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THE JOURNAL OF PHILOSOPHY 
VOLUME C, NO. 10, OCTOBER 2003 

MOVING BEYOND METAPHORS: UNDERSTANDING 
THE MIND FOR WHAT IT IS* 

In the last fifty years, there have been three major approaches to 

understanding cognitive systems and theorizing about the nature 
of the mind: symbolicism, connectionism, and dynamicism. Each of 

these approaches has relied heavily on a preferred metaphor for 

understanding the mind. Most famously, symbolicism, or classical 
cognitive science, relies on the "mind as computer" metaphor. Under 
this view, the mind is the software of the brain. Jerry Fodor,' for one, 
has argued that the impressive theoretical power provided by this 

metaphor is good reason to suppose that cognitive systems have a 
symbolic "language of thought" which, like a computer programming 
language, expresses the rules that the system follows. Fodor claims 
that this metaphor is essential for providing a useful account of how 
the mind works. 

Similarly, connectionists have relied on a metaphor for providing 
their account of how the mind works. This metaphor, however, is 
much more subtle than the symbolicist one; connectionists presume 
that the functioning of the mind is like the functioning of the brain. 
The subtlety of the "mind as brain" metaphor lies in the fact that 
connectionists, like symbolicists, are materialists. That is, they also 
hold that the mind is the brain. When providing psychological descrip- 
tions, however, it is the metaphor that matters, not the identity. In 
deference to the metaphor, the founders of this approach call it 

* Special thanks to Charles H. Anderson. Thanks as well to William Bechtel, Ned 
Block, David Byrd, Rob Cummins, Brian Keeley, Brian McLaughlin, William Ramsey, 
Paul Thagard, and Charles Wallis for comments on earlier versions. Funding has 
been provided in part by the Mathers Foundation, the McDonnell Center for Higher 
Brain Function, and the McDonnell Project for Philosophy and the Neurosciences. 

The Language of Thought (New York: Crowell, 1975). 
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"brain-style" processing, and claim to be discussing "abstract net- 
works."' This is not surprising since the computational and representa- 
tional properties of the nodes in connectionist networks bear little 
resemblance to neurons in real biological neural networks.' 

Proponents of dynamicism also rely heavily on a metaphor to under- 
stand cognitive systems. Most explicitly, Tim van Gelder4 employs the 
Watt Governor as a metaphor for mind. It is through his analysis of 
the best way to characterize this dynamic system that he argues that 

cognitive systems, too, should be understood as nonrepresentational, 
low-dimensional, dynamical systems. Like the Watt Governor, van 
Gelder argues, cognitive systems are essentially dynamic and can only 
be properly understood by characterizing their state changes through 
time. The "mind as Watt Governor" metaphor suggests that trying to 

impose any kind of discreteness, either temporal or representational, 
will lead to a mischaracterization of minds. 

Notably, each of symbolicism, connectionism, and dynamicism rely 
on metaphor not only for explanatory purposes, but also for devel- 

oping their conceptual foundations in understanding the target of 
the metaphor; that is, the mind. For symbolicists, the properties of 

Turing machines become shared with minds. For connectionists, the 
character of representation changes dramatically. Mental representa- 
tions are taken to consist of "sub-symbols" associated with each node, 
while "whole" representations are real-valued vectors in a high-dimen- 
sional property space." Finally, for the dynamicists, because the Watt 
Governor is best described by dynamic systems theory, which makes 
no reference to computation or representation, our theories of mind 
need not appeal to computation or representation either. 

In this article, I want to suggest that it is time to move beyond these 

metaphors. We are in the position, I think, to understand the mind 
for what it is: the result of the dynamics of a complex, physical, 
information processing system, namely the brain. Clearly, in some 

ways this is a rather boring thesis to defend. It is just a statement of 

plain old "monistic materialism" or "token identity theory," call it 

2James L. McClelland and David E. Rumelhart, "Future Directions," in McClelland 
and Rumelhart, eds., Parallel Distributed Processing: Explorations in the Microstructure of 
Cognition, Volume 2 (Cambridge: MIT, 1986), pp. 547-52. 

3 See Chapter 10 of William Bechtel and Adele Abrahamsen, Connectionism and 
the Mind: Parallel Processing, Dynamics, and Evolution in Networks, Second Edition (Mal- 
den, MA: Blackwell, 2001). 

"What Might Cognition Be, If Not Computation?" this JOURNALI, XCI, 7 (July 
1995): 345-81. 

5 See, for example, Paul Smolensky's "On the Proper Treatment of Connection- 
ism," Behavioral and Brain Sciences, xI, 1 (1988): 1-23. 
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MOVING BEYOND METAPHORS 495 

what you will. It is, in essence, just the uncontroversial view that, so 
far as we know, you do not have a mind without a brain. But, I further 
want to argue that the best way to understand this physical system is 
by using a different set of conceptual tools than those employed by 
symbolicists, connectionists, and dynamicists individually. That is, the 
right toolbox will consist in an extended subset of the tools suggested 
by these various metaphors. 

The reason we need to move beyond metaphors is because, in science, 
analogical thinking can sometimes constrain available hypotheses. This 
is not to deny that analogies are incredibly useful tools at many points 
during the development of a scientific theory. It is only to say that, 
sometimes, analogies only go so far. Take, for instance, the develop- 
ment of the current theory of the nature of light. In the nineteenth 

century, light was understood in terms of two metaphors: light as a 
wave, and light as a particle. Thomas Young was the best known 

proponent of the first view, and Isaac Newton was the best known 

proponent of the second. Each used their favored analogy to suggest 
new experiments, and develop new predictions." Thus, these analogies 
played a role similar to that played by the analogies discussed above 
in contemporary cognitive science. As we know in the case of light, 
however, both analogies are false. Hence the famed "wave-particle 
duality" of light: sometimes it behaves like a particle; and sometimes 
it behaves like a wave. Neither analogy by itself captures all the phe- 
nomena displayed by light, but both are extremely useful in character- 

izing some of those phenomena. So, understanding what light is 
required moving beyond the metaphors. 

I want to suggest that the same is true in the case of cognition. 
Each of the metaphors mentioned above has some insight to offer 
regarding certain phenomena displayed by cognitive systems. How- 
ever, none of these metaphors is likely to lead us to all of the right 
answers. Thus, my project in trying to move beyond these metaphors 
is a synthetic one. I want to provide a way of understanding cognitive 
systems that draws on the strengths of symbolicism, connectionism, 
and dynamicism. The best way of doing this is to understand minds 
for what they are. To phrase this as a conditional, if minds are the 
behavior of complex, dynamic, information processing systems, then we 
should use the conceptual tools that we have for understanding such 
systems when trying to understand minds. I outline here a general theory 

"For a detailed description of the analogies, predictions, and experiments, see 
Chris Eliasmith and Paul Thagard, "Particles, Waves and Explanatory Coherence," 
British Journal of the Philosophy of Science, xIxvIii (1997): 1-19. 
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that describes representation and dynamics in neural systems (R&D theoy) 
that realizes the consequent of this conditional. I argue that R&D 

theory can help unify neural and psychological explanations of cogni- 
tive systems and that the theory suggests a need to re-evaluate standard 
functionalist claims. 

First, however, it is instructive to see how R&D theory does not 
demand the invention of new conceptual tools; the relevant tools are 

already well tested. So, in some ways, the theory is neither risky nor 

surprising. What is surprising, perhaps, is that our most powerful tools 
for understanding the kinds of systems that minds are have yet to be 

applied to minds. I suggest that this surprising oversight is due to an 
overreliance on the "mind as computer" metaphor. 

