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I argue that current flaws in the methodology of contemporary
cognitive science, especially neuroscience, have adversely affected
philosophical theorizing about the nature of representation. To highlight
these flaws, I introduce a distinction between adopting the animal’s
perspective and the observer’s perspective when characterizing
representation. I provide a discussion of each and show how the former
has been unduly overlooked by cognitive scientists, including
neuroscientists and philosophers. I also provide a specific neuroscientific
example that demonstrates how adopting the animal’s perspective can
simplify the characterization of the representation relation. Finally, I
suggest that taking this perspective seriously supports in a specific thesis
regarding content determination: the statistical dependence hypothesis.
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1. Introduction

As a cognitive scientist, there are at least two possible ways to characterize
the contents of internal representations. One is to adopt the typical scientific,
objective, perspective on the representational states and contents of an
organism, I call this the ‘observer’s perspective’. Adopting this approach, we
would present a stimulus, perhaps a target moving at 1 m/s, to an animal and
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then determine which mental states were activated by that presentation. Those
activated states would then be considered candidates for representations of that
stimulus. Ignoring, for the moment, concerns about having a naïve causal
theory of representation and about reproducing the behavior across trials, this
approach essentially tells us how likely an observed neural state is given a
stimulus.

Another, largely overlooked, means of characterizing the contents of internal
representations is to adopt what I call the ‘animal’s perspective’. That is, we
can look at the mental states of the animal and try to guess how likely it is that
a certain stimulus (e.g., something moving at 1 m/s) is in the environment. In
order to take this perspective, very different constraints must be placed on
defining stimuli and analyzing behavioral responses. In other words, adopting
one perspective over another has serious consequences — it is a difference that
makes a difference.

In this paper I argue that the observer’s approach is by far the most common
amongst cognitive scientists, including philosophers such as Dretske, Dennett,
Fodor, and Quine, and neuroscientists such as Desimone, Georgopolous, van
Essen, and Hubel and Weisel. More importantly, I argue that this approach is
very seriously flawed in virtue of being incomplete. I show that rectifying this
flaw suggests an alternative characterization of representational content.
Although I discuss the close relation between the observer’s and animal’s
perspectives, I begin by distinguishing them in order to highlight the
limitations and strengths of adopting either one exclusively. In particular, I
present an example that demonstrates how adopting the perspective of the
animal can result in a simpler characterization of the representation relation. I
conclude by suggesting that the importance of the animal’s perspective is
properly captured by a recent proposal for characterizing mental content called
the statistical dependence hypothesis (Eliasmith, 2000; Eliasmith 2006).

2. Two perspectives, one problem

When faced with scientific problems, such as the problems of
representation, we have had great success in dealing with them from a third
person perspective. Given such successes, a methodological bias in favor of the
observer’s perspective is only natural. This is, in general, an important

98 Chris Eliasmith



perspective to adopt in order to construct objectivesolutions to many problems;
solutions, that is, that we can easily share with others. However, when it comes
to representational problems, it isn’t so clear that this is an appropriate
viewpoint to take.

Consider the specific problem of ‘neurosemantics’, that is the problem of
how neurobiological systems have contentful states.1 In addressing this
problem, it is the information-processing neurobiological system that is the
locus of concern. This scientific question, unlike questions about quarks,
molecules, or tectonic plates, concerns something that may have a perspective
of its own. If it does have a perspective, and that perspective is relevant to
answering the questions we need to ask, then we maybe able to adopt either
perspective — that of the observer, or that of the object or system under study
— when addressing representational problems about thatobject or system.

My use of the term ‘perspective’ may bring to mind concerns with
subjective experiences or consciousness (e.g., along the lines of Nagel 1974),
but I mean to avoid such discussions. I have in mind something much weaker
than a conscious perspective. A ‘perspective’, as I shall use the term, is a
relation between an information processor and a transmitter of information.
Perspective is determined by what information is available to an information
processor from a transmitter. Notably, we don’t have to know what the
information is aboutin order to distinguish one set of informational states from
another. This is because information-theoretic descriptions can be taken strictly
to be descriptions of energy transfer, and we do have a way of tracking energy
flow without reference to ‘aboutness’ (Fair 1979, p. 228). So, by distinguishing
‘perspectives’ I mean to distinguish information-theoretic descriptions of
energy flows. This means that perspectives are commonplace (presumably,
more so than consciousness) and can be attributed to individual neurons and
brain areas as well as to entire brains. Importantly, this characterization does
not rule out the possibility that such a characterization may be relevant for
determining the ‘aboutness’ of those states.

To claim that there is a difference between the observer’s and the animal’s
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perspective, then, is to claim that animals and observers have access to
different information in a given situation. An animal (and each of its
information processing sub-components) can only access information available
through sensory receptors. Properly situated observers can access that
information, as well as information available through their own sensory
receptors about the same situation. In other words, the observer has two
sources of information; the animal’s receptors, and their own.2 Given the
current state of neuroscientific inquiry, only a small number of neurons can be
recorded from simultaneously. Thus, the ‘animal’s perspective’ as I am using
the term, generally refers to a tiny part of the total information available to an
animal. Nevertheless, I think there is an important lesson to learn even from
this limited access to the animal’s ‘total’ perspective.

