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Is the Brain Analog or Digital?
The Solution and Its Consequences for Cognitive Science*

1.    Introduction and Preliminaries

The concepts of continuity and discreteness have perplexed philosophers since the time
of Parmenides.  Kant (1783/1997) has put the problem as follows:

It  will  always  remain  a  remarkable  phenomenon  in  the  history  of
philosophy, that there was a time, when even mathematicians, who at the
same time were philosophers, began to doubt, not of the accuracy of their
geometrical  propositions  so  far  as  they  concerned  space,  but  of  their
objective validity and the applicability of this concept itself, and of all its
corollaries, to nature. They showed much concern whether a line in nature
might not consist of physical points, and consequently that true space in
the object might consist of simple [discrete] parts, while the space which
the geometer has in his mind [being continuous] cannot be such.

Kant recognizes not only the distinction between continuity and discreteness but more
importantly,  the problem of relating these concepts to nature; that is,  to real physical
systems.  More recently, cognitive science has posed the related question: Does the brain
function in an analog or digital manner?  Or, more precisely, is the brain digital or analog
at the level of description amenable to explaining cognitive phenomena?  The answer for
many is obvious, it just happens that they disagree on what the answer is.  The concern of
cognitive science with this distinction has been evident since its inception.  Cyberneticists
including Von Neumann, McCulloch, Pitts, Wiener, and Freemont-Smith hotly debated
the analog/discrete distinction as early as 1951 (Gerard, 1951).[1]  Current researchers,
including  Churchland  (1995),  Fodor  (1983),  Newell  (1990),  van  Gelder  (1995),  and
Smolensky (1988) have emphasized the importance of a commitment to one or the other
of these views of the brain.  A definitive answer to the question “Is the brain analog or
digital?” should prove invaluable in evaluating the available theories in cognitive science.

I believe such an answer can be provided.  In this paper,  I  argue that there is
strong evidence that the brain is digital.  Before explaining the reasons for this conclusion
I  characterize  the  debate,  sketching  the  various  reasons  for  and  against  both  the
digital/discrete  and  analog/continuous  views.  This  will  provide  background  against
which we can consider a definition of the continuity or discreteness of any given physical
system.  This definition relies on a distinction between types of continuity or discreteness
suggested  by  van  Gelder  (in  press).  He  has  suggested  that  there  is  an  important
distinction to be made between continuity (or discreteness) of state and continuity (or
discreteness) in time.  Any adequate solution to the continuity debate needs to address
both  types  of  continuity.  Definition  in  hand,  I  detail  a  solution  to  the
continuity/discreteness debate, concluding that the brain is discrete at the level of analysis
necessary for explaining cognition. This solution provides a basis for a brief analysis of
the  various  cognitive  theories  espoused  in  cognitive  science,  including  symbolicism
(Newell 1990), connectionism (Churchland and Sejnowski 1992), and dynamicism (van
Gelder 1995).

One brief terminological clarification needs to be made before continuing. Most
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current discussions are consistent in regards to the lack of a distinction between ‘analog
and  continuous’ and  ‘digital  and  discrete’ (see  Lewis  1971  for  a  counter  instance). 
Consider Suber’s (1988) comments (see also Dunlop & Fetzer 1993, p. 4; Gerard 1951 p.
13; Haugeland 1981):

Let  us  call  arrays  of  symbols,  or  texts,  digital  patterns.  This  term
emphasizes the cellular or granular nature of the patterns. Digital patterns
are arrays of cells or locations that contain one or another symbol. What
makes them "digital" is the individuality and discontinuity of the separate
bits. Digital patterns may be contrasted with analog patterns, such as line
drawings and facial expressions, in which the information comprising the
pattern is continuous, not discontinuously individuated into cellular bits.

Suber is by no means alone in his use of these terms as almost synonymous.  Proof that
the brain is continuous would assure many that digital descriptions would be inadequate. 
A resounding success  of  discrete  models  of  the  brain  would  likewise  convince  most
researchers that the brain is not usefully considered analog.  In this paper I will assume
this synonymy and consider things which are analog to be continuous and things which
are digital to be discrete[2].

