that

arguing over the ‘right’ level of detail for brain models is

misguided. We should always ask ‘‘right for what pur-

pose?’’ The correct answer will often be controversial.

But, building detailed models and simplifying them care-

fully is a good method for determining the best answers to

such questions. Although we use Spaun as an example of

top-down modeling here, the methods used to construct it

allow us to vary the amount of detail in any part of the

model systematically. Providing models and methods that

allow for this kind of systematic variation in detail is

critical for efficiently constructing large models – and

hence critical for exploring the biological and behavioral

roots of brain function.

Conclusions
In sum, we have identified two critical considerations to

guide the effective construction of large-scale models.

The first is that a clear link to behavioral constraints must

be established. Without such a link, we are missing the

fundamental purpose of neuroscience: to understand the

relation between brains and behavior. The second con-
www.sciencedirect.com
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sideration is that the level of detail included in a model

should be determined by careful trade-offs between that

amount of detail, computational resources, and the ques-

tions that need to be answered. The most efficient

methods for building models will provide a natural means

for systematically exploring exactly those tradeoffs.

Beyond such methodological considerations, there are

also many practical constraints on building large models.

These include the software engineering challenges

involved in developing, distributing, and maintaining a

codebase for large models. As well, organizing, analyzing,

and storing the massive amounts of data that can be

generated by large simulations poses familiar, but com-

plex, IT challenges. Having to build and maintain the

hardware infrastructure required can also impose a sig-

nificant strain on finances and time. Critically, several

initiatives are helping to provide free, open source

resources for the community that help to minimize these

burdens even for large-scale models [40–42]. Our group

has also developed such software resources, ones that are

specifically designed to meet the methodological con-

siderations discussed here (http://nengo.ca/). And, we are

working closely with hardware groups to develop special-

ized large-scale neural modeling infrastructure that uses

this same software [43,44]. We believe that the rapid

confluence of software, hardware, and theoretical insight

aimed at building neural models at previously unheard of

scales will usher in a fundamental shift in our under-

standing of how brains so successfully inhabit their strik-

ingly complex world.
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Markram Henry: Statistical connectivity provides a sufficient
foundation for specific functional connectivity in neocortical
neural microcircuits. Proc Natl Acad Sci U S A 2012, 109:E2885-
E2894.

[16]. Preissl Robert, Wong Theodore M, Datta Pallab, Flickner Myron,
Singh Raghavendra, Esser Steven K, Risk William P, Simon Horst
D, Modha Dharmendra S: Compass: a scalable simulator for an
architecture for cognitive computing. In Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society Press;
2012:54.

[17]. Ananthanarayanan Rajagopal, Modha Dharmendra S: Anatomy of
a cortical simulator. In Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing. ACM; 2007:3.

[18]. Wong Theodore M, Preissl Robert, Datta Pallab, Flickner Myron,
Singh Raghavendra, Esser Steven K, McQuinn Emmett,
Appuswamy Rathinakumar, Risk William P, Simon Horst D,
Modha Dharmendra S: 1014. IBM Research Division; 2013:.
technical report.

The results from the DARPA Synapse project’s latest 500 billion neuron
simulation are given. See [17] for more of the details behind the simula-
tion.

[19]. Eliasmith Chris, Stewart Terrence C, Choo Xuan, Bekolay Trevor,
DeWolf Travis, Tang Charlie, Rasmussen Daniel: A large-scale
model of the functioning brain. Science 2012, 338:
1202-1205.

This paper describes Spaun, a 2.5-million spiking neuron brain model that
is able to perform a variety of cognitive tasks without reconfiguration. This
is currently the largest functional brain simulation available. It is the first
model of this scale to connect perceptual, motor, and cognitive behavior
to complex neural activity.

[20]. Chris Eliasmith C, Anderson Charles H: Neural Engineering:
Computation, Representation, and Dynamics in Neurobiological
Systems. The MIT Press; 2003.

[21]. Eliasmith Chris: How to Build a Brain: A Neural Architecture for
Biological Cognition. Oxford University Press; 2013.

This book outlines an architecture (called the Semantic Pointer Archi-
tecture or SPA) used to represent concepts in the Spaun model. For more
detail on the low-level modeling techniques used (the Neural Engineering
Framework), see [20].

[22]. Adee Sally: The Markram Modha Controversy. IEEE Spectrum;
2012.

An entertaining overview of the controversy raised by Henry Markram’s
open letter criticizing Dharmendra Modha’s claims regarding cat-scale
simulations.