Most cognitive scientists concerned with representation have adopted the
observer’s perspective. However, there have been notable exceptions. For
example, Fitzhugh (1958) describes a means of determining the nature of the
environment given the response of nerve fibers. Just as a brain (or its parts)
infer the state of the world from sensory signals, Fitzhugh attempts to
determine what is in the world, once he knows a nerve fiber’s response to an
unknown stimulus. He purposefully limits the information he works with to
that available to the animal. The ‘extra’ information available via the
observer’s perspective is only used after the fact to ‘check his answers’; it is not
used to determine what the animal is representing. Fitzhugh’s is one of the first
in a significant line of experimental approaches that has recently been extended
in the book Spikes: Exploring the neural code(Rieke, Warland et al. 1997).
One of the main themes of this book is echoed in this chapter: our theories can
change when we adopt the perspective of the animal. 

In his book Content and Consciousness, Daniel Dennett (1969) also realized
that the animal’s perspective is an important one: 

Whereas we, as whole human observers, can sometimes seewhat
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stimulus conditions cause a particular input or afferent neuron to fire, and
hence can determine, if we are clever, its ‘significance’ to the brain, the
brain is ‘blind’ to the external conditions producing its input and must
have some other way of discriminating by significance (p. 48).

However, Dennett does not appear to have realized that adopting the
animal’s perspective may have important consequences for a theory of content,
because he assumes the standard perspective elsewhere in the same book: “[T]
he investigators working with fibres in the optic nerves of frogs and cats are
able to report that particular neurons serve to report convexity, moving edges,
or small, dark, moving objects because these neurons fire normally only if there
is such a pattern on the retina” (p. 76, my italics; see also pp. 42, 126). In this
second quote, and elsewhere, Dennett has assumed that the pattern, as
determined from the observer’s perspective, is what is being represented.
However, as he noted in the previous quote, bits of brains don’t necessarily
represent what whole human observers do.

In contrast to Dennett’s ambiguous commitment to the animal’s perspective,
work in artificial intelligence has generally embraced this perspective.
Researchers in this field realize that the problems that agents solve must be
solved given only one source of information — sensory input. For example,
this kind of ‘first-person’ strategy is adopted by the influential tradition in
machine vision of constructing three-dimensional scenes from basic features
(Marr 1982). Nevertheless, theories of representational content in organisms
have decidedly not taken a cue from such traditions in artificial intelligence.
This is, perhaps, not surprising given that researchers in artificial intelligence
often distinguish their pragmatic concern for understanding how to solve a
given problem from concerns of how the brain actuallysolves such problems.
This, of course, doesn’t stop such research from suggesting hypotheses about
how the brain might solve such problems (but, for a neurobiologically
motivated critique of some such hypotheses based on Marr’s program see
Churchland, Ramachandran et al. 1994).

Artificial intelligence researchers, then, tend to share the conviction that
trading the third person perspective for a first person perspective not only
makes sense given the kinds of problem at hand, but is also necessary for
avoiding unwarranted assumptions about the nature of the environment. In
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characterizing neurobiological systems, however, most neuroscientists and
philosophers adopt a third person perspective. In particular, neuroscientists
tend to assume a set space of possible distal stimuli and try to determine how
the system reacts to those distal stimuli (and philosophers tend to assume that
neuroscientists have a good methodology). This, however, isn’t the problem
that an animal must solve in the real world. Rather, the set of possible stimuli is
unknown, and an animal must infer what is being presented given various
sensory cues. In the next three sections, I contrast these two ways of answering
questions about the representation relation.

3. One way to find some answers

The standard methodology for approaching representational problems is the
intuitive one. If you were asked to determine what states or processes played a
representational role in a given system (i.e., to solve the Problem of
Representations (Cummins 1989)) a natural approach would be to present the
system with various things it would have to represent and to look for the
processes and states that are activated by the presentation of those stimuli. This
is precisely the current methodology in neuroscience, and one endorsed by
many philosophers.

For instance, the large corpus of experiments performed to characterize
shape-related responses in neurons in early parts of visual cortex such as V1,
V2 and V4 adopt this methodology (Knierim and Van Essen 1992; Gallant,
Braun et al. 1993; DeYoe, Carman et al. 1996; Callaway 1998). First, a neuron
is found with a recording electrode and its receptive field is determined. The
receptive field of a neuron is the part of the visual field that, when occupied by
a stimulus, causes the neuron to respond (i.e., to fire above its base firing rate).
The neuron’s preference for color and other non-shape related features is also
determined. All the stimuli presented to the neuron have the non-shape related
features it prefers. Now, a set of predetermined stimuli, such as crosses,
oriented bars, spirals, and sinusoidal gratings, are presented to the neuron and
its responses are recorded. The experimenter then proceeds to characterize the
responses of the neuron over a series of trials in order to account for the
variability of responses to the same stimuli. What the experimenter is
constructing, then, is the conditional probability function that a certain neural
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response occurs given a stimulus. So if we are told, for example, that a spiral is
in some neuron’s receptive field, we can use the probability function we have
constructed to predict how that neuron is likely to behave. Presumably, if the
experimenter picks enough different stimuli to present to a neuron, he or she
will be able to get some sense of what the neuron is representing, that is, to
what dimensions (e.g., curvature, length, etc.) it responds.