2.    The Debate

2.1    Arguments for Continuity
Many  theoretical  arguments  for  continuity  are  based  on  the  conviction  that  analog
machines  have  a  richer  repertoire  of  behaviors  than  their  digital  counterparts.  For
example, Churchland (1995) claims that because digital machines have access only to
rational numbers, as opposed to all reals, they suffer “a potentially severe limitation on
the[ir] abilities” (p. 243). Penrose (1989) has speculated that such limitations amount to
an  inaccessibility  to  consciousness.  He  claims  that  animals,  like  ourselves,  perform
noncomputable  functions.  However,  digital  machines  can  only  perform  computable
functions by definition.  Thus, they can not perform all of the functions that animals can. 
In  particular  then,  digital  machines  will  never  be  conscious.  Perhaps  less  colorfully,
Cleland (1993) argues the related point that computational devices limited to discrete
numbers (i.e.  Turing machines)  can not  compute many physically realized functions. 
Presumably this limitation is avoided by analog computers and brains.

Further  arguments  for  cognitive  continuity  arise  from  a  different  sort  of
computational  consideration.  Consider  a  simple soap bubble,  whose behavior  can be
used  to  compute  extremely  complex  force-resolving  functions  (see  Uhr,  1994).  The
interactions of molecular forces which can be used to represent certain macro-phenomena
are far too complex for a digital computer to compute on a reasonable time scale.  It is
simply a fact that, in certain circumstances, analog computation is more efficient than
digital  computation.  Coupled  with  arguments  for  the  efficiency  of  many  evolved
systems, we should conclude that it is reasonable to expect the brain to be analog. 

In a more practical vein, recent technologies have incorporated the strengths of
analog computers  into cognitively relevant  systems.  In  particular,  analog Very Large
Scale Integration (aVLSI) semiconductors have been used to construct artificial cochlea
and  retinas  with  some  success  (Mead  1989  as  in  Churchland  and  Sejnowski  1992;
Douglas and Mahowald, 1995).  Such analog computers have 10 to 100 times greater
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computational density (i.e. computational power per unit area) and use significantly less
power than their digital counterparts (Hammerstrom, 1995).  Proponents of the continuity
view will  claim that  these  successes  are  proof  of  the  superiority  of  applying  analog
computional methods to understanding cognitive systems.

A distinct line of argument lies in the psychological evidence for how we actually
process  information.  Many image researchers  believe  that  mental  images  are  analog
representations (Jeannerod 1994).  If true, some argue, this implies that the information in
such  representations  “are  related  in  a  nonarbitrary  and  continuous  fashion  to  their
perceptual-motor counterparts” (Paivio 1986, p. 177 as in Jeannerod 1994).  Similarly,
those interested in generative mimesis (e.g. mimicking of facial features by newborns)
claim that human actions seem “far too metaphorical and analog in principle to fit easily
into [a] kind of quasi-symbolic computational framework” (Donald 1993, p. 740).  Such
results suggest we more naturally traffic in analog than digital representations making it
likely that the brain is analog.

2.2    Problems with Continuity
Many of the arguments rehearsed above employ questionable assumptions. Psychological
arguments for analogicity assume applicability to neurophysiological descriptions of the
brain.  Perhaps such conclusions are simply the result of a coarse grained analysis of
fundamentally digital processes.  As well, the examples of analog computation proffered
are extremely specialized, yet the brain seems general purpose and able to compute many
functions.

However,  analog  computation  has  a  far  more  serious  concern  in  regards  to
explaining  cognitive  function.  If  computation  in  the  brain  is  fundamentally  analog,
serious  problems  arise  as  to  how  parts  of  the  brain  are  able  to  communicate
(Hammerstrom, 1995).  It is notoriously difficult to ‘read off’ the results of an analog
computation.  Analog signals, because of their infinite information content, are extremely
difficult  to  transmit  in  their  entirety.  Particularly  since  brain  areas  seem  somewhat
specialized in their computational tasks, there must be a means of sending understandable
messages to other parts of the brain.  Not only are analog signals difficult to transmit,
analog  computers  have  undeniably  lower  and  more  variable  accuracy  than  digital
computers.  This is inconsistent with the empirical evidence for the reproducibility of
neuronal responses (Mainen and Sejnowski, 1995).

