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First, a clarification. Poznanski says that I conclude that: “encoding and decoding
spike trains must be discrete at some level.” There are two possible interpretations
to his characterization: (1) the process of encoding and decoding must be discrete;
and (2) our characterization of the process must be discrete. I hope it is evident
that I don’t claim that the process in neural systems is discrete, but rather that
a complete characterization of the process can be discrete; these of course are
significantly different claims. Only the second is endorsed by my paper and it is
deducible from the claim Poznanski labels ‘ii)’, i.e., that the: “continuous nature of
neurons is not relevant to the information they process”. So, I will take this to be
the claim that Poznanski finds problematic.

Now, as surprising as my contention may initially seem, in some ways it
shouldn’t be surprising at all. We know for a fact that such claims are true of
some physical systems. Consider a typical digital computer. The processes in such
machines are indeed continuous (to a similar extent that processes in neural systems
are). That is, transistors that make up integrated circuits are, in fact, continuous
physical devices. Their transfer function traces out a (nonlinear, continuous) S-
shaped curve, which is why they are used as both switches and amplifiers. Of
course, we treat them as if they are only ever in one of two possible states. In
fact, they have been engineered such that the noise they typically encounter won’t
interfere with our ability to treat them this way (the noise due to high heat levels
remains an ever-present challenge for those ensuring we can treat these systems in
this way). So, it is clear that in the case of these physical systems, the continuous
nature of their components, or the processes in them, is irrelevant for characterizing
their information processing. This demonstrates, at a minimum, that continuity
of underlying processes doesn’t guarantee the need for a continuous theoretical
characterization.

My central claim in Eliasmith (2001) is that the same is true for neural systems,
and I provide a good reason — noise. That is, given the presence of noise, we are
guaranteed that a digital description of the system will capture all of the informa-
tion processing properties of the system. The trouble comes, says Poznanski, once
we realize that certain nonlinear dynamical behaviors (e.g., chaos) are essential for
the sophisticated behavior of neural systems. While I agree that chaos and other
such kinds of behavior are likely important for understanding neural systems, I
disagree that it is a problem. Citing Freeman (2000), Poznanski notes that “most
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nonlinear dynamical systems that are chaotic will degenerate into quasi-periodic
and point attractors from which they cannot recover when the chaotic processes are
discretized.” However, in that same paper, Freeman also realizes that his analysis
depends on the system being noise free. When noise is introduced, according to
Freeman, these problems with the discretization are subdued. Therefore, a combin-
ation of discretization and noise (just what I was proposing in the paper) permits a
good characterization of these processes.

Furthermore, there has been work done on discrete chaotic attractors that shows
such attractors have all the standardly useful properties (e.g., rapid divergence,
fractal attractors, etc.) of continuous attractors (Waelbroeck, 1995; Waelbroeck and
Zertuche, 1998). Of course, this is only true up to a limit (i.e., depending on the
step size of the discretization). My argument in Eliasmith (2001) helps establish the
precise nature of this limit for cognitive/neural systems. As a result, we should con-
clude that continuity does not provide any special kind of computational advantage
(e.g., chaos) relevant to our understanding of these systems.

Poznanski concludes that noise “should not be seen as crucial for information
representation” given the fact that certain neural structures (e.g., gap-junctions,
distributed representations, etc.) “increase the signal-to-noise ratio ... [since] single
neurons in networks play a role in the reduction of noise.” However, the implicit
conditional is simply false (i.e., if neurons help reduce noise then noise is not cru-
cial for information representation). Eliasmith and Anderson (in press) contains an
extended analysis of the close relation between noise reduction and representation
in neural systems. In fact, the examples presented by Poznanski help establish my
point. The purpose behind increasing signal-to-noise is precisely to increase the
precision of the representation that single neurons provide. This means that the
precision of the representation in both single neurons and populations is limited
(although to different degrees), which means that we can use discrete character-
izations of those representations. After all, the difference between continuous and
discrete systems is that the former has no limitation on precision. In the paper, I
cite evidence that the precision of many neural systems is limited to about 3 bits
per spike.

In conclusion, then, all of the concerns voiced by Poznanski in his reply fail to
offer a serious challenge to the idea that continuity is irrelevant to a good under-
standing of cognitive systems.
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