This kind of experiment has been performed since Hubel and Wiesel’s
(1962) classic experiments in which they identified cortical cells selective to
the orientation and size of a bar in a cat’s visual field (such neurons are often
problematically called ‘edge detectors’). The ‘bug detector’ experiments of
Lettvin et al. (1988/1959), perhaps better known to philosophers, take a similar
approach. In the ‘bug detector’ experiments, retinal ganglion cells (i.e., ‘bug
detectors’) were found that respond to small, black, fly-sized dots in a frog’s
visual field. More recently, this method has been used to find ‘face-selective
cells’ (i.e., cells that respond strongly to faces in particular orientations) in
monkey visual cortex (Desimone 1991). In fact, because the Hubel and Wiesel
studys were so influential, nearly all single electrode experiments done in
cortex follow this basic methdology, whether in parietal cortex (Andersen, et
al. 1985), occipital cortex (Newsome and Pare, 1988), temporal cortex
(Desimone 1991), motor cortex (Georgopolous, et al. 1986), or frontal cortex
(Boch and Goldberg, 1989). In all of these cases, what is deemed important is
recording how a neuron responds to known stimuli. In other words, the
observer’s perspective is adopted, since both the neuron’s response and the
nature of the stimulus (e.g., edges, flies, and faces) are used to characterize the
neuron’s behavior.

This method clearly dominates neurophysiological research (Gross, Rocha-
Miranada et al. 1972; Zeki 1980; Felleman and Van Essen 1991; Roelfsema,
Lamme et al. 1998). It is also the method used by neuroscientists to determine
the relata of the representation relation (i.e., to solve the Problem of
Representation (Cummins 1989)). In the case of face-selective cells, the
representation relation cam be completed as follows: {the neuron that is being
recorded from} represents {that face x degrees from y degrees (where y
degrees is the preferred orientation of the cell)} with respect to {the monkey’s
brain}.3 These are presumed to be the right relata because, in order, the neuron
responds to the stimulus, the observer knows that the stimulus is a face at x
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degrees from y degrees, and the neuron doesn’t respond that way outside of the
monkey’s brain. Notice the central role of the observer’s perspective in
determining the relata in the representation relation. The precise content of a
given neural firing is determined by the observer’s independentknowledge of
the stimulus. It is, in general, dangerous to have such a priori (with respect to
the animal) commitments determine the results of an investigation. Shortly, I
discuss how we can, at least partially, avoid this result by adopting the animal’s
perspective.

Before I do, however, it is important to show that philosophers, too, have
adopted related tactics in trying to characterize the representation relation.
Consider, for example, Fred Dretske’s (1988) approach. He argues for a
distinction between three types of representational systems:

Type I— Systems with no intrinsic power of representation at all; e.g., a pen
used to stand for a unicorn.

Type II— Systems that use natural signs as conventional representations;
e.g., falling sand particles used to represent time.

Type III — Systems that use their intrinsic indicator functions as
representations; e.g., the ‘bug detector’ cells representing bugs to a
frog.

In fact, the Problem of Representation arises only in the third case because in
type I and type II systems the representational relationship is stipulated by a
user. So how does Dretske come to understand the representational relationship
in type III representational systems? He calls neuroscience to his aid. He
accepts ‘bug detectors’ as representations of edible bugs because neuroscience
has shown that particular cells fire when given bug-like stimuli (ibid., pp. 68-
9). So the representational relation is the causal one between bugs and neural
firings; the causal relation that is described by the conditional probability of the
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neural firings given the presence of bugs. Dretske is not alone in this kind of
appeal to neuroscience. Philosophers have often thought that the details of
cognitive function could be left to neuroscientists (see e.g., Dennett 1969;
Millikan 1984; Churchland 1986; Churchland 1989; Dennett 1991).

But, Drestke is a particularly interesting case because he seemsto be
interested in the conditional probability that there is a stimulus in the
environment given a response (i.e., P(s|r)), not the related, but converse
probability function which neuroscientists are constructing (i.e., p(r|s)).4 This is
important because, as I discuss in more detail in the next two sections, I think
p(s|r) has been wrongly ignored. But, if Dretske talks about P(s|r), how can I
claim that the related probability function has been ignored? The reason is that
Dretske (1981) claims that P(s|r) has to be unity, i.e., that there has to bethe
stimulus in the environment given a particular neural response (and given
background knowledge and certain channel conditions) in order for that
response to carry information about the stimulus. This is to say that if there is a
given neural response thenthere is a given stimulus. In effect, then, Dretske has
turned the probability statement into a logical one by forcing the unity criteria
on the probability.