I. A BRIEF HISTORY OF COGNITIVE SCIENCE 

While the main purpose of this article is clearly not historical, a brief 

perusal of the relevant historical landscape helps situate both the 

theory and the subsequent discussion. 
I.1. Prehistory. While much is sometimes made of the difference 

between philosophical and psychological behaviorism, there was gen- 
eral agreement on this much: internal representations, states, and 
structures are irrelevant for understanding the behavior of cognitive 
systems. For psychologists, like John B. Watson and B.F. Skinner, 
this was true because only input/output relations are scientifically 
accessible. For philosophers, like Gilbert Ryle, this was true because 
mental predicates, if they were to be consistent with natural science, 
must be analyzable in terms of behavioral predicates. In either case, 

looking inside the "black box" that was the object of study, was prohib- 
ited for behaviorists. 

Interestingly, engineers of the day respected a similar constraint. In 
order to understand dynamic physical systems, the central tool they 
employed was (classical) control theory. Classical control theory, noto- 

riously, only characterizes physical systems in terms of their input/ 
output relations in order to determine the relevant controller. Classi- 
cal control theory was limited to designing nonoptimal, single-vari- 
able, static controllers and depended on graphical methods, rules of 

thumb, and did not allow for the inclusion of noise.7 While the limita- 
tions of classical controllers and methods are now well known, they 
nevertheless allowed engineers to build systems of a kind they had 
not systematically built before: goal-directed systems. 

7 For a succinct description of the history of control theory, see Frank L. Lewis's 
Applied Optimal Control and Estimation (New York: Prentice-Hall, 1992). 
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While classical control theory was useful (especially in the 1940s) 
for building warhead guidance systems, some researchers thought it 
was clearly more than that. They suggested that classical control theory 
could provide a theoretical foundation for describing living systems 
as well. Most famously, the interdisciplinary movement founded in 
the early 1940s known as "cybernetics" was based on precisely this 

contention.8 Cyberneticists claimed that living systems were also essen- 

tially goal-directed systems. Thus, closed-loop control, it was argued, 
should be a good way to understand the behavior of living systems. 
Given the nature of classical control theory, cyberneticists focused on 

characterizing the input/output behavior of living systems, not their 
internal processes. With the so-called "cognitive revolution" of the 
mid-1950s, interest in cybernetics waned due in part to its close associa- 
tion with, and similar theoretical commitments to, behaviorism. 

1.2. The cognitive revolution. In the mid-1950s, with the publication 
of a series of seminal papers," the "cognitive revolution" took place. 
One simplistic way to characterize this shift from behaviorism to cog- 
nitivism is that it became no longer taboo to look inside the black box. 

Quite the contrary: internal states, internal processes, and internal 

representations became standard fare when thinking about the mind. 

Making sense of the insides of that black box was heavily influenced 

by concurrent successes in building and programming computers to 

perform complex tasks. Thus, manNy early cognitive scientists saw, 
when they opened the lid of the box, a computer. Furthermore, as 

explored in detail by Fodor, "Computers show us how to connect 
semantical with causal properties for symbols." So computers have what 
it takes to be intentional minds."' Once cognitive scientists began to 
think of minds as computers, a number of new theoretical tools be- 
came available for characterizing cognition. For instance, the comput- 
er's theoretical counterpart, the Turing machine, suggested novel 

philosophical theses, including functionalism and multiple realizabil- 

ity, about the mind. More practically, the typical architecture of com- 

8 For a statement of the motivations of cybernetics, see Arturo Rosenblueth, Nor- 
bert Wiener, and Julian Bigelow, "Behavior, Purpose, and Teleology," Philosophy of 
Science, x (1943): 18-24. 

' These papers include, but are not limited to: A. Newell, C. Shaw, and H. Simon, 
"Elements of a Theory of Human Problem Solving," Psychological Review, LXV (1958): 
151-66; G. Miller, "The Magical Number Seven, Plus or Minus Two: Some Limits 
on Our Capacity for Processing Information," Psychological RevieZw, LXIII (1956): 81-97; 
Jerome S. Bruner, Jacqueline Goodnow, and George Austin, A Study Of Thinking 
(New York: Wiley, 1956). 

"o Psychosemantics (Cambridge: MIT, 1987), p. 18. 
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puters, the von Neumann architecture, was thought by many to be 
relevant for understanding our cognitive architecture. 

Adoption of the von Neumann architecture for understanding minds 
was seen by many as poorly motivated, however. As a result, the early 
1980s saw a revival of the so-called "connectionist" research program. 
Rather than adopting the architecture of a digital computer, these 
researchers felt that an architecture more like that seen in the brain 
would provide a better model for cognition." As a result of this theoret- 
ical shift, connectionists were very successful at building models sensi- 

tive to statistical structure, and could begin to explain many phenomena 
not easily captured by symbolicists (for example, object recognition, 
generalization, and learning). 

For some, however, connectionists had clearly not escaped the 
influence of the "mind as computer" metaphor. Connectionists still 

spoke of representations, and thought of the mind as a kind of com- 

puter. These critics argued that minds are not essentially computa- 
tional, they are essentially physical, dynamic systems."' They suggested 
that if we want to know which functions a system can actually perform 
in the real world, we must know how to characterize the system's 
dynamics. Furthermore, since cognitive systems evolved in dynamic 
environments, we should expect evolved control systems, like brains, 
to be more like the Watt Governor-dynamic, continuous, coupled 
directly to what they control-than like a discrete state Turing ma- 
chine that computes over "disconnected" representations. As a result, 
these "dynamicists" suggested that dynamic systems theory, not com- 

putational theory, was the right quantitative tool for understanding 
minds. They claimed that notions like 'chaos', 'hysteresis', 'attractors', 
and 'state-space' underwrite the conceptual tools best suited for de- 

scribing cognitive systems. 

13. A puzzling oversight. In some ways, dynamicists revived the com- 
mitments of the predecessors of the cognitive revolution. Notably, 
the Watt Governor is a standard example of a classical control system. 
If minds are to be like Watt Governors, they are to be like classical 
control systems; just what the cyberneticists had argued. One worry 
with this retrospective approach is that the original problems come 

1 As discussed in both Smolensky and the introduction to Rumelhart and McClel- 
land, eds. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 
Volume 1 (Cambridge: MIT, 1986). 

12 See the various contributions to Robert F. Port and van Gelder, eds., Mind as 
Motion: Explorations in the Dynamics of Cognition (Cambridge: MIT, 1995), especially 
the editors' introduction. 
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along with the original solutions. The limitations of classical control 

theory are severe, so severe that they will probably not allow us to 
understand a system as complex as the brain. 

An important series of theoretical advances in control theory went 

completely unnoticed during the cognitive revolution, however. Dur- 

ing the heyday of the computer, in the 1960s, many of the limitations 
of classical control theory were rectified with the introduction of what 
is now known as "modern" control theory.": Modern control theory 
introduced the notion of an "internal system description" to control 

theory. An internal system description is one that includes system state 
variables (that is, variables describing the state of the system itself) as 

part of the description (see Figure 1). It is interesting that with the 

cognitive revolution, researchers interested in the behavior of living 
systems realized they needed to "look inside" the systems they were 

studying and, at about the same time, researchers interested in con- 

trolling engineered systems began to "look inside" as well. Both, nearly 
simultaneously, opened their black box. As already discussed, how- 
ever, those interested in cognitive behavior adopted the computer as 
a metaphor for the workings of the mind. Unfortunately, the ubiquity 
of this metaphor has served to distance the cognitive sciences from 
modem control theory. Nevertheless, I argue below that modern control 

theory offers tools better suited than computational theory for under- 

standing biological systems as fundamentally physical, dynamic sys- 
tems operating in changing, uncertain environments. 

