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The myth of the Turing machine: the failings of functionalism
and related theses

CHRIS ELIASMITH

Department of Philosophy, Department of Systems Design Engineering,
University of Waterloo, Waterloo, Ontario, Canada
e-mail: eliasmith@uwaterloo.ca

Abstract. The properties of Turing’s famous `universal machine’ has long sustained
functionalist intuitions about the nature of cognition. This paper shows that there is
a logical problem with standard functionalist arguments for multiple realizability.
These arguments rely essentially on Turing’s powerful insights regarding computa-
tion. In addressing a possible reply to this criticism, it is further argued that func-
tionalism is not a useful approach for understanding what it is to have a mind. In
particular, it is shown that the di� culties involved in distinguishing implementation
from function make multiple realizability claims untestable and uninformative . As a
result, it is concluded that the role of Turing machines in philosophy of mind needs
to be reconsidered.
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1. Introduction
Since its invention in the late thirties, the Turing machine has heavily in¯uenced
characterizations of human cognition. The Turing machine often plays a central role
in debates about the nature of cognition because many characterizations of cognitive
systems are computational, and Turing (1937) showed that the machine could be
used to characterize all computable functions.1 Functionalists, in particular, have
used Turing’s results to argue for the `multiple realizability’ of the mental; i.e. for the
thesis that what it takes to be a mind is independent of physical realization. A typical
argument for multiple realizability goes something like this:

(1) systems with minds are cognitive systems;
(2) cognitive systems are computational systems;
(3) Turing machines can completely describe any computational system;
(4) therefore, Turing machines can completely describe any cognitive system (2

and 3);
(5) Turing machines are de®ned independently of implementation (i.e.

functionally);
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(6) therefore, cognitive systems can be de®ned independently of implementation
(4 and 5);

(7) therefore, systems with minds can be de®ned independently of implementation (1
and 6).

This conclusion, associated with the philosophical position of `functionalism’ (or
sometimes `psychofunctionalism’) , has become a mainstay in philosophy of mind.
However, if we consider the argument closely, especially in light of alternate (though
closely related) characterizations of computation, we will see that it is not valid. As a
result, the multiple realizability thesis and functionalism need to be rethought.

Before considering the argument in detail, I brie¯y describe Turing machines and
their relation to functionalism. I then consider the argument and show that it relies
on an equivocation. Subsequently, I consider a way to avoid this equivocation, but
this attempt to revive the argument ultimately fails because it relies on a notion of
equivalence that cannot do the conceptual work functionalists need it to. The reason,
I argue, is that implementation and function are not as easily parted as multiple
realizability claims presume. As a result, such claims are untestable and uninforma-
tive. By considering a more implementation-conscious characterization of computa-
tion, I suggest that the relevance of Turing machines and the functionalist thesis in
philosophy of mind needs to be reconsidered.

2. Turing machines on the brain
The Turing machine has been crucial to 20th century mathematics, in part because it
has played a central role in theories of computation and computability. Speci®cally,
the Turing machine helps provide a rigorous de®nition of an algorithm or method.
Turing was able to show that his `machine’ describes a mechanical process that can
perform all of the operations a person working with a logical system can perform.
Subsequently, Alonzo Church formulated the Church±Turing thesis; namely, the
thesis that all de®nitions of computability are equivalent. Together, these results
demonstrate that Turing machine computable functions are all the computable
functions there are. Thus, Turing had succeeded in specifying a universal computer.

Turing machines are as simple as they are familiar: they consist solely of a tape, a
read/write head and a ®nite table of state changes (see table 1). The tape is divided
into discrete boxes, each of which may have either a zero or a one in it. The head will
read a zero or one from the current tape square and, depending on the current state
and what is in the current tape square it will write a zero or one, move left or right
and proceed to the next state in the table. Consider, for example, the state table
below (table 1). This Turing machine description de®nes an algorithm for a simple
adder. Given two strings of ones separated by a zero, it will output a single string
that is the same length as the sum of the original two strings. So, for example, the
string [ 1 0 1 ] becomes [ 1 1 ] and [ 1 1 0 1 1 1 ] becomes [ 1 1 1 1 1 ].