There are two problems with this result. First, from an experimental point of
view, this condition on neural meaning prevents Dretske’s analysis from
having any methodological import. It is never the case, after all, that
probabilities of this kind, as measured experimentally, are one. Therefore, on
Dretske’s analysis it is never the case that a measured neural response can be
said to carry information about a stimulus. Dretske may claim that his is a
metaphysical reduction of the notion of representation, but he then must
explain why all empirically characterized representation relations, none of
which meet his criterion, are still considered representation relations. And,
even if he succeeds in offering such an explanation, he must tell us why the
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original criterion in conjunction with this explanation should be preferred over
an account that doesn’t necessitate further explaining.

Second, and more importantly for my purposes, Dretske’s criterion can only
be satisfied by adopting a rather extreme form of the observer’sperspective;
the observer must be ideal. In particular, the observer must have complete
knowledge of channel conditions, the animal’s background knowledge, and the
state of the stimulus in order to verify that a given response carries information
about a stimulus. For these reasons, Dretske’s theory does not adopt what I
have been calling the animal’s perspective. That is, Dretske’s theory eliminates
the perspectival nature of P(s|r) by forcing a criterion of a unitary conditional
probability; all relevant information must be available in order to determine
that this conditional probability is one. Since the animal’s perspective is
defined by a limit on information available from a transmitter, and there can be
no limits on the information available under Dretske’s characterization,
Drestke’s theory clearly does not adopt the animal’s perspective in the relevant
sense.

Even those philosophers who, unlike Dretske, reject neuroscience as the
arbiter of cognitive theories have generally accepted the standard methodology -
normally by placing psychology in neuroscience’s stead. Quine (1960), for
example, motivated by his behavioristic tendencies, warns that we should steer
clear of looking “deep into the subject’s head” or at the subject’s “idiosyncratic
neural routings” (p. 31). In contrast, Quine describes in great detail
experiments in which we are asked to evaluate the response of a subject given
some stimuli (e.g., a rabbit). In effect, Quine argues that even if the conditional
probability of some response (e.g., the word ‘gavagai’) given some stimulus
(e.g., a rabbit) is equal to one, we still can’t make claims about what the
stimulus is being seen as (e.g., a rabbit, or undetached rabbit parts). What is
important for my purposes is that the conditional probability that behaviorists
like Quine are interested in is still that of the response given the stimuli; it is
this conditional probability that is constructed under the standard methodology. 

The same is true of philosophers motivated by cognitivepsychology, such as
Fodor (1975, p. 34-7). For example, in Fodor’s discussion of concept learning,
he takes it that a subject’s response profile is what is modeled by psychological
theories. What psychologists are doing, then, is recording the subjects’
responses to a known set of stimuli. This allows them to achieve their goal of
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predicting subjects’ responses knowing the presented stimuli. In order to do
this, they have effectively constructed the same conditional probability
function as the behaviorists and neuroscientists: the probability of a response
given a stimulus.

These examples from neuroscience and philosophy, though only a small
sample, show a convergence on a particular methodologyfor characterizing the
representational properties of cognitive systems. They depend on the
assumption that constructing the conditional probability function of the
likelihood of a response given a stimulus is the best way to characterize the
relation between representations and sensory stimuli.

4. The strangeness of taking the familiar route

Neuroscientific experiments such as those discussed above are intended to
address both of Cummins’ representational problems because they help to
characterize a physical process that is correlated with external stimuli, and they
then use that correlation to determine the relata of the representation relation.
This experimental paradigm is geared towards characterizing the neural
response objectively, that is, for a third party observer. Because there are so
many sources of uncertainty when applying this kind of approach to a complex
system, the measurements of the output vary, even with well-controlled inputs
(see section 5 for a simple example). Not surprisingly then, we construct
histograms that tell us the probability of getting a particular output given the
input. From this third person perspective, the inputs are well defined and the
outputs are probabilistically related to the inputs. In other words, it just makes
sense to construct the conditional probability of the indeterminate output given
the determinate input. That probability function, what I have been calling
p(r|s), is a means of describing the physical processes inside the system we are
probing.

If we take a step back for a moment and think carefully about the problem
neuroscientists and philosophers are both trying to address, this approach
begins to seem a little odd. In the end, we are interested in understanding the
problem of neurosemantics. That is, we want to know how, and in what way,
animals(or their information processing parts) rely on internal states to stand
for things in the outside world. And, we want to know what the relation is
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between those internal states and the things in the outside world. We don’t
want to know (just) how to cause certain internal states in an animal. But,
constructing conditional probabilities of the response given the stimulus tells us
how to control the animal with known stimuli, not how the stimuli could be
inferred from the responses, or, more importantly, what the relation is between
the two.

This response-given-stimulus conditional probability may make sense from
our perspective, but, and this cannot be overemphasized, that conditional
probability makes no sense from the perspective of the animal. In the real
world, an animal (or its information processing parts) must try to coordinate
behaviors based on the neural firings from its sensory apparatus. There is no
sense in which the animal could know what stimulus is being presented prior
to having some set of neurons activated; this far, Dennett (1969) is right. This
is important for characterizing the representations in neurobiological systems
because, in the frog for example, that neural activity is used by subsequent
neurons to detect and react to bugs; bugs aren’t somehow usedto cause neural
firings.