This is not to suggest that each of the dominant metaphors should 
be taken as irrelevant to our understanding of minds. Both connec- 
tionism and dynamicism highlight important limitations of the origi- 
nal "mind as computer" metaphor. Connectionism challenged the 

symbolicist conception of representation, noting how important statis- 
tical considerations are for capturing certain kinds of cognitive phe- 
nomena. Dynamicist critiques of symbolicism focused on its lack of 
a principled account of the temporal properties of cognitive systems.14 
Nevertheless, it was the symbolicists, armed with their metaphor, who 

rightly justified opening the black box. Furthermore, both connec- 
tionism and dynamicism introduced their own misleading metaphors. 

'~ This introduction is largely credited to R. Kalman in his "A New Approach to 
Linear Filtering and Prediction Problems," ASMEJournal of Basic Engineering, cIxxxii 
(1960): 35-45. 

14 van Gelder, "What Might Cognition Be, If Not Computation?" 
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u(t) (t) x(t) 

dynamics 
matrix 

recurrent 
matrix 

Figure 1: A modern control theoretic system description. The vector u(t) is 
the input to the system. A and B are matrices that define the behavior of the 
system, x(t) is the system state variable (generally a vector), and k is the 
derivative of the state vector. The standard transfer function in control theory, 
as shown in the rectangle, is integration.'- 

II. REPRESENTATION AND DYNAMICS IN 

NEURAL SYSTEMS: A THEORY 

Moving beyond metaphors-that is, taking seriously the view that 
minds are complex, physical, dynamic, and information processing 
systems-means using our best tools for describing systems with these 

properties. In the remainder of this section, I propose and defend a 

theory of representation and dynamics in neural systems (R&D the- 

ory) that takes precisely this approach. R&D theory relies on modern 
control theory, information theory, and recent results from neurosci- 
ence to provide an account of what minds are." 

Below I have broken this account into three parts. The first defines 

representation, the second describes computation, and the third sec- 
tion, on dynamics, shows how the preceding characterizations of rep- 
resentation and computation can be merged with control theory to 

provide an account of neural and cognitive function. The result, I argue, 
is a theory that avoids the weaknesses and capitalizes on the strengths 
of past approaches. 

.1. Representation. A central tenet of R&D theory is that we can 

adapt the information theoretic account of codes to understanding 

15 I have simplified this diagram for a generic linear system from the typical, truly 
general one found in most control theory texts by excluding the feedthrough and 
output matrices. Nothing turns on this simplification in this context. 

16 For an in-depth technical description of this approach, see Eliasmith and Charles 
H. Anderson, Neural Engineering: Computation, Representation and Dynamics in Neurobio- 
logical Systems (Cambridge: MIT, 2003). 
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representation in neural systems. Codes, in engineering, are defined 
in terms of a complimentary encoding and decoding procedure be- 
tween two alphabets. Morse code, for example, is defined by the 
one-to-one relation between letters of the Roman alphabet, and the 
alphabet composed of a standard set of dashes and dots. The encoding 
procedure is the mapping from the Roman alphabet to the Morse 
code alphabet and the decoding procedure is its inverse. 

In order to characterize representation in a cognitive/neural sys- 
tem, we can identify each of these procedures and their relevant 
alphabets. The encoding procedure is quite easy to identify: it is the 
transduction of stimuli by the system resulting in a series of neural 
"action potentials," or "spikes." The precise nature of this encoding 
has been explored in depth via quantitative models.17 So, encoding 
is what neuroscientists typically talk about. When we show a cognitive 
system a stimulus, some neurons or other "fire." Unfortunately, neuro- 
scientists often stop here in their characterization of representation, 
but this is insufficient. We also need to identify a decoding proce- 
dure-otherwise, there is no way to determine the relevance of the 
encoding for the system. If no information about the stimulus can 
be extracted from a spiking neuron, then it makes no sense to say 
that it represents the stimulus. Representations, at a minimum, must 
potentially be able to "stand-in" for their referents. 

Quite surprisingly, despite typically nonlinear encoding, a good 
linear decoding can be found.'" And, there are several established 
methods for determining linear decoders given the statistics of the 
neural populations that respond to certain stimuli.'9 Notably, these 
decoders are sensitive both to the temporal statistics of the stimuli 
and to what other elements in the population encode. Thus, if you 
have multiple neurons involved in the (distributed) representation 
of a time-varying object, they can "cooperate" to provide a better repre- 
sentation. 

Having specified the encoding and decoding procedures, we still 
need to specify the relevant alphabets. While the specific cases will 
diverge greatly, we can describe the alphabets generally: neural re- 
sponses (encoded alphabet) code physical properties (decoded alpha- 
bet). In fact, it is possible to be a bit more specific. Neuroscientists 

17 See James M. Bower and David Beeman, The Book of GENESIS: Exploring Realistic 
Neural Models with the GEneral NEural SImulation System (Berlin: Springer, 1998) for 
a review of such models. 

18 As demonstrated by Fred Rieke et al., Spikes: Exploring the Neural Code (Cambridge: 
MIT, 1997), pp. 76-87. 

19 As discussed in Eliasmith and Anderson. 
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generally agree that the basic element of the neural alphabet is the 
neural spike. There are many possibilities for how such spikes are 

used, however: average production rate of neural spikes (that is, a 
rate code); specific timings of neural spikes (that is, a timing code); 

population-wide groupings of neural spikes (that is, a population code); 
or the synchrony of neural spikes across neurons (that is, a synchrony 
code). Of these possibilities, arguably the best evidence exists for a 
combination of timing codes and population codes."2" For this reason, 
let us take the combination of these basic coding schemes to define 
the alphabet of neural responses. Thus, the encoded alphabet is the 
set of temporally patterned neural spikes over populations of neurons. 

It is much more difficult to be specific about the nature of the 

alphabet of physical properties. Of course, we can begin by looking 
to the physical sciences for categories of physical properties that might 
be encoded by nervous systems. Indeed, we find that many of the 

properties that physicists traditionally use do seem to be represented 
in nervous systems; for example, displacement, velocity, acceleration, 

wavelength, temperature, pressure, and mass. But there are many 
physical properties not discussed by physicists which also seem to be 
encoded in nervous systems; for example, red, hot, square, dangerous, 
edible, object, and conspecific. Presumably, all of these "higher-level" 
properties are inferred on the basis of representations of properties 
more like those that physicists talk about. In other words, encodings 
of 'edible' depend, in some complex way, on encodings of "low-level" 

physical properties like wavelength, velocity, and so forth. While R&D 

theory itself does not determine precisely what is involved in such 

complex relations, there is reason to suppose that R&D theory pro- 
vides the necessary tools for describing such relations. To see why 
this is so, let us consider a simple example. 

It is clearly important for an animal to be able to know where 
various objects in its environment are. As a result, in mammals, there 
are a number of internal representations of signals that convey and 

update this kind of information. One such representation is found 
in parietal areas, particularly in the lateral intraparietal cortex (LIP). 
For simplicity, let us consider the representation of only the horizontal 

position of an object in the environment. As a population, some 
neurons in this area encode an object's position over time. This repre- 
sentation can be understood as a scalar variable, whose units are 

20 For an overview of this evidence, see Rieke et al.; Eliasmith and Anderson; and 
L. Abbott, "Decoding Neuronal Firing and Modelling Neural Networks," Quarterly 
Review of Biophysics, xxvII, 3 (1994): 291-331. 
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degrees from midline (decoded alphabet), that is encoded into a 
series of neural spikes (encoded alphabet). Using the quantitative 
tools mentioned earlier, we can determine the relevant decoder. Once 
we have such a decoder, we can then estimate what the actual position 
of the object is given the neural spiking in this population. Thus we 
can determine precisely how well (or what aspects of) the original 
property (in this case, the actual position) is represented by the neural 
population. We can then use this characterization to understand the 
role that the representation plays in the cognitive system as a whole. 