[23]. Sanders Laura: Mind & brain: model brain mimics human
quirks: computer simulation turns decisions into plans for
action. Sci News 2013, 183 13–13.

[24]. Adam Just Marcel, Keller Timothy A, Malave Vicente L,
Kana Rajesh K, Varma Sashank: Autism as a neural systems
disorder: a theory of frontal-posterior underconnectivity.
Neurosci Biobehav Rev 2012, 36:1292-1313.
Current Opinion in Neurobiology 2014, 25:1–6

http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0005
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0005
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0010
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0010
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0010
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0015
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0015
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0015
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0020
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0020
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0020
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0020
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0025
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0025
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0025
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0030
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0030
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0030
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0035
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0035
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0035
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0040
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0040
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0040
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0045
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0045
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0050
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0055
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0055
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0055
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0060
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0060
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0065
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0065
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0065
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0070
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0070
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0070
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0070
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0075
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0075
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0075
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0075
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0075
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0080
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0080
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0080
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0080
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0080
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0080
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0080
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0080
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0085
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0085
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0085
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0085
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0090
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0090
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0090
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0090
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0090
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0090
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0090
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0095
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0095
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0095
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0095
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0100
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0100
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0100
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0100
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0105
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0105
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0105
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0110
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0110
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0110
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0115
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0115
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0115
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0120
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0120
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0120
http://refhub.elsevier.com/S0959-4388(13)00189-X/sbref0120


6 Theoretical and computational neuroscience
[25]. Beeler Jeff A, Frank Michael J, McDaid John, Alexander Erin,
Turkson Susie, Sol Bernandez Maria, McGehee Daniel S,
Zhuang Xiaoxi: A role for dopamine-mediated learning in the
pathophysiology and treatment of Parkinsons disease. Cell
Rep 2012, 2:1747-1761.

[26]. Tyrcha Joanna, Roudi Yasser, Marsili Matteo, Hertz John: The
effect of nonstationarity on models inferred from neural data.
J Stat Mech: Theor Exp 2013, 2013:P03005.

[27]. van Ooyen Arjen: Using theoretical models to analyse
neural development. Nat Rev Neurosci 2011, 12:
311-326.

[28]. Ahissar Ehud: Temporal-code to rate-code conversion by
neuronal phase-locked loops. Neural Comput 1998, 10:
597-650.

[29]. Van Drongelen Wim: Modeling neural activity. ISRN
Biomathematics. 2013.

[30]. Rigotti Mattia, Barak Omri, Warden Melissa R, Wang Xiao-Jing,
Daw Nathaniel D, Miller Earl K, Fusi Stefano: The importance of
mixed selectivity in complex cognitive tasks. Nature 2013,
497:585-590.

[31]. Modha Dharmendra S, Ananthanarayanan Rajagopal,
Esser Steven K, Ndirango Anthony, Sherbondy Anthony J,
Singh Raghavendra: Cognitive computing. Commun ACM 2011,
54:62-71.

[32]. Lawrence Gates W: Amip: The atmospheric model
intercomparison project. Bull Am Meteorol Soc 1992, 73:1962-
1970.

[33]. Yamazaki Tadashi, Igarashi Jun: Realtime cerebellum: a
large-scale spiking network model of the cerebellum
that runs in realtime using a graphics processing unit. Neural
Netw 2013.

The authors present a real-time, spiking neuron cerebellum model that
can be used for adaptive motor control. The model matches animal data
on the Pavlovian delay eyeblink conditioning task and is used to control a
‘batting’ robot.
Current Opinion in Neurobiology 2014, 25:1–6 
[34]. Wang Xiao-Jing: Neural dynamics and circuit mechanisms of
decision-making. Curr Opin Neurobiol 2012, 22:1039-1046.

[35]. Stewart Terrence C, Bekolay Trevor, Eliasmith Chris: Learning to
select actions with spiking neurons in the basal ganglia. Front
Neurosci 2012, 6.

[36]. Johnson Steven: Emergence: The Connected Lives of Ants,
Brains, Cities, and Software. Simon and Schuster; 2001.

[37]. Machens Christian K: Building the human brain. Science 2012,
338:1156-1157.

[38]. Ganguli Surya, Sompolinsky Haim: Compressed sensing,
sparsity, and dimensionality in neuronal information
processing and data analysis. Annu Rev Neurosci 2012, 35:485-
508.

An outline of mathematical methods for processing high-dimensional
data is presented. The relevance to building neural simulations is detailed,
in that neural computation is inherently carried out by high-dimensional
patterns of neural activity.

[39]. Marr David: Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information. WH, San
Francisco: Freeman and Company; 1982, .
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