2.3    Arguments for Discreteness
The Physical Symbol Systems hypothesis of Newell and Simon (1976) is perhaps the
most influential statement of the ‘brain as digital computer’ analogy.  Around the time of
its  articulation,  classical  approaches  to  artificial  intelligence  were  impressively
successful, as demonstrated by programs such as Newell’s SOAR, Anderson’s ACT*, and
Winograd’s  SHRDLU (Gardner,  1985).  This  was  seen  as  an  existence  proof  for  the
discreteness of the brain: if we can use discrete machines to behave like the brain, the
brain is probably discrete.

There are a number of further advantages to the symbol systems hypothesis.  For
one, there are precise mathematical characterizations of the limitations of this hypothesis
provided by Turing’s (1950) insightful analysis.  A consequence of this analysis is that
implementational  details  become  far  less  important  since  any  discrete  machine  is
formally equivalent to any other. This has provided researchers with a large repertoire of
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general tools for programming such machines and analyzing the results.  Pragmatically,
digital computers are an excellent medium for simulating human cognition.

Furthermore, the behavior of such simulations is very predictable because of the
high levels of certainty built into the state transitions of digital machinery.  Thus, unlike
their  analog  counterparts,  it  is  possible  to  have  very  general  purpose  machines  and
standards of communication between them.  This allows for a functional decomposition
of  cognitive  systems  and,  more  importantly,  provides  a  means  of  ensuring  that  the
functional components will be able to communicate when they are reassembled.

Unrelatedly, there is a strong argument for discreteness from neurological data –
the ‘look and see’ argument.  We can observe neurons and notice that their behavior is
typically all-or-none.  Either the synaptic input currents surpass some threshold at the
soma causing a spike, or they do not.  As well, we can observe that the spikes tend to
have a stereotypical shape.  Any slight deviation from that shape does not seem to have
any effect on the vesicle release when the spike arrives at the end of the axon.  This has
made  it  seem  obvious  to  some  that  neurons  are  chunking  their  input  into  discrete
packages (Cummins 1980).

2.4    Problems with Discreteness
Most of the problems with the discreteness view are implicit in the arguments for the
continuity view.  Briefly, discrete machines can not compute functions over real numbers,
they tend to be computationally less dense than analog computers, they use more power,
and they compute complex functions slowly.

However, there are other difficulties.  For example, claims to an existence proof
for  discreteness  were  premature.  The  once  successful  classical  artificial  intelligence
approach has met some theoretical  barriers.  Classical  models are notoriously poor at
describing perceptual and motor behavior (van Gelder and Port 1995).  In fact, they have
been unable to crack the problem of language which had seemed one of the cognitive
behaviors best suited to a symbolic understanding.  In general, the psychological realism
of these sorts of models has been disappointing.

As  well,  the  neurophysiological  evidence  for  discreteness  is  not  conclusive. 
Though it strongly suggests that we are discrete in state (with respect to neurons), this
does  not  mean we are  discrete  in  time (van  Gelder  1995).  Even  though the  spikes
themselves  are  all-or-none,  the  precise  distance between any two spikes  can only be
expressed  as  a  real  number.  If  these  distances  are  the  basis  of  neural  information
processing, the brain is clearly continuous.