As mentioned, this is a simple example. But notice that it not only 
describes how to characterize representation, it also shows how we 
can move from talking about neurons to talking about "higher-level" 
variables, like object position. That is, we can move from discussing 
the "basic" representations (that is, neural spikes) to "higher-level" 
representations (that is, mathematical objects with units). This sug- 
gests that we can build up a kind of "representational hierarchy" that 
permits us to move further and further away from the neural-level 
description, while remaining responsible to it. For instance, we could 
talk about the larger population of neurons that encodes position in 
three dimensional space. We could dissect this higher-level descrip- 
tion into its lower-level components (for example, horizontal, vertical, 
and depth positions), or we could dissect it into the activity of individ- 
ual neurons. Which description we employ will depend on the kind 
of explanation we need. Notably, this hierarchy can be rigorously and 
generally defined to include scalars, vectors, functions, vector fields, 
and so forth.21 The fact that all of the levels of such a hierarchy can 
be written in a standard form suggests that this characterization provides 
a unified way of understanding representation in neurobiological 
systems. 

Note that the focus of this article is on how to characterize represen- 
tational states, computations over these states, and the dynamics of 
these states. As a result, I do not directly address concerns related to 
content determination. This is largely because such a discussion would 
lead me far afield. Nevertheless, it is interesting to note that R&D 
theory is suggestive of a particular approach to content determination. 
Notice, first, that both the encoding and decoding are essential for 
determining the identity of a representation. This means that both 
what causes a neural state, and how that state is used by the system 
are likely to play a role in content determination. This suggests that 
some kind of two-factor theory is consistent with R&D theory. As well, 

" This generalization is made explicit in Eliasmith and Anderson, pp. 79-80. 
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a single neural state may play a role in multiple contents concurrently, 
because distinct, yet related, representations (and hence contents) 
can be identified at different levels of organization at the same time. 
This may initially seem problematic, but, because the relation between 
levels of representation is quantitatively defined (hence we know 

precisely what role a single neural state is playing in each of the 

representations defined over it), we should expect the parallel content 
relations to also be well defined. Of course, such comments only 
provide a hint of a theory of content, they do not constitute one.22 

In any case, there is no reason to consider such a theory of content if 
its underlying theoretical assumptions are not appropriate to cognitive 
systems. So, we should notice that the strength of the previous charac- 
terization of representation lies in its generality. That is, regardless 
of what the higher-level representations look like (that is, what kind 
of mathematical objects with units they are), R&D theory will apply. So 
R&D theory, while having definite consequences for what constitutes a 

good representational story, is silent as to which particular one is 
correct for a given neural system. This is desirable for a theory of 
mind because higher-level representations are clearly theoretical pos- 
tulates (at least at this point in the development of neuroscience). 
While we can directly measure the voltage changes of individual neu- 

rons, making claims about how they are grouped to represent the 
world is not easily confirmable. Presumably, the right representational 
story will be the most coherent and predictively successful one. 

1I.2. Computation. Of course, no representational characterization 
will be justified if it does not help us understand how the system 
functions. Luckily, a good characterization of neural representation 
paves the way for a good understanding of neural computation. This 
is because, like representations, computations can be characterized 

using decoding. But, rather than using the "representational decoder" 
discussed earlier, we can use a "transformational decoder." We can 
think of the transformational decoder as defining a kind of biased 

decoding. That is, in determining a transformation, we extract infor- 
mation other than what the population is taken to represent. The bias, 
then, is away from a "pure," or representational, decoding of the 
encoded information. For example, if we think that the quantity x is 

22 For instance, in order to understand the relation between representations at a 
given organizational level, we need to consider computational relations, as discussed 
in the next section. For an in-depth but preliminary discussion of a theory of content 
that is consistent with R&D theory, see my "How Neurons Mean: A Neurocomputa- 
tional Theory of Representational Content" (Ph.D. diss., Washington University, St. 
Louis, 2000). 
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encoded in some neural population, when defining the representa- 
tion we determine the representational decoders that estimate x. 
When defining a computation, however, we identify transformational 
decoders that estimate some function, f(x), of the represented quan- 
tity. In other words, we find decoders that, rather than extracting the 

signal represented by a population, extract some transformed version 
of that signal. The same techniques used to find representational de- 
coders are applicable in this case, and result in decoders that can 
support both linear and nonlinear transformations.'2 

Given this understanding of neural computation, there is an impor- 
tant ambiguity that arises in the preceding characterization of repre- 
sentation. It stems from the fact that information encoded into a 

population may now be decoded in a variety of ways. Suppose we are 
again considering the population that encodes object position. Not 

surprisingly, we can decode that population to provide an estimate 
of object position. However, we can also decode that same information 
to provide an estimate of some function of object position (for exam- 
ple, the square). Since representation is defined in terms of encoding 
and decoding, it seems that we need a way to pick which of these 
possible decodings is the relevant one for defining the representation 
in the original population. To resolve this issue let me specify that 
what a population represents is determined by the decoding that 
results in the quantity that all other decodings are functions of. Thus, 
in this example, the population would be said to represent object 
position (since both object position and its square are decoded). Of 
course, object position is also a function of the square of object 
position (that is, x = lx'). This further difficulty can be resolved by 
noticing that the right physical quantities (that is, the decoded alpha- 
bet) for representation are those that are part of a coherent, consis- 
tent, and useful theory. In other words, we characterize cognitive 
systems as representing positions because we characterize the world 
in terms of positions, and cognitive systems represent the world. 

Importantly, this understanding of neural computation applies at 
all levels of the representational hierarchy, and accounts for complex 
transformations. So, for example, it can be used to define inference 
relations, traditionally thought necessary for characterizing the rela- 
tions between high-level representations. Again consider the specific 
example of determining object position. Suppose that the available 
data from sensory receptors make it equally likely that an object is in 
one of two positions (represented as a bimodal probability distribution 

2" As demonstrated in Eliasmith and Anderson, pp. 143-60. 
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over possible positions). Also suppose, however, that prior informa- 

tion, in the form of a statistical model, favors one of those positions 
(perhaps one is consistent with past known locations given current 

velocity, and the other is not). Using the notion of computation 
defined above, it is straightforward to build a model that incorporates 
transformations between, and representations of (1) the top-down 
model, (2) the bottom-up data, and (3) the actual inferred position 
of the object (inferred based on Bayes's rule, for example). As ex- 

pected, in this situation the most likely position given the a priori 
information would be the one consistent with the top-down model. 
If the bottom-up data is significantly stronger in favor of an alternate 

position, however, this will influence the preferred estimate, as ex- 

pected.24 So, although simple, performing linear decoding can sup- 
port the kinds of complex transformations needed to articulate de- 

scriptions of cognitive behavior. Statistical inference is just one 

example. 
Before moving on to a consideration of dynamics, it is important to 

realize that this way of characterizing representation and computation 
does not demand that there are "little decoders" inside the head. 
That is, this view does not entail that the system itself needs to decode 
the representations it employs. In fact, according to this account, 
there are no directly observable counterparts to the representational 
or transformational decoders. Rather, they are embedded in the syn- 
aptic weights between neighboring neurons. That is, coupling weights 
of neighboring neurons indirectly reflect a particular population de- 
coder, but they are not identical to the population decoder. This is 
because connection weights are best characterized as determined by 
both the decoding of the incoming signal and the encoding of the 

outgoing signal. Practically speaking, this means that changing a con- 
nection weight both changes the transformation being performed 
and the tuning curve of the receiving neuron. As is well known from 
both connectionism and computational neuroscience, this is exactly 
what happens in such networks. In essence, the encoding/decoding 
distinction is not one that neurobiological systems need to respect in 
order to perform their functions, but it is extremely useful in trying 
to understand such systems and how they do, in fact, manage to 

perform those functions. 