Turing himself (1950) argued that a Turing machine could achieve whatever the
human brain could achieve. Because he had shown that Turing machines can
compute any function that is computable (assuming that both the tape and time
are in®nite), and given the further claim that human cognition is a product of
biological computation, Turning concluded that all of our cognitive behaviours can
be captured in the language of the Turing machine. So, for any mental process there
must be a Turing machine description that will have the same input/output relations.
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Central to the power of Turing’s formulation of the Turing machine is the fact that
it provides a computational description without any reference to the physical makeup
of the computer. In table 1, there are clearly no physical constraints placed on the
implementation of the state table. So, to fully characterize the behaviour of a Turing
machine at a time we need specify only three things: (1) the input at that time; (2) the
state of the machine at that time; and (3) the state table. Notably, what makes a

machine state the type of state it is (e.g. an adder), are functional relations between
inputs, outputs and other machine states.

Following Turing’s lead, functionalists analogously hold that what individuates
mental states are functional relations between inputs, outputs and other mental
states (Putnam 1975). Functionalists thus suggest that cognitive functions can be

completely characterized by high-level descriptions, abstracted from (i.e. indepen-
dent of) their implementation. Coupled with a notion of functional equivalence (or
`functional isomorphism’ to use Putnam’s phrase), this characterization of mental
states establishes the cherished multiple realizability thesis. That is, if two systems
have functionally equivalent descriptions, then they have the same set of mental

states (if any). Because functional descriptions are independent of implementation,
two di� erent implementations can have functionally equivalent descriptions. Thus,
two di� erent implementations can have the same set of mental states (if any); this
just is the thesis of multiple realizability. Note the central role played in this
argument by the notion of `functional equivalence’Ðit is this notion that, I will
argue, is ultimately unable to do the work functionalists need it to (see section 4).2

It is hardly necessary to argue for the prevalence of these positions in current
philosophy of mind (see Block 1980, Fodor 1981, Cummins 1983, Putnam 1994,
Stillings et al. 1995). Block has, in fact, claimed that functionalism and multiple
realizability are obvious enough to be considered default positions in philosophy of

mind:

[I]t is a simple matter to dream up a nomologically possible machine that satis®es [a given]
machine table but does not have the designated physical state. Of course, it is one thing to say
this and another thing to prove it, but the claim has such overwhelming prima facie plausibility
that the burden of proof is on the critic to come up with reasons for thinking otherwise. (Block
1980: 178)

Indeed, the majority of philosophers of mind embrace some form of functionalism
(and with it the multiple realizability thesis) and so it will take some e� ort to show

how, precisely, functionalism fails.

The myth of the Turing machine 3

Table 1. A Turing machine state table for a simple adder.

State number Input Output Next state

1 0
1

R1
R1

2
1

2 0
1

L0
R1

3
2

3 0
1

L0
L0

3
4

4 0
1

R0
L1

HALT
4

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 1

3:
03

 0
2 

Ju
ly

 2
01

3 



3. A logical slip
Perhaps the most obvious assumption of the multiple realizability argument outlined
in section 1 is that cognitive systems are computational. I wish to grant this
assumptionÐin a sense. In precisely this sense: all systems we consider to be
cognitive systems are things-that-compute . What is avoided by this formulation is
the ambiguity of the term `computational system’. The term could also be taken to
mean `a system of computations’, i.e. the abstract set of input to output transforma-
tions. Noticing this di� erence, it is clear that premise 3 is true only under the second
interpretation. Thus, Turing machines completely describe computations, not the
physical systems that are performing computations. It is clear that the antecedent
premise (premise 2) is using the term `computational system’ to refer to things-that-
compute, since real cognitive systems are physical systems and systems of computa-
tions are not. So, there is an equivocation on the terms `computational system’,
rendering the argument invalid.