3.    The Solution

Many who have discussed the continuity debate have arrived at an ecumenical conclusion
similar in spirit to the following (Uhr 1994, p. 349):

The brain clearly uses mixtures of analog and digital processes.  The flow
and fusion of neurotransmitter molecules and of photons into receptors is
quantal  (digital);  depolarization  and  hyperpolarization  of  neuron
membranes  is  analog;  transmission  of  pulses  is  digital;  and  global
interactions mediated by neurotransmitters and slow waves appear to be
both analog and digital
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While strictly true, the heart of the debate lies in the question of whether cognition can be
explained by analog or digital processes. The strict analogicity of the depolarization of
neuron membranes may be uninteresting if its analog nature does not affect the cognitive
behavior  of  the  system.  Similarly,  even  though  the  transmission  of  neural  spikes  is
digital,  if  this digitalness is  not relevant to cognition (perhaps only the time between
spikes is relevant) then we should not consider the brain to be digital.

Uhr’s  remarks  demonstrate  another  general  characteristic  of  this  debate:  a
confusion of levels.  It is not at all clear that slow waves are analog as Uhr suggests. 
Perhaps they only seem analog because the resolution of the instrument being used to
measure  slow waves  is  inadequate  to  detect  the  digital  nature  of  the  process  which
underlies them.  Similarly the physical symbol systems hypothesis suggests discreteness
holds  at  the  level  of  psychology  whereas  claims  to  continuity  often  lie  at  the
physiological  level  of  neural  processing.  Researchers  arguing  for  continuity  or
discreteness from such disparate positions are bound to be talking past each other. In
order  to  resolve  the  debate  we first  need  an  understanding  of  what  discreteness  and
continuity are which will prevent such problems.

In the next four sections I provide a definition of continuity and discreteness and
argue for a solution – in particular discreteness – by employing the tools of information
theory.  It is by realizing that the brain is a real system, subject to physical limitations
and, in particular, the effects of noise which helps resolve the question of whether the
brain is analog or digital.

3.1    Relative Continuity
Consider, van Gelder and Port’s (1995) claim that we can note the position of our arm at
any instance in time and, by analogy or extrapolation, conclude that the same is true of all
cognitive  behavior.  Consider  also  Cummins’ (1980)  assertion  that  the  behavior  of  a
neuron is essentially discrete.  Because the neuron is the fundamental unit of cognitive
behavior, Cummins concludes that the brain is essentially discrete.  It must strike us as
odd that two such prima facie convincing arguments have opposite conclusions.  This
paradox was  noted  by Stroud (1951)  during the  cyberneticist  debate:  “I  know of  no
machine which is not both analogical and digital” (p. 28).  Perhaps a resolution to this
tension has also been voiced during the debate.  Pitts states the point nicely (p. 34):

Actually, the notion of digital or analogical has to do with any variable in
any physical system in relation to the rest of them, that is, whether or not it
may be regarded for practical purposes as a discrete variable.

Even in the brief summary of the continuous/discrete debate provided above it is plain
that participants are concerned with different levels.

It is hardly surprising that there is no absolute answer to the question of whether
the brain is analog or digital.  Like any physical system the brain allows various levels of
analysis and description.  At the quantum level certain properties will be discrete (e.g.
charge).  At the neuronal level, those same properties are treated as continuous. 

To address the relative nature of continuity, and recalling van Gelder’s (in press)
distinction between discreteness in state and discreteness in time, I offer the following
two definitions:

Let x be a variable along some dimension, t be time, C be a constant, Z be the
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integers and R be the reals:
1.     A system is discrete in time relative to a time step Dt if it is possible to

choose a  to  such that where ti  = to  + nDt  for nÎZ  and

CÎR.

2.     A system is discrete in state along dimension x relative to a state step Dx if
f(t) Î X, where X is a subset of {nDx} for nÎZ.

Figure 1: A system discrete in time but not in state.

Figure 2: A system discrete in state but not in time.

These definitions are depicted in figures 1 and 2.  Expressed verbally, the first
definition means that if there is a time step, for instance one second, such that at the
beginning, during and at the end of all one second intervals the state of the system has
remained constant then the system is discrete in time relative to one second.  In order to
align our measurements with the system, the definition also allows that we may choose
the starting point, to, from which those one second intervals are counted off.  The second

definition is similar.  It states that if we sample the state at any point in time and that state
is always an integer multiple of some state step Dx then the system is discrete in state
along that dimension[3].

