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Abstract

There are currently a number of models that use spiking neurons in recurrent networks to
encode a stable Gaussian &bump' of activation. These models successfully capture some
behaviors of various neural systems (e.g., storing a single spatial location in working memory).
However, they are limited to encoding single bumps of uniform height. We extend this previous
work by showing how to construct and analyze realistic spiking networks that encode multiple
&bumps' of di!erent heights. Our networks capture additional experimentally observed behav-
ior (e.g., storing multiple spatial locations at the same time and the sensitivity of working
memory to non-spatial parameters). � 2001 Published by Elsevier Science B.V.
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1. Introduction

Stable Gaussian-shaped neuronal activities across a population of recurrently
connected neurons without external perturbation, or stable &bumps', have been
successfully modeled by a number of researchers [7,3,2]. Bumps have been thought to
be present in various neural systems including the head direction system [12], frontal
working memory systems [7], parietal reach memory systems [11], and feature
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selective visual systems [6]. Many of these systems can store functions more complic-
ated than a simple uniformly-sized Gaussian bump. For example, there is evidence
that parietal areas can hold multiple saccade targets in memory at the same time,
suggesting that a multi-modal function is stored [8]. As well, it has been shown that
the activity in parietal areas is sensitive to non-spatial parameters (e.g., shape [9] and
intensity [10]), suggesting that bumps of activity at a single location should be of
di!erent heights under di!erent stimulus conditions. None of the models proposed to
date support either multiple bumps or bumps of di!erent amplitudes.

In this paper, we extend previous work on single bump networks by showing how
to construct and analyze realistic spiking networks that can encode multiple bumps of
arbitrary amplitude. We begin our analysis with a one-dimensional network of
rate-modeled neurons. We then show how it is possible to generate useful analytical
results about this simple network. We discuss important extensions to the model,
including how to implement the model in a spiking network (using leaky integrate-
and-"re neurons), and how to construct higher dimensional models. Notably, the
approach we employ is a general one which can be applied to constructing and
analyzing many di!erent kinds of neural circuits [4,5].

2. The simple rate model

The procedure outlined here is appropriate for constructing a function attractor
for any set of functions. In this case, however, we restrict the set of functions to
include all those functions made up of independent Gaussian-shaped functions
of arbitrary height. We begin by de"ning the space in which the functions of interest,
f (x; A), reside
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We choose a "nite number, D, of orthonormal basis functions, �
�
(x), to de"ne this

functional space. In our simulations, the functional space is constrained to have low
spatial frequencies, resulting in smooth functions. This is appropriate since we are
interested in representing Gaussian bumps of arbitrary heights at any position.

Next, we assume that the neurons form a highly overcomplete representation of this
same functional space. The encoding functions for this representation are taken to be
the neuron response functions
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Assuming linear decoding, the estimate of the original function given this encoding is
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The a
�
(A) are the neuron "ring rates that represent the function f (x; A) under some

independent Gaussian distributed noise with a mean of zero, �
�
. The "ring rates

themselves are determined by the neuron's encoding function, �I
�
(x), a gain, �

�
, a bias,

�
�
, and the neuron's rate function, G

�
(e.g. a leaky integrate-and-"re response func-

tion). The encoding function in our case is a Gaussian, since the tuning curves found in
the area we are simulating (parietal cortex) are Gaussian. The encoding function is
used as a measure of how similar the represented function is to the preferred function
for that neuron.

We can now "nd the decoding functions in the neuron space, �
�
(x), that provide our

estimate, fK (x; A), by minimizing the error between the original function (represented in
the orthonormal space of �

�
(x)) and that estimate (in the neuron space)
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In Eq. (6) we have expressed the neuron decoding functions as a linear sum of
orthonormal basis functions, �

�
(x)"�
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k
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(x), in order to ensure that they encode,

at best, the same functional space as the orthonormal basis.
Minimizing this error with respect to k
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gives:
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In order to store the set of functions f (x; A), we must ensure that the dynamics of
our network are stable. To determine how stable we expect the dynamics to be,
we can explicitly write our expression for our optimal decoding coe$cients from
Eq. (7) as
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Substituting this into our expression for mean square error (6), gives
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Our representation of each element, A
�
, of the A vector (which determines the

signal) is accurate to within �MSE
�
. Since we can reduce the MSE by increasing

the number of neurons in the population, we can repeatedly encode and decode
the signal with an error that can be made arbitrarily small given su$cient number of
neurons.
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Now we want to "nd weights in the neuron space that force the network to display
this behavior. In particular, we want the network to decode the same function it
encodes from time step to time step. The weights needed to give stable dynamics can
be found as follows:
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The weights, in this case, are the projection of the encoding functions onto the
decoding functions. These weights now de"ne a set of attractors in the function space
we de"ned earlier. These weights implement this kind of repeated encoding and
decoding. The result is a set of function attractors with stable representations of the
functions de"ned by, f (x; A). Our simulations have veri"ed this result, which shows
that the amplitudes, A

�
, are dynamically re-mapped to themselves in spite of the

non-linear neuronal encoding procedure. The preceding procedure results in a
localized connectivity matrix that supports stable dynamics for the set of functions
determined by A as long as the gain after encoding and decoding is smoothly
reduced from unity for spatial frequencies above the cuto!, n"D [5]. Furthermore,
in the limit of high spiking rates and a large number of neurons, we can model the
dominant e!ect of the spike #uctuations using an equivalent noise level (like � above)
[1]. However, as noted in [7], the behavior is very di!erent if the neurons become
synchronized.

3. A spiking model

In order to ensure that the above analysis holds for spiking networks, we can now
model the network with leaky integrate-and-"re (LIF) neurons. For spiking neurons,
we take the (instantaneous) "ring rate, a

�
(t, A), to be the linearly "ltered spike train

produced by neuron i
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where the t
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(A) are the spike times from neuron i indexed by n (up to t) given the
function f (x, A). These spike times are determined by the parameters of LIF neuron i,
that de"ne the non-linear encoding G

�
. We take the linear "lter, h(t), to be the PSC

(modeled as a simple RC circuit) produced by an incoming spike. Using the weights
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Fig. 1. The left panel shows the stability of two simultaneously encoded bumps of di!erent amplitudes. The
right panel shows the spike trains in the network encoding the bumps (N"200; �

	
�
"10 ms).

we found early for the rate modeled LIF neurons, the current in the soma of neuron
i can be written:
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This current is used by the LIF neuron to determine spike the times, t
���

(A). The
weights for this network are the same as for the rate model since the encoding and
decoding procedures are the same in both cases. The results of a simulation based on
this model is shown in Fig. 1. The tuning curves of the neurons used to construct this
network are determined by randomly chosen LIF parameters, together with a ran-
domly assigned, uniformly spaced Gaussian encoding function.

Lastly, we have simulated the analogous model in two dimensions. The analysis
follows that outlined here, where Eqs. (1)}(4) can be re-written using vector notation.
Not surprisingly, behavior of these networks is similar to that seen in the one-
dimensional case.

4. Conclusion

We have shown how to generate networks of spiking neurons that can store a set of
functions. We have given some examples of the kinds of analysis that can be carried
out to help characterize the behavior of the neural network model. The particular set
of functions we have employed consists of sets of Gaussian bumps of various
amplitudes. These functions have a particularly interesting neurobiological inter-
pretation. In areas that exhibit a kind of working memory, such as the lateral
intraparietal area, there is evidence that multiple targets can be stored and that stimuli
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that di!er along non-spatial dimensions (e.g. intensity or shape) give rise to di!erent
responses. Our model captures both of these aspects of this kind of working memory.

Interestingly, these networks have produced an experimental prediction. Currently,
experimentalists tend to record only from neurons with stimuli at the center of their
receptive "elds. This results in a decrease in "ring rate during the memory delay
relative to the initial encoding of the stimulus. The networks we have generated
reproduce this result, but they also include neurons whose "ring rates increase when
the stimuli is at the edge of the receptive "eld. We suspect, then, that a neuron tested
with stimuli near the edges of its receptive "eld will increase its "ring rate during the
memory delay period.
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