Another way of thinking of this difference is to realize that constructing the
response-given-stimulus conditional, p(r|s), captures the process that generates
neural responses. If we present a certain stimulus to a neuron, we can
(approximately) determine the response we expect the neuron to generate. This
is a different problem from inferring the stimuli in the world from the neural
response. In this second case, we would try to (approximately) determine what
stimuli had caused the response we see.5 If we want to understand how an
animal can use its neural representations, we want to understand how it can
make such inferences, not just how neural action potentials are generated.

Perhaps the reason neuroscientists and philosophers haven’t tried to
understand neural function in terms of the conditional probability I am arguing
for (i.e., p(s|r)) is a methodological one. Perhaps, in other words, it is just easier
to find p(r|s) than p(s|r) and thatexplains why we have to adopt the perspective
supported by former instead of that supported by the latter. But this doesn’t
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seem to be the case.
First, we must realize that the statistical relation that we are mostinterested

in capturing is the combined (or joint) probability function that describes the
likelihood of a stimulus and a response, p(s, r). This function describes the
probability that the stimulus, s, and the response, r, occur together (or with
some suitable delay). The reason we are most interested in this joint probability
function is because it captures all there is to knowabout the probabilistic
relation between a stimulus and a response. From the joint probability function
we can determine the marginal probability functions (p(s) and p(r)) as well as
either conditional probability function (p(s|r) and p(r|s)). In other words, there
is nothing more to know about the relation between the two variables r and s
than what there is to be found in the joint probability function.

There are three ways of determining (or, more realistically, approximating) a
joint probability function. The first is to determine it experimentally. That is,
we can randomly present a set of stimuli that drive a cell, record the firings and
construct the joint histogram. Notably, this is not the same as showing stimuli
and constructing a histogram of the response probabilities for each stimulus
(i.e., the standard methodology). In the next section I discuss a specific
example of this difference. The second and third ways of determining the joint
probability function are either: 1) to find it from the response-given-stimulus
probability, p(r|s), if we know the probability of the stimulus, p(s) as in
equation (1); or 2) to find it from the stimulus-given-response probability,
p(s|r), if we know the probability of the response, p(r) as in equation (2).

p(s, r) = p(r|s)∙p(s) (1)
p(s, r) = p(r|s)∙p(r) (2)

Given these three ways of determining the joint probability function, we can
learn something quite interesting about the methodological assumptions of
traditional neuroscience and philosophy. Namely, that efforts have been
focused on characterizing only part of the relationship between stimuli and
responses. In particular, p(r|s) has been characterized, but this isn’t all there is
to know about the relation between a stimulus and a response. In order to
completely characterize the relationship, we also need to know p(s) as in (1).

The importance of the probability of a stimulus occurring, p(s), is often
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overlooked by the standard methodology. If we aren’t careful about p(s), then
our choice of stimuli to present to a neuron can greatly skew our estimate of
the joint probability function and we will mischaracterize the relationship
between stimulus and response. For example, if I present only one stimulus
over and over, the probability of that stimulus will be one, and the joint
probability will be equal to the conditional probability, p(r|s). This, of course,
isn’t because that’s what the joint probability really is, but rather because my
choice of p(s) is a particularly bad one, one that is unlikely to represent the
probability of naturally occurring stimuli. In order to get a good estimate of the
joint probability, we need to have a guess as to what p(s) is. As important and
difficult as generating that guess may be, it is not relevant for my purpose of
showing that the standard methodology isn’t simpler. What is important is that
we mustput a lot of work into determining p(s), or we will poorly characterize
the relationship we are after.

In the case of determining p(s|r), we seem, at first glance, to be at a
methodological disadvantage. We can’t, after all, force the neuron to have a
response and then see what the stimulus that caused it was. However, from (2),
it is plain that we can characterize this conditional probability if we
characterize the joint probability function first. Furthermore, we don’t need to
worry about p(r) here (as we needed to worry about p(s) under the traditional
methodology) because it can be calculated directly from our estimate of p(s, r)
(by marginalizing the joint probability function). But, estimating the joint
probability function isn’t easy. We need to present the neuron with a good
selection of stimuli, and to record the responses of the neuron. What do I mean
by a ‘good selection’? Well, the naturally occurring p(s) would be a good
selection. That, of course, is just what we needed to know in order to properly
characterize the relationship between stimulus and response in the traditional
methodology. In other words, we need to know just as much about the
probabilistic relationships (i.e., we have to make the same tough guesses) in
determining p(s|r) from (1) via the joint probability function, as we need to
know in order to properly characterize the stimulus/response relationship under
the standard methodology.

In sum, characterizing the complex relationship between the environment
and an animal’s internal representations is no more difficult from one
perspective than from the other. Furthermore, there are a number of
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considerations in favor of adopting the animal’s perspective. In particular, it’s
what the animal must do, and that is what we are interested in understanding.
So, taking the third person perspective, that is, adopting the traditional
methodologies of neuroscience and philosophy, may not be the best bet in
solving the interesting representational problems. The alternative is, of course,
to adopt the perspective of the animal.