Of course, it is still possible to save this Turing machine-motivated argument, and
perhaps functionalists would make the necessary additional claims. In particular
they may claim that the equivocation noted above is irrelevant. They may argue that
the equivocation does not nullify the fact that there are systems of computations that
could be implemented by di� erent things-that-compute . That is, we can construct
di� erent implementations that have equivalent (or even identical) Turing machine
descriptions. If, by completely describing the system of computations , we have
completely described the cognitively relevant aspects of those things-that-compute ,
then the argument will survive since nothing would ride on the equivocation. I argue
in the next section that the standard notion of equivalent Turing machines does not,
in the end, support this conjecture. And, because the notion of equivalence fails in
this context, the claim that the equivocation is irrelevant cannot be sustained.

4. Are all equivalent systems created equal?
In section 2 we saw that intuitions supporting multiple realizability rely on the
notion of the `equivalence’ of computational systems. But when, exactly, are Turing
machines equivalent? And, what kind of equivalence is necessary to eliminate the
equivocation discussed above? Recall that premise 3 of the argument to multiple
realizability is `Turing machines can completely describe any computational system’,
whereby `computational system’ means things-that-comput e and `completely de-
scribe’ means something like a description that captures the cognitively relevant
behaviours of a system under a set of conditions. So, if we take any two things-that-
compute and they are implementations of equivalent Turing machines, we should
expect them to have cognitively similar behaviour under similar conditions. Of
course, if they are implementations of the same Turing machine, we have good
reason to expect their cognitive behaviour to be as similar as possible.

I return to this point shortly, but ®rst let us consider more recent results in
computational theory that bear directly on considerations of computational
equivalence. Kolmogorov has shown how important the implementation of a
computational system is to its computational character. He has proven that two
implementations of a given functional description cannot be usefully considered
equivalent unless they are almost identical. This is because an algorithm running on
one implementation can only be run by another implementation with the addition of
an emulator program of some sort. Running this emulator adds computational
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complexity making the second implementation signi®cantly di� erent from the ®rst
(Le Cun and Denker 1992).3 It is only in the limiting case of in®nite symbol-strings
that this overhead can be ignored (a limiting case often adopted by Turing machine
proofs). For ®nite strings, this overhead will signi®cantly a� ect the performance of
the computerÐespecially if we place time and resource restrictions on its behaviour.
Such restrictions seem to be the rule more than the exception in the case of cognitive
systems (Newell 1990, van Gelder 1995, van Gelder and Port 1995, Eliasmith 1996).

So, the structure of a computer may not a� ect what class of functions is
computable for that computer, however, its structure will signi®cantly a� ect
computational complexity. Since an increase in computational complexity necessi-
tates an increase in the time and power needed to perform a computation, the class
of actual computable functions within a given period of time and with a ®xed amount
of computational resources will vary for di� erent physical computers. It is in this way
that `equivalent’ computers are signi®cantly not equal. Implementing equivalent or
even identical Turing machines does not at all guarantee equivalent computational
complexity. In this respect, implementation and function are intimately bound. This
is true even for abstract computationa l descriptions if time and resources are included
in such descriptions. So, claims of Turing machine equivalence tell us little about
computational complexity and it is computational complexity, not mere function,
that is cognitively relevant.

To see this, consider the example of deciding whether an object in the environment
is a friend or foe. Suppose we have two di� erent implementations of the function
that needs to be computed to successfully achieve this recognition. One of these
implementations, Athlon Alan, can compute this function in less than a second given
its architecture, computational primitives, etc. The other implementation, Intel Alan,
takes nearly 10 minutes to perform the same computation because its architecture,
computational primitives, etc., aren’t optimized for this kind of computation. In
other words, the computational complexity of the algorithm on the second
implementation is signi®cantly higher than on the ®rst implementation.4 Of course,
if the object is a foe, Intel Alan may not have the 10 minutes required to make this
decision and thus may not ever exhibit this cognitive behaviour. As a result, it is
computational complexity, not function, which determines possible cognitive
behaviour. Merely noting the class of abstract functions computable by Intel Alan
won’t tell us much about Intel Alan’s actual cognitive behaviour.