II.3. Dynamics. While it may be understandable that dynamics were 

24 For the technical details and results of the model described here, see Eliasmith 
and Anderson, pp. 275-83. For a brief discussion of more logic-like inference on 
symbolic representations, see section Iv.1. 
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initially ignored by those studying cognitive systems as computational 
systems (theoretically, time is irrelevant for successful computation), 
it would be strange, indeed, to leave dynamics out of the study of minds 
as physical, neurobiological systems. Even the simplest nervous systems 
performing the simplest functions demand temporal characterizations 
(for example, locomotion, digestion, and sensing). It is not surprising, 
then, that single neural cells have almost always been modeled by 
neuroscientists as essentially dynamic systems. In contemporary neuro- 
science, electrophysiologists often analyze cellular responses in terms 
of 'onsets', 'latencies', 'stimulus intervals', 'steady states', 'decays', and 
so forth-these are all terms describing temporal properties of a 

neuron's response. The fact is, the systems under study in neurobiology 
are dynamic systems and as such they make it very difficult to ignore time. 

Notably, modern control theory was developed precisely because 

understanding complex dynamics is essential for building something 
that works in the real world. Modern control theory permits both the 

analysis and synthesis of elaborate dynamic systems. Because of its 

general formulation, modern control theory applies to chemical, me- 
chanical, electrical, digital, or analog systems. As well, it can be used 
to characterize nonlinear, time-varying, probabilistic, or noisy systems. 
As a result of this generality, modern control theory is applied to a 

huge variety of control problems, including autopilot design, spacecraft 
control, design of manufacturing facilities, robotics, chemical process 
control, electrical systems design, design of environmental regulators, 
and so on. It should not be surprising, then, that it proves useful for 
the analysis of the dynamics of cognitive, neurobiological systems as well. 

Having identified quantitative tools for characterizing dynamics, 
and for characterizing representation and computation, how do we 

bring them together? An essential step in employing the techniques 
of control theory is identifying the system state variable (x(t) in Figure 
1). Given the preceding analysis of representation, it is natural to 

suggest that the state variable just is the neural representation. 
Things are not quite so simple, however. Because neurons have 

intrinsic dynamics dictated by their particular physical characteristics, 
we must adapt standard control theory to neurobiological systems. 
Fortunately, this can be done without loss of generality.25 As well, 
all of the computations needed to implement such systems can be 

implemented using transformations as defined earlier. As a result, 
we can directly apply the myriad techniques for analyzing complex 

"25 For the relevant derivations, see Eliasmith and Anderson, pp. 221-25. 
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u(t) hsyn(t) x(t) 

At 

Figure 2: A control theoretic description of neurobiological systems. All vari- 
ables are the same as in Figure 1. However, the matrices A' and B' take into 
account that there is a different transfer function, h,,,(t), 

than in Figure 1. 
As well, x(t) is taken to be represented by a neural population. 

dynamic systems that have been developed using modern control 

theory to this quantitative characterization of neurobiological systems. 
To get a sense of how representation and dynamics can be inte- 

grated, let us revisit the simple example introduced previously: object 
position representation in area LIP. Note that animals often need to 
know notjust where some object currently is, they need to remember 
where it was. Decades of experiments in LIP have shown that neurons 
in this area have sustained responses during the interval between a 
brief stimulus presentation and a delayed "go" signal.26 In other words, 
these neurons seem to underlie the (short-term) memory of where 
an interesting object is in the world. Recall that I earlier characterized 
this area as representing x(t), the position of an object. Now we know 
the dynamics of this area, namely, stability without subsequent input. 
According to R&D theory, we can let the representation be the state 
variable for the system whose dynamics are characterized in this 
manner. 

Mathematically, these dynamics are easy to express with a differen- 
tial equation: x(t) = f u(t) dt. In words, this system acts as a kind of 

integrator. In fact, neural systems with this kind of dynamics are often 
called "neural integrators" and are found in a number of brain areas, 
including brainstem, frontal lobes, hippocampus, and parietal areas. 
Neural integrators act like memories because when there is no input 

26 For a detailed description and review of these experiments and their results, 
see C. Colby and M. Goldberg, "Space and Attention in Parietal Cortex," Annual 
Review of Neuroscience, xxii (1999): 319-49, and R. Andersen, L. Snyder, D. Bradley, 
and J. Xing, "Multimodal Representation of Space in the Posterior Parietal Cortex 
and Its Use in Planning Movements," Annual Review ofNeuroscience, xx (1997): 303-30. 
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(that is, u(t)=0), the change in the output over time is 0 (that is, 
x = 0). Thus, such systems are stable with no subsequent inputs. 

Looking for the moment at Figure 1, we can see that the desired 
values of the A and B matrices will be 0 and 1 respectively in order 
to implement a system with these dynamics. Since we have a means 
of "translating" this canonical control system into one that respects 
neural dynamics, we can determine the values of A' and B' in Figure 
2; they turn out to be 1 and 7 (the time constant of the intrinsic neural 
dynamics), respectively. We can now set about building a model of 
this system at the level of single spiking neurons which gives rise to 
these dynamics-originally described at a higher level. In fact, the 

representation in LIP is far more complex than this, but the represen- 
tational characterization of R&D theory is a general one, so such 

complexities are easily incorporated. As well, more complex dynamics 
are often necessary for describing neural systems, but again, the gener- 
ality of R&D theory allows these to be incorporated using similar 

techniques.27 So, while the neural integrator model is extremely sim- 

ple, it shows how R&D theory provides a principled means of ex- 

plaining a cognitive behavior (that is, memory) in a neurally plausi- 
ble network. 

II.4. Three principles. R&D theory is succinctly summarized by 
three principles: 

(1) Neural representations are defined by the combination of nonlinear 

encoding (exemplified by neuron tuning curves) and weighted lin- 
ear decoding. 

(2) Transformations of neural representations are functions of variables 
that are represented by neural populations. Transformations are 
determined using an alternately weighted linear decoding. 

(3) Neural dynamics are characterized by considering neural represen- 
tations as control theoretic state variables. Thus, the dynamics of 

neurobiological systems can be analyzed using control theory. 

To summarize these principles, Figure 3 shows a "generic neural 

subsystem." This figure synthesizes the previous characterizations of 

representation, computation, and dynamics, across multiple levels 
of description. 

While recent, this approach has been successfully used to character- 
ize a number of different systems including the vestibular system, 
the lamprey locomotive system, the eye stabilization system, working 

27 For various examples, see Eliasmith and Anderson, especially chapters 6 and 8. 
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incoming dynamic ding 
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basic-level description 
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connections 

Figure 3: Generic neural subsystem. A synthesis of the preceding characteriza- 
tions of representation (encoding/decoding), computation (biased decod- 
ing), and dynamics (captured by h,,,,(t) and the dynamics matrices). Dotted 
lines distinguish basic-level (that is, neural) and higher-level (that is, mathe- 
matical objects with units) descriptions. 

memory,2s and the limb control system.29 As well, a rigorous formula- 
tion of each of these principles is available."' 

III. COMPARISON TO CURRENT APPROACHES 

Notice that R&D theory is not a description of cognitive systems as 

"being like" anything; cognitive systems are neurobiological systems 
that are best described by certain well-established quantitative tools 
for describing physical systems. That is, I am not proposing an analogy 
of "the mind as neural integrator" or even "the mind as a control 
system." While we may notice that certain control structures mimic 
some behaviors of neurobiological systems, we have to build the de- 
tailed neurobiological model and then determine if the mind really 
does work that way. In other words, R&D theory in no way suggests 
we should stop at the analogy. Rather, it gives us principled means of 

2s These examples can all be found in Eliasmith and Anderson. 
29 As described in Z. Nenadic, Anderson, and B. Ghosh, "Control of Arm Movement 

Using a Population of Neurons," Mathematical and Computer Modelling, xxxv (2002): 
1261-69. 