5. The other way to find some answers

Though constructing the response-given-stimulus conditional probability,
p(r|s), is by far the most prevalent means of trying to understand representation
in neurobiological systems, it is not the only one. The alternative, as just
discussed, is to construct the stimulus-given-response conditional probability,
p(s|r). Fitzhugh (1958) suggests embracing this latter approach, though his
suggestion does not seem to have attracted much interest until recently (Bialek,
Rieke et al. 1991; Theunissen and Miller 1991; Abbott 1994; Mainen and
Sejnowski 1995; Rieke, Warland et al. 1997). In this section I discuss a specific
example that shows the significant difference adopting one perspective over
the other can make.

I have already suggested a few reasons why the animal’s perspective may be
important for characterizing representation. But are there reasons to think the
animal itself could or does use the stimulus-given-response conditional? For
the animal to do so, according to equation (1), it would need to take advantage
of the joint probability function (or an estimate of the joint probability
function) and the probability of a response occurring. In other words, before
anything else, the animal needs an internal statistical model of the
environment’s relation to its neural responses. The simple fact is, we have to
start with a model of the stimulus before we can construct the probability of a
stimulus given a response. Fortunately, there is evidence that young animals,
including children, do have a sense of the statistical structure of their world
(Soja, Carey et al. 1991; Spelke and Van de Walle 1993). For example, there is
evidence that children, at the tender age of three months, perceive object unity
(Spelke and Van de Walle 1993, p. 134). These sorts of results suggest that
animals come into the world with innate mechanisms that help them guess at
what stimulus in the environment causes some particular neural firings.6 Of

A New Perspective on Representational Problems 111



course, these initial models can be updated on the basis of experience.
Having to begin life with a statistical model of the world may seem unduly

nativist to many. However, such models don’t need to be very detailed (or even
very good) to be useful. Researchers in machine vision have taken advantage
of this fact and applied it to object recognition. They have turned from
traditional ‘descriptive’ models that are learned from scratch to ‘generative’
models that assumean initial model and then build upbetter representations on
the basis of that assumed model and experience (Frey and Jojic 1999). Using
these new approaches, researchers have been able to solve some traditionally
difficult problems with computationally simple algorithms and very general
models of the statistical structure of the world. So, not only is it possible to
construct stimulus-given-response conditional probabilities (as outlined in the
last section), but doing so is both biologically reasonable and has lead to
advances in fields solving related problems. These are two good reasons to
think this may be a fruitful approach.

But, what about an actual neurobiological system solving an actual
neurobiological problem? Since 1988, Robert de Ruyter van Steveninck and
William Bialek have worked to characterize the motion processing system in
the blowfly (de Ruyter van Steveninck and Bialek 1988; Rieke, Warland et al.
1997). The neurons they are particularly interested in are called H1 neurons
and are about 4 synapses away from the fly’s photoreceptors. These neurons
show a high sensitivity to the velocity of stimuli in the fly’s environment.

By tethering a fly, and recording from an H1 neuron for an extended period,
these researchers were able to build up a good estimate of the joint probability
of velocity and firing rate. With this data, they directly compared the difference
between using the stimulus-given-response conditional probability and the
more traditional response-given-stimulus conditional probability (see 
Figure 1).

Figure 1 demonstrates the important differences that can arise from taking
the animal’s perspective instead of the observer’s perspective. Beginning at the
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bottom of this figure, (a) and (b) show the probabilities of a stimulus (velocity)
and of a response (number of neural spikes in a time window) respectively, for
some H1 neuron. These are the marginal probability functions of the joint
probability of the variables, which is shown in (c). From (c) we can discern that
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Fig. 1. Joint, marginal, and conditional probability functions (a, b, c, d, e), and the
differing characterizations of the stimulus/response relationship (f, g, h, i) depending
on the conditional used (from Rieke, Warland et al. 1997).



there is a statistical dependence between the two probabilities in (a) and (b)
since p(n, v) ≠ p(v)∙(p(n). This is as we would expect if the neural response is
related to the velocity. The next two graphs, (d) and (e) are generated using
equations (1) and (2) of the previous section, and show the conditionals p(v|n)
(i.e., p(s|r)) and p(n|v) (i.e., p(r|s)) respectively. A graph of the best estimate of
the velocity given some response is shown in (f) and (h). As is standard
practice, this best estimate is presumed to be the average. These two graphs,
then, characterize the problem from the perspective of the fly. The best
estimate of the response given some velocity is shown in (g) and (i). These two
graphs characterize the problem from the observer’s perspective.

As can be seen by comparing graphs (h) and (i), adopting the fly’s point of
view results in a much more linear relation between the stimulus and response
(i.e., the function from one to the other is nearly a straight line) than does
adopting the third person perspective. In fact, (i) looks much like the standard
sigmoid function used in many artificial neural networks, and determined by
many neurobiological experiments. This relation between stimulus and
response, found by adopting the observer’s perspective, is extremely nonlinear.
In general, if we can characterize a system as linear, it will be much easier to
analyze than if we have to deal with the inherent complexities of nonlinear
responses. In this sense, our description of the problem is much simpler if we
adopt the animal’s perspective over that of the observer. As well, this result is
encouraging because it suggests that particular instances of the representation
relation in neurobiological systems may not be unduly complex (i.e., nonlinear
instead of linear) if we adopt the appropriate perspective.