5. The impropriety of Turing’s machines
Because functionalists have insisted that computable functions are cognitively
relevant, they have relied on Turing equivalence, a notion that is both uninformative
and untestable as typically applied to cognitive systems by functionalists. In other
words, functionalists have improperly applied Turing’s theoretical results to under-
standing minds.

Let us again consider the Turing machine description in table 1. As previously
discussed, this is the state table for an adder; let us call the state table Alan. So we
have Alan Turing machine, a theoretical entity with four states that can be described
by table 1. Of course, Alan and his tape can be implemented in silicon, or with water
¯owing through a series of pipes. Suppose Alan is implemented in both water and
silicon. Then we can know that silicon Alan and water Alan have equivalent (in fact,
identical) Turing machines descriptions.

The myth of the Turing machine 5
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In trying to understand the brain, we are obviously not provided with the state
table and tape that we are trying to characterize. So, to render this thought
experiment more amenable to the situation we are in with natural cognitive systems,
suppose we ®nd water Alan and silicon Alan, without already knowing that they are
implementing the same Turing machine. We must now set to work to ®nd out what
these two recently discovered systems are computing, i.e. what input, output and
state transition relations hold. If we begin by characterizing these relations at the
level of electrons, atoms or molecules, we will undoubtedly get di� erent Turing
machine descriptions of the two systems. Such descriptions will be enormously
complex. Indeed, we may never ®nd those four simple states that the two Alans’
designers were trying to implement. Given these considerations, it is not surprising
that we can provide an in®nite number of Turing machine descriptions of both
systems (Dennett 1978).

To make things worse, let us suppose that there is another system, Nala, that is an
implementation of a state table that has been randomly selected from the vast space
of possible Turing machines. Since, once implemented, there are an enormous
number of Turing machine descriptions of this system as well, it is likely that we
would be able ®nd a Turing machine description for Nala that matched one for
either water or silicon Alan. In fact, this would be just as likely as it would be for us
to ®nd descriptions for water and silicon Alan that matched. If we did ®nd matching
descriptions for Nala and, say, water Alan, we could rightfully claim that Nala and
water Alan are Turing machine equivalent.

Together, Alan and Nala can help us discover how Turing equivalence is
uninformative and untestable. The reason Turing equivalence is uninformative is
that it is both too easy and too hard to ®nd in physical systems. The example of
water and silicon Alan shows how equivalence can be too hard to establishÐmatter
simply has too many input, output and state transition relations to know which are
the right ones for a given analysis. The example of Nala shows how equivalence can
be too easy to establishÐany matching input, output and state transition mapping
supports an equivalence claim. The notion of equivalence is so under-constrained as
to provide no means for making principled distinctions in our descriptions of
unfamiliar computational systems, of which the brain is presumably one example.5

The problem is that the designers of water and silicon Alan could not implement
just four states, without implementing an in®nite host of others; such is the nature of
physical stu� . Any physical system can be described in terms of a near in®nity of
di� erent virtual machines. As a result, we can’t be in a position to tell which one is
explanatorily relevant. As the example of Nala shows, Turing machine characteriza-
tions are cheap. That means that for unknown systems, they will not help determine
how to draw a function/implementation distinction in an explanatorily useful way;
all such characterizations (mis-) describe a system equally well. But functionalists
assume that there is such a distinction to be drawn; without that distinction, the
multiple realizability thesis would make no sense. But the distinction can not be
supported in practice precisely because real physical systems implement not one, but
in®nitely many Turing machine de®ned functions.