30 This formulation can be found in Eliasmith and Anderson, pp. 230-31. 
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comparing a full-blown, neuron-level implementation with the actual 
neurobiological system. Connectionists, symbolicists, and dynamicists 
typically build models that begin and end with metaphors; in particu- 
lar, they do not specify how their models relate to the mind as a 

physical system. But, the devil is in the details. 
To see what is gained by moving away from the various metaphors 

that have dominated theorizing about the mind, let me briefly com- 

pare R&D theory to past approaches. In doing so, I describe several 
of what I take to be the central strengths and weaknesses of each 

approach. These lists are not intended to be exhaustive, but represen- 
tative. So long as I am right about at least one of each, my claim that 
R&D theory should be preferred follows. 

III.1. Symbolicism. The central problem for symbolicists, which I have 

already mentioned, is that time is largely ignored, or considered only 
after the fact.3" Other typical concerns about symbolic models include 
their brittleness (that is, lack of ability to survive partial destruction 
of the system or its representations), high-level discreteness,32 and 

unconvincing descriptions of low-level perceptual processes.33 R&D 
theory suffers from none of these limitations due to its essential 
inclusion of time and its responsibility to the underlying neural archi- 
tecture. 

The central strengths of symbolicism are demonstrated by its many 
past successes (for example, ACT and SOAR). These are largely due 
to its espousal of cognitivism, that is, its willingness to peer inside the 
black box. Doing so has made representation an essential ingredient 
for providing good explanations of cognitive systems. As well, symbol- 
icism is supported by a powerful and general theory of computation. 
Together, the commitment to representation and the quantitative 
theory of computation, make for a unified understanding of cognitive 
systems. R&D theory shares similar strengths. While computational 
theory is bolstered by including control and information theory, and 
the notion of representation is sharpened to relate directly to neural 

31 Perhaps the most concerted effort to include time in such models is in Allen 
Newell's Unified Theories Of Cognition (Cambridge: Harvard, 1990). This attempt, 
however, is both after-the-fact and largely inconsistent, as discussed in my "The 
Third Contender: A Critical Examination of the Dynamicist Theory of Cognition," 
Philosophical Psychology, Ix, 4 (1996): 441-63. 

" As discussed in E. Smith, "Concepts and Induction," in Michael Posner, ed., 
Foundations of Cognitive Science (Cambridge: MIT, 1989), pp. 501-26. 

" This is made clear in the case of visual processes by P. Churchland, V. Ramachan- 
dran, and T. Sejnowski, "A Critique of Pure Vision," in Christof Koch and Joel 
L. Davis, eds., Large-Scale Neuronal Theories of the Brain (Cambridge: MIT, 1994), 
pp. 23-60. 
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systems, the ability to provide unified representational explanations 
remains. 

That being said, a typical concern of symbolicists regarding ap- 
proaches that are concerned with neural implementations, is that the 
demonstrated symbol manipulating abilities of cognitive systems are 
lost in the concern for neural detail. In one sense, this issue is easily 
addressed in the context of R&D theory. This is because the numeric 

representations in R&D theory are just another kind of syntax. While 
it is not a typical syntax for the logic used to describe cognitive function 
by symbolicists, the syntax itself does not determine the kinds of 
functions computable with the system."• Given the discussion in sec- 
tion 111.2, we know that this theory supports quite general computa- 
tion, that is, linear and nonlinear functions. As a result, most, if not 
all, of the functions computed with standard symbolicist syntax can 
be computed with the numerical syntax adopted by R&D theory. 
More to the point, perhaps, past work using numerical distributed 
representations has shown that structure sensitive processing of the 
kind demanded by Fodor and Zenon Pylyshyn"5 can be achieved in 
such a system.36" Furthermore, this kind of representational system has 
been used to model high-level cognitive functions, like analogical 
mapping."7 As a result, structured symbol manipulation is not lost by 
adopting R&D theory. Rather, a precise neural description of such 
manipulation is gained. 

111.2. Connectionism. Of past approaches, connectionism is probably 
the most similar to R&D theory. This raises the question: Is R&D 
theory merely glorified connectionism? A first response is to note that 
glorifying connectionism (that is, making it more neurally plausible) 
is no mean feat. The neural plausibility of many connectionist models 
leaves much to be desired. Localist models are generally not neurally 
plausible at all. But even distributed models seldom "look" much like 
real neurobiological systems. They include neurons with continuous, 
real-valued inputs and outputs, and often have purely linear or generic 
sigmoid response functions. Real neurobiological networks have highly 

34 This general point has been argued inJ. Girard, "Proof-Nets: The Parallel Syntax 
for Proof-Theory," in Aldo Ursini and Paulo Agliano, eds., Logic and Algebra (New 
York: Marcel Dekker, 1996), pp. 97-124; and J. Girard, "Linear Logic," Theoretical 
Computer Science, L, 1 (1987): 1-102. 

35"Connectionism and Cognitive Architecture: A Critical Analysis," Cognition, 
xxviiI (1988): 3-71. 

36 As demonstrated in T. Plate, "Distributed Representations and Nested Composi- 
tional Structure" (Ph.D. diss., University of Toronto, 1994). 

37 As in Eliasmith and Thagard, "Integrating Structure and Meaning: A Distributed 
Model of Analogical Mapping," Cognitive Science, xxv, 2 (2001): 245-86. 
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heterogeneous, nonlinear, spiking neurons. Connectionists them- 
selves are seldom certain precisely what the relation is between their 
models and what goes on the brain.: 

Of course, such connectionist models are far more neurally plausi- 
ble than symbolicist ones. As a result, they are not brittle like symbolic 
systems, but rather degrade gracefully with damage. As well, they are 

supremely statistically sensitive and are thus ideal for describing many 
perceptual and cognitive processes that have eluded symbolicists. And 
finally, connectionist models do, on occasion, consider time to be 
central to neural processing." Again, R&D theory shares each of these 
strengths and, in fact, improves on a number of them (for example, 
neural plausibility, and the integration of time). 

But, more importantly, R&D theory also goes beyond connection- 
ism. Connectionism has been predominantly a bottom-up approach 
to cognitive modeling. The basic method is straightforward: connect 

simple nodes together and train them to compute complex functions. 
While this approach can provide some useful insights (for example, 
determining what kinds of statistical structure can be detected in the 
training set), it is unlikely to lead to a useful model of a brain that 
consists of billions of neurons. Connecting ten billion nodes together 
and training them will probably not result in much. So, one of the 
main difficulties that connectionism suffers from is the lack of a 
principled method. 

Progress in decomposing complex physical systems often necessi- 
tates an integration of bottom-up and top-down information.40 So, in 
the case of neurobiology, it is essential to be able to test top-down 
hypotheses regarding brain function that are consistent with known 
lower-level facts. That is, we must be able to relate high-level character- 
izations of psychological processes (for example, "working memory") 
to more specific implementational claims (for example, that networks 
of certain kinds of neurons can realize such processes). Connectionists, 
unfortunately, have no principled method for incorporating top-down 
constraints on the design and analysis of their models. R&D theory, in 
contrast, explicitly combines both higher- and lower-level constraints 
on models. 

38 See the various discussions by the editors in McClelland and Rumelhart, eds., 
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 2. 

9 See the selection of the examples in Patricia S. Churchland and Terrence J. 
Sejnowski, The Computational Brain (Cambridge: MIT, 1992). 