6. The baby and the bath water

If the animal’s perspective is advantageous, as this result suggests, should
we abandon cognitive science as traditionally done? The answer is no. I have
been intentionally overstating the case for the differences between these two
methodologies to show the strengths of the alternative. In fact, the two
approaches are deeply connected. If we look again at equations (1) and (2), we
can see precisely what that connection is. In particular, equating the right hand
sides of both equations leads to:
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p(r|s)∙p(s) = p(s|r)∙p(r) (3)

This equation is known as Bayes’ rule. What it tells us is that if we can
completely characterize one of the conditional probability functions, along
with p(s) and p(r), then we can completely characterize the other. However,
complete characterization of unknown probability functions through sampling
is extremely difficult. So, rather than discarding one methodology in favor of
another, we should try to characterize these probability functions in as many
ways as possible. This gives us multiple means of discovering the same
underlying probability function, p(s, r). And this kind of cross-validation is an
invaluable tool for any scientific enterprise.

So far, however, researchers have approached the problem from mainly one
standpoint — that of the observer (and only partially so, as p(s) is often
ignored). Not only would it be more ecumenical, but it would also be better
science to use all of the tools we have available. If our estimates of the joint
probability function converge, then our confidence in the accuracy of the
estimate would be significantly greater than an estimate from only one source.
Convergence is never a bad thing.

The tight relation between p(s|r) and p(r|s) also helps show what the real
difference is between the two approaches. As I argued in the last section, the
amount of work involved in getting at either conditional is about the same. So,
this methodological switch wouldn’t be about saving time. Rather, it is about
constructing the right conditional probability in the right way, or more
importantly, under the right assumptions. Dretske argued for constructing the
right probability, but his assumptions about the nature of that probability lead
to difficulties. We must not only construct this probability, but also do so under
the assumption that the animal has no a priori access to the nature of the
stimulus. The animal may have some innate statistical model, but it doesn’t
have to be one that exactly mirrors the statistical structure of stimuli in the
environment as Dretske’s criterion mandates.

Another way of stating this ‘no a priori access’ assumption is: we should not
adopt the observer’s perspective about whatis being represented. So far, I have
been suggesting this by claiming that we must take the animal’s perspective
and not the observer’s perspective. But, strictly speaking, we can’t literally
adopt the perspective of the animal, because we aren’t literally the animal.
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Rather, we musttake an observer’s perspective because we are observers.
What I mean to say, then, is that we should directour third person perspective
throughthe animal. This is the real difference between the two perspectives.
The observer’s perspective is a third person perspective, simpliciter. What I
have been calling the animal’s perspective is still technically a third person
perspective, but it is ‘filtered’ through the animal; we limit our access to the
animal’s information channel when representing the world (even though we
can use our channel to help verify the inferences we make on the basis of the
animal’s perspective). And, this is a difference that can make a difference, as
the blowfly example shows.

In section 3, I mentioned that we could avoid having a priori commitments
determine detailed content ascriptions. In the case of the monkey face-selective
cells, taking the standard perspective leads to a characterization of the
representation relation as: {the neuron that is being recorded from} represents
{that face x degrees from y degrees} with respect to {the monkey’s brain}.
Notice, of course, that this content is completely determinedby the stimulus
presented by the observer. In other words, the content is {that face x degrees
from y degrees}, because the observer knowsthat the stimulus is x degrees
from ydegrees, having presented that as the stimulus.

If, instead, we attempted to determine the representation relation from the
animal’s point of view, we would first construct the joint probability function
of, say, the firing rate and the orientation of the stimulus. We would then find
p(s|r) and, given a firing rate, we would determine the best guess as to s. So,
the representation relation would look much the same: {the neuron that is
being recorded from} represents {that there is a face x degrees from y degrees}
with respect to {the monkey’s brain}. However, notice the slight difference in
the content in these two cases. Under the standard methodology the content is
{ that face x degrees from y degrees}. Under the alternate methodology the
content is {that there is aface x degrees from y degrees}. This difference can
be expressed by noting that in the first case, the content is identical to the
referent, but in the second case, the content is a property ascription in the form
of an hypothesis about the world. So, the referent is the same in both cases, but
the content is different. Another way of understanding this difference is to
notice that what the displacement, x, is, is determined in a much different way
in each case. Under the standard methodology, it is determined by a priori
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knowledge about what is being presented to the cell. Under the alternate
methodology, the displacement is determined by statistical inference from a
firing rate to a likely stimulus. Thus, the displacement determined by this
second method could be differentfrom that of the actual stimulus. This is not
so under the standard methodology. These, then, are definitely not the same
characterization of the representation relation.

7. The statistical dependence hypothesis

My discussion so far has focussed on the methodological side of typical
representational characterization. But I think there is also a more theoretical
lesson that can be drawn from these considerations. In other words, taking the
alternate methodology seriously provides important insights into the nature of
representational content. Recall two things that we have learned: 1) the joint
probability distribution completely characterizes the relation between stimulus
and response variables; and 2) neurons are said to represent what they have
statistical dependencies with (under both methodologies). I think we can put
these claims to work for a theory of content.