A functionalist may claim that this is ®ne as long as that in®nity includes some
subset of functions of interest, e.g. the subset necessary for supporting a mind. But
the same two problems arise. First, it is likely that we can ®nd whatever subset is
speci®ed in a host of implementations we do not want to count as minds. Second, we
can never test such a hypothesis since we can never implement just that subset of
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functions. Such claims are thus uninformative (because both things with and without
minds will have those functional descriptions) and untestable (because we can not
implement just that functional description). Simply put, there is no way around the
fact that the set of a system’s functions and its implementation are intimately related.

It follows that the function of a given implementation can only be successfully
divorced from that implementation in the realm of mathematical theory (although it
does not need to be, as Kolmogorov’s result shows). As soon as we build something
(or even make design decisions), the materials we choose to build it with and the way
we put it together will determine what functions it can realize. For example, if we
wish to build a machine to catch a baseball, we cannot simply specify the states
through which the machine must move; those states have to be moved through in a
given period of time (i.e. with a speci®ed computational complexity given certain
resource constraints), or that function cannot be actually performed.

More generally, if we add to a functional description some function whose
performance depends on a dimension along which two implementations are non-
identical, they will no longer both be able to implement the exact same functions.
The reason is that, whereas Turing machine descriptions are dimensionless, Turing
machine implementations are not. The signi®cance of this realization is most evident
once we acknowledge that many functions have a distinctly temporal nature. In such
cases, the speed with which a given system can compute helps determine those
functions computable by that system.6 If implementation a� ects computational
speed, it a� ects computable functions; there is a huge range of factors, from
computational complexity to mass, which a� ect computational speed.

6. Conclusion
Without a robust notion of equivalence, functionalism as standardly construed is not
a useful means of understanding what it is to have a mind. Turing machine
equivalence, I have argued, is not a robust notion in this context. However, this is
the notion that functionalists typically adopt. As a result, the functionalist argument
to multiple realizability fails because Turing machine-type functional descriptions
simply are not complete enough descriptions of physical implementations.

As a result, the role that Turing machines play in our understanding of what it
takes to be a cognitive system needs to re-evaluated. While Turing’s insights can be
useful for specifying a class of potentially computable functions, this class is unlikely
to tell us much about the set of real systems we deem to count as cognitive. Instead,
we need a notion of (Kolmogorov) equivalence based on considerations of
computational complexity and computability. Specifying boundaries on temporal
and/or computational complexity within which a system must fail to count as
cognitive is essential to a useful taxonomy of minds. This is because there is no
getting around the fact that in the real world the set of functions realized by a given
physical system is going to depend signi®cantly on the physics of that system.
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Notes
1. Technically, Turing’s result only applies to digital or discrete state machines. However, I take it that the

brain can be successfully characterized as such a machine .
2. It is not unanimous amongst teleological functionalists that a notion of equivalence is mandatory. For

those who do not commit themselves to a notion of equivalence, the arguments in section 4 should be
considered merely a warning.

3. Computational complexity is roughly a measure of the number of steps it takes to complete a
computation.

4. This is true despite being able to give an abstract characterization of the algorithm. In order for that
characterization to be realized, the actual algorithm being run on the computer will depend intimately
on the computer’s architecture.

5. These arguments are reminiscent of Searle’s rejection of computation all together . However, I simply
wish to show the generality of the notion of Turing equivalence and do not need nearly as strong a
result as Searle does. Searle’s point is rejected by some because it seems outlandish to suppose that we
could ever ®gure out how our o� ce wall was running a word processor. My point, in contrast, is that
even given a machine that is running a word processor, Turing equivalence cannot provide useful
constraints for determining that this is so.

6. More abstractly, consider that a function can be mathematically de®ned as F:X!Y where X, Y and F
are the sets X={x1, . . . ,xn}, Y = {y1, . . . ,yn}, and F is some set of ordered pairs of elements of X and
Y. We must, in addition, realize that in an implementation all members of X occur at a time t, and thus
this mapping is really one from vectors, xi2X, to vectors, yi2Y, where xi = {xi ,ti}, yi = {yi ,ti}. If we do
not preserve this mapping, we are not computing the same function.
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