40 As argued by Bechtel and Robert C. Richardson in their Discovering Complexity: 
Decomposition and Localization as Strategies in Scientific Research (Princeton: University 
Press, 1993). 

This content downloaded from 129.97.124.36 on Tue, 2 Jul 2013 17:17:53 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


514 THE JOURNAL OF PHILOSOPHY 

The third principle of R&D theory captures this synthesis. It is with 
this principle that the analyses of representation, computation, and 

dynamics come together (see Figure 3). As an example, consider the 
recent proposal by Rajesh Rao and Dana Ballard41 that the visual 

system acts like a dynamic, optimal linear estimator (that is, a linear 
control structure known as a Kalman filter)." Using R&D theory, we 
can build a large-scale, complex network to test this hypothesis. This 
is because the hypothesis is a precise high-level description, there is 
a significant amount of neural data available regarding the visual 

system, and principle three tells us how to combine these. Using the 
tools of connectionism, we simply cannot test this kind of high-level 
claim. It is not at all evident how we can train a network to realize 
an optimal estimator, or what an appropriate network architecture 
would be. So, R&D theory is able to test high-level hypotheses in ways 
not available to connectionists. This makes R&D theory much better 
able to bridge the gap between psychological and neural descriptions 
of behavior than connectionism. 

Another way of making this point is to contrast the kind of character- 
ization of dynamics principle three offers, with that typical of connec- 
tionism. While connectionists often consider the importance of time, 
and, in particular, have introduced and explored the relation between 
recurrent networks and dynamic computation, they do not have a 

systematic means of analyzing or constructing networks with these 

properties. Principle three, by adopting control theory, makes such 

analyses possible within R&D theory. That is, control theory has a 

large set of well-established quantitative tools for both analyzing and 

constructing control structures. And, because R&D theory provides 
a means of intertranslating standard and "neural" control structures, 
such tools can be used in a neurobiological context. This is extremely 
important for understanding the dynamic properties, and otherwise 

predicting the overall behavior of a network constructed using the 
R&D approach. In other words, R&D relates rather imprecise connec- 
tionist notions like 'recurrence' to a specific understanding of the 

dynamics of physical systems that is subject to well-known analytical 
tools. This makes it possible to design networks rigorously, with highly 

41 "Predictive Coding in the Visual Cortex: A Functional Interpretation of Some 
Extra-Classical Receptive-Field Effects," Nature Neuroscience, II, 1 (1999): 79-87. 

42 Another high-level hypothesis regarding the use of the Kalman filter has been 
made in the context of the construction and use of cognitive maps in hippocampus 
in K. Balakrishnan, O. Bousquet, and V. Honavar, "Spatial Learning and Localization 
in Animals: A Computational Model and Its Implications for Mobile Robots," Adaptive 
Behavior, vii, 2 (1999): 173-216. 
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complex dynamics (like the Kalman filter mentioned earlier), a task 
left mostly to chance with connectionism. 

The previous discussion shows how principle three supports build- 

ing networks that have the complex dynamics demanded by a higher- 
level hypothesis. In addition, principle three supports building networks 
that have the complex representations demanded by a higher-level 
hypothesis. For example, Eliasmith and Anderson"4 describe a model 
of working memory that accounts for representational phenomena 
not previously accounted for. Specifically, this model employed complex 
representations to demonstrate how working memory could be sensitive 
not only to spatial properties (that is, position) but to other properties 
concurrently (for example, shape). In addition, the model gives rise 
to both neural predictions (for example, connectivity and firing pat- 
terns), and psychological predictions (for example, kinds of error 
and conditions for error). This was possible only because R&D theory 
provides a means of determining the detailed connection weights 
given high-level descriptions of the system. Again, it is unclear how 
such a network could have been learned (that this is not an easy task 
is a good explanation for why it had not been previously done). 

In both of these examples, R&D theory is distinguished from con- 
nectionism because it does not share the same heavy reliance on 

learning for model construction. Unfortunately, getting a model to 
learn what you want it to can be extremely challenging, even if you 
build in large amounts of innate information (and choosing what to 
build in tends to be something of an art). But, connectionists have 
little recourse to alternative methods of network construction, so the 
severe limitations and intrinsic problems with trying to learn complex 
networks are an inherent feature of connectionism. R&D theory, 
in contrast, allows for high-level characterizations of behavior to be 

imposed on the network that is constructed. As a result, connection 

weights can be analytically determined, not learned. 

Nevertheless, R&D theory is also able to incorporate standard learn- 

ing rules."44 And, more than this, R&D theory can provide new insights 
regarding learning. This is because being able analytically to construct 

weights also provides some insight into methods for deconstructing 
weights. So, given a set of learned weights, the techniques of R&D 

theory can be used to suggest what function is being instantiated by 

4 "Beyond Bumps: Spiking Networks that Store Smooth N-Dimensional Functions," 
Neurocomputing, xxxvIII (2001): 581-86. 

4 As discussed in chapter 9 of Eliasmith and Anderson, NeuralEngineering: Computa- 
tion, Representation and Dynamics in Neurobiological Systems. 
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the network.45 Often, when some input/output mapping has been 
learned by a connectionist network, it is very difficult to know exactly 
which function has been learned because the testable mappings will 
always be finite. Using R&D to determine which linear decoders com- 
bine to give a set of provided connection weights can be used to give 
an exhaustive characterization of what higher-level function is actually 
being computed by the network. 

Such connection weight analyses are possible because R&D theory, 
unlike connectionism, explicitly distinguishes the encoding and de- 
coding processes when defining representation and computation. 
While the relation between this distinction and the observable proper- 
ties of neurobiological systems is subtle, as noted in section 111.2, the 
theoretical payoff is considerable. 

To summarize, R&D theory should be preferred to connectionism 
for two main reasons. First, R&D provides for a better understanding 
of neural connection weights, no matter how they are generated. 
There is much less mystery to a network's function if we have a good 
means of analyzing whatever it is that determines that function. While 
learning is powerful, and biologically important, it cannot be a replace- 
ment for understanding what, precisely, a network is doing. Second, 
R&D theory provides a principled means of relating neural and psy- 
chological data. This makes representationally and dynamically com- 
plex cognitive phenomena accessible to neural level modeling. Given 
a high-level description of the right kind, R&D theory can help us 
determine how that can be realized in a neural system. Connectionists, 
in contrast, do not have a principled means of relating these two 
domains. As a result, high-level hypotheses can be difficult to test in 
a connectionist framework. 

So, unlike connectionism, R&D theory carefully relates neural and 
psychological characterizations of behavior to provide new insights 
into both. And, while it is possible that certain hybrid models (either 
symbolicist/connectionist hybrids, or localist/distributed hybrids) may 
make up for some of the limitations of each of the components of 
the hybrid alone, there is an important price being paid for that 
kind of improvement. Namely, it becomes unclear precisely what the 
cognitive theory on offer is supposed to be. R&D theory, in contrast, 
is highly unified and succinctly summarized by three simple, yet quan- 
tifiable, principles. To put it simply, Occam's razor cuts in favor of 
R&D theory. But, it should be reiterated that this unification buys 

4 For a simple example, see Eliasmith and Anderson, Neural Engineering, pp. 
294-98. 
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significantly more than just a simpler theory. It provides a unique set 
of conceptual tools for relating, integrating, and analyzing neural and 

psychological accounts of cognitive behavior. 
111.3. Dynamicism. Of the three approaches, dynamicism, by design, 

is the most radical departure from the "mind as computer" metaphor. 
In some ways, this explains both its strengths and its weaknesses. 