First, given that joint probabilities fully characterize the relation between
stimuli and responses, if we had the set of all joint probabilities between any
stimulus and the responses of some neuron, we would have a complete
characterization of how that neuron relates to any particular stimulus. Second,
responses are said to represent what they have dependencies with. Presumably
then, it makes sense to say that the things (objects, events, properties) a neuron
best represents are what it has its highest statistical dependency with.
Furthermore, a neuron can be a better ‘stand-in’ for what it has the highest
statistical dependence with than for anything else. Since representation is
‘standing-in’, and content is partly what is ‘stood-in’ for, we would say that a
neuron’s content is (at least partly) what it has this highest statistical
dependence with.

Putting these two claims together results in a hypothesis about the nature of
meaning in neurobiological systems. I call this the statistical dependence
hypothesis (Eliasmith, 2000; Eliasmith 2006):

The set of causes relevant to determining the content of neural
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responses is that set that has the highest statistical dependence with the
neural responses under all stimulus conditions.7

Notice that the hypothesis suggests that content is determined by responses,
not a single response. Response profilesstatistically depend on sets of causes,
not momentary responses. It is well known that neurons have graded responses
to stimuli. In this sense it is misleading to call them ‘detectors’ of any kind.
Neurons don’t ‘detect’ things (i.e., they don’t determine that there is an edge or
thereisn’t one), they respond selectively to input; the more similar the input,
the more similar the response. The statistical dependence hypothesis highlights
this ubiquitous, often ignored, property of neurons.

The statistical dependence hypothesis says that given a complete
characterization of how a neuron (or a group of neurons) responds via the set
of all joint probabilities (i.e., the set of joint probabilities under all stimulus
conditions), the causes relevant to content of that neuron’s (or group’s)
response are those that its (their) response profile corresponds to the best. We
would expect content to be (at least partly) determined by the best
corresponding neural responses because those responses carry the most
information about the relevant causes. Notably, this doesn’t assume that
representations are ‘normally right’ — representations have all kinds of
statistical dependencies, not just the best one. But, neural responses are, in a
sense, about what they are the best at being about.

The statistical dependence hypothesis is about what we should take neurons
to mean; i.e., how we should determine their content in general. But, what
about active, real-world representing? How do we know what this particular
representation that is active right now is about? How do we know what it has
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Usher (2001) adopts mutual information as a means of understanding representation,
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as a referent? I think a more limited version of the same hypothesis helps
answer these questions. I’ll call this corollary the occurent representation
hypothesis:

The referent of an occurent representation is the cause that has the
highest statistical dependency with the representation under the particular
stimulus conditions in which it is occurent.

This hypothesis, then, serves to tell us that, right now, this representation is
about thatthing in the world.

A simple example should help to clarify the application of both the statistical
dependence hypothesis and its corollary. Consider, again, an H1 neuron in the
blowfly. According to the statistical dependence hypothesis, the meaning
carried by this neuron is determined by its highest statistical dependence under
all stimulus conditions. Given past experiments, the response profile of this
neuron is most highly dependent on horizontal velocity in the visual field under
all stimulus conditions. Now, what do we say when a particular stimulus is
moving in the visual field? We say that the referent of the representation is that
stimulus, since, under these conditions it has the highest statistical dependence
with the neural response. And, we say that the neural response meansthat there
is such-and-such a velocity in the visual field. If, however, we flashed a
number of stimuli in quick succession, providing the illusion that there was
movement8 and resulting in a response from this H1 neuron, things would be
different. We would then say that the referent of the response was the set of
stimuli events (since they have the highest statistical dependence with neural
firings under these conditions). However, we would still say that the neuron
means that there is such-and-such a velocity in the visual field (even though
there isn’t) because under all stimulus conditions it is velocity that this neuron
picks out.9 This is simply a case of misrepresentation.
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There are many more things that need to be said about the statistical
dependence hypothesis. While I have discussed in greater depth elsewhere (e.g.
Eliasmith 2006), the point in this instance is merely that an at least prima facie
new way of understanding representational content falls directly out of the
previous methodological considerations. In fact, one way to understand the
flaw in adopting the observer’s perspective is that it results in a blurring of
referent and content. Notice that the perspective of the observer incorporates
two sources of information when determining content; i.e., both what the
observer takes the stimulus to be and how the animal’s perceptual system
responds to the stimulus are included. Adopting the animal’s perspective
makes it quite clear why and how we should keep these two sources separate.
Similarly, the statistical dependence hypothesis and its corollary provide a way
to understand meaning that makes this distinction explicit.

8. Conclusion

There are significant shortcomings of the traditional characterization of
representational content in cognitive science as a result of the nearly univocal
adoption of the observer’s perspective. I have argued that there is an important
alternative, the animal’s perspective, that, when investigated in greater detail,
results in new theoretical insights into the nature of representation.
Furthermore, this distinction between perspectives highlights precisely what
information is needed to properly characterize the representation relation.
Undoubtedly the best means of gathering this information is to adopt both
perspectives, keeping in mind their complimentary strengths and weaknesses.
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