Having derided talk of representation and computation, dynamicists 
have put in their place talk of "lumped parameters," and "trajectories 
through state-space." Unfortunately, it is difficult to know how lumped 
parameters (for example, "motivation" and "preference")46 relate to 
the system that they are supposed to help describe. While we can 
measure the arm angle of the Watt Governor, it is not at all clear 
how we can measure the "motivation" of a complex neurobiological 
system. But this kind of measurement is demanded by dynamicist 
models. As well, some dynamicists insist that cognitive models must 
be low-dimensional, in order to distinguish their models from those 
of connectionists.4' But insistence on low-dimensionality greatly re- 
duces the flexibility of the models, and does not seem to be a princi- 
pled constraint.4 Finally, because the Watt Governor, a standard ex- 

ample of a classical control system, has been chosen as a central 

exemplar of the dynamicists approach, the well-known limitations of 
classical control theory are likely to plague dynamicism. Clearly, these 
limitations are not ones shared by R&D theory. 

What the replacement of the "mind as computer" metaphor by the 
"mind as Watt Governor" metaphor gained for dynamicists was an 

appreciation of the importance of time for describing the behavior of 

cognitive systems. No other approach so relentlessly and convincingly 
presented arguments to the effect that cognitive behaviors are essen- 

tially temporal." If, for example, a system cannot make a decision 
before all of the options have (or the system has) expired, there is 
little sense to be made of the claim that such a system is cognitive. 

46 These are two of the lumped parameters included in the model of feeding 
described in J. Busemeyer and J. Townsend, "Decision Field Theory: A Dynamic- 
Cognitive Approach to Decision Making in an Uncertain Environment," Psychological 
Review, c, 3 (1993): 432-59. 

47 van Gelder, "What Might Cognition Be, If Not Computation?" 
48 These points are discussed in detail in my "Commentary: Dynamical Models 

and van Gelder's Dynamicism: Two Different Things," Behavioral and Brain Sciences, 
xxI, 5 (1998): 615-65, and my "The Third Contender: A Critical Examination of 
the Dynamicist Theory of Cognition." 

49 Such arguments are prominent in both van Gelder's "What Might Cognition 
Be, If Not Computation?" and his "The Dynamical Hypothesis In Cognitive Science," 
Behavioral and Brain Sciences, xxI, 5 (1998): 615-65, and the various contributions to 
Port and van Gelder. 
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Furthermore, there is evidence that perception and action, two clearly 
temporal behaviors, provide the foundation for much of our "more 

cognitive" behavior.5" While dynamicists have done a good job of 

making this kind of argument, the consequences of such arguments 
need not include the rejection of representation and computation 
that dynamicists espouse. R&D theory, which essentially includes pre- 
cisely these kinds of dynamics, shows how representation, computa- 
tion, and dynamics can be integrated in order to tell a unified story 
about how the mind works. 

111. 4. Discussion. So, in short, R&D theory adopts and improves upon 
the dynamics of dynamicism, the neural plausibility of connectionism, 
and the representational commitments of symbolicism. As such, it is 
a promising synthesis and extension of past approaches to understand- 

ing cognitive systems, because it includes the essential ingredients. 
Of course, it is not clear whether R&D theory combines those ingredi- 
ents in the right way. Because it is a recent proposal for explaining 
cognitive systems, its current successes are few. While it has been used 
to effectively model perceptual (the vestibular system), motor (eye 
control), and cognitive (working memory) processes, these particular 
examples of perceptual, motor, and cognitive behavior are relatively 
simple. So, while the resources for constructing neurally plausible 
models of phenomena that demand complex dynamics over complex 
representations are available, it remains to be clearly demonstrated 
that such complexity can be incorporated into R&D theoretic models. 

As well, R&D theory does not, in itself, satisfactorily answer questions 
regarding the semantics of representational states. As Fred Dretske"5 
has noted, coding theory does not solve the problem of representa- 
tional semantics. Thus, R&D theory needs to be supplemented with 
a theory of meaning, as mentioned in section III.1. In fact, I think 
R&D theory suggests a novel theory of meaning that avoids the prob- 
lems of past theories." Nevertheless, this remains to be clearly demon- 
strated. 

Even in this nascent form, however, R&D theory has some important 
theoretical implications for work in philosophy of mind and cognitive 
science. For example, functionalism regarding the identity of mental 

50 This view, associated variously with terms "embodied," "embedded," or "dynam- 
icist" has been expressed in, for example, Francisco J. Varela, Evan Thompson, and 
Eleanor Rosch, The Embodied Mind: Cognitive Science and Human Experience (Cambridge: 
MIT, 1991), and more recently in Ballard, M. Hayhoe, P. Pook, and R. Rao, "Deictic 
Codes for the Embodiment of Cognition," Behavioral and Brain Sciences, in press. 

51 Knowledge and the Flow of Information (Cambridge: MIT, 1981). 
52 For an attempt at articulating such a theory, see my "How Neurons Mean: A 

Neurocomputational Theory of Representational Content." 
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states may need to be reconceived. If, as R&D theory entails, the 
function of a mental state must be defined in terms of its time course, 
and notjust its inputs and outputs, it is unlikely that functional isomor- 

phism of the kind that Hilary Putnam"5: envisioned will be sufficient 
for settling the identity of mental states. If the dynamics of some 

aspects of mental life are central to their nature, then an atemporal 
functionalism is not warranted. Standard functionalism in philosophy 
of mind is clearly atemporal. And, I take it, some (if not many) aspects 
of mental life have their character in virtue of their dynamics (for 
example, shooting pains, relaxed conversations, and recognizing 
friends). So, a "temporal" functionalism is necessary for properly 
characterizing minds. In other words, input, outputs, and their time 
course must all be specified to identify a mental state. While some 
mental functions may not be especially tied to dynamics (for example, 
addition), others will be (for example, catching a ball). Specifying 
ranges of dynamics that result in the successful realization of that 
function will allow us to determine if some mind or other can really 
be in a given mental state. 

These considerations have further consequences for the role of the 

Turing machine in cognitive science.:4 hile cognitive functions will 
still be Turing computable, they will not be realizable by every univer- 
sal machine. This is because computing over time (that is, with time 
as a variable in the function being computed) is different from com- 

puting in time (that is, arriving at the result in a certain time frame). 
When this difference is acknowledged, it becomes clear that Turing 
machines as originally conceived (that is, under the assumption of 
infinite time) are relevant theoretically, but much less so practically 
(that is, for understanding and identifying real minds). I take it that 
more argument is needed to establish such conclusions, but that, 
at the very least, adopting R&D theory shows how such positions 
are plausible. 

IV. CONCLUSION 

Perhaps, then, R&D theory or something like it can help rid us of 
the constraints of metaphorical thinking. Such an approach holds 

promise for preserving many of the strengths, and avoiding many of 
the weaknesses, of past approaches to understanding the mind. But, 

53 "Philosophy and Our Mental Life," in his Mind, Language, and Reality: Philosophical 
Papers (New York: Cambridge, 1975), pp. 291-303. 

4 These consequences are more fully explored in my "The Myth of the Turing 
Machine: The Failings of Functionalism and Related Theses," Journal of Experimental 
and Theoretical Artificial Intelligence, xIv (2002): 1-8. 
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more than this, it is also suggestive of new perspectives we might 
adopt on some of the central issues in philosophy of mind and cogni- 
tive science. 

Because cognitive science is interdisciplinary, it should not be sur- 

prising that a cognitive theory has consequences for a variety of disci- 

plines. I have suggested some of the consequences of R&D theory 
for neuroscience (for example, careful consideration of decoding), 
psychology (for example, quantitative dynamic descriptions of cogni- 
tive phenomena), and philosophy (for example, reconsidering func- 
tionalism). These are consequences that should be embraced in order 
to improve our understanding of cognitive systems. In other words, 
the time is ripe for moving beyond the metaphors. 

CHRIS ELIASMITH 

University of Waterloo 
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