Notably, both these definitions are theoretical in nature and have to be relaxed in
an implementational setting.  In any real system, a state change will take a certain amount
of time and such transients may be variable. Because real systems take time to change
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states, there will always be some point (perhaps infinitesimal) in time at which the system
can be in any state.  As well, being in a state will seldom mean having an exact real value
of x.  Rather, it will mean being in some small neighborhood around x.

To  account  for  these  difficulties,  we  can  introduce  ‘slack’  parameters. 
Specifically, assume there is a dit such that dit << Dt and dix << Dx for all state changes

i.  Incorporating this parameter into the definitions, we have:
1.     A system is discrete in time relative to a time step Dt if it is possible to

choose a to such that where ti = to + nDt for nÎZ

and CÎR.

2.     A system is discrete in state along dimension x relative to a state step Dx if

 only at values of t  where f(t)Î  X,  where X  is a subset of {nDx
+dix} for nÎZ.

This  ‘slack’  introduced  into  the  definitions  allows  a  small,  presumably
functionally insignificant, amount of time for state changes or variation in state position. 
In both cases, the slack terms define a margin of error which should be small compared to
the state or time steps.  Thus, discreteness in time becomes a discreteness with respect to
a time step plus or minus a little bit.  Discreteness in state can now be understood as
depending on the slope of the function describing state changes.  If the slope is horizontal
(i.e. equal to zero) only at some values then that will be a discrete state relative to the
smallest distance between those values, the state step[4].

I  believe that these definitions now capture a standard notion of discreteness. 
Consider, for example, Von Neumann’s characterization of discreteness (1951, p. 20):

The decisive property of a switching organ [discrete component] is that it
is  almost always found in one or the other of its  two extreme discrete
states,  and  spends  only  very  little  time  transiently  in  the  intermediate
states that form the connecting continuum.

Many definitions of the analog/digital distinction have be offered by philosophers over
the  years  which  purport  to  capture  a  similar  notion  (Goodman  1968;  Lewis  1971;
Haugeland 1981; Demopoulos 1987).  However the definitions offered here are centrally
implementational.  This means that they do not rely on soley theoretical criteria which
may be difficult to adjudicate in a real physical system (Goodman 1968; Lewis 1971;
Demopoulos 1987).  Though Haugeland (1981) does not fall prey to this concern, his
definition does not distinguish discreteness in state from discreteness in time making it
less applicable to cognitive systems as construed by cognitive science. 

For my later evaluation of cognitive theories it is important to note that choosing
a  time  step  corresponds  to  choosing  a  level  of  analysis.  Churchland  and  Sejnowski
(1992)  provide  a  figure  describing  the  levels  of  analysis  of  human  cognition.  It  is
presented in figure 3 with the addition of approximate time scales at which the levels
operate and alongside Newell’s (1990) diagram of the relation between time and human
action.  The resulting figure captures the approximate correlation between the time scales
and levels of analysis.  Figure 3 motivates the question: Given the vast range of time

Continuity Debate http://watarts.uwaterloo.ca/~celiasmi/Papers/ce.2000.continuity.de...

10 of 22 11/28/08 10:59 AM



scales open to us, is there any principled way to decide if there is a particular level of
analysis (i.e. choice of Dt and Dx) at which the brain is discrete?  To answer this question
we first  need to determine if  there are any analytic tools deemed valid by almost all
cognitive scientists.  If such tools exist, as I argue they do, they will provide a principled
way of determining a level of analysis and we will  have found a way to resolve the
debate.
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Scale
(sec)

Time
Units

System World or
Theory

107 months  Social Band

106 weeks  

105 days  

104 hours Task Rational
Band

103 10 min Task

102 minutes Task

101 10 sec Unit task Cognitive
Band

100 1 sec Operations

10-1 100 ms Deliberate act

10-2 10 ms Neural circuit Biological
Band

10-3 1 ms Neuron

10-4 100 ms Organelle

 
Figure 3: Levels as related to time scale. Adapted from Churchland and Sejnowski
(1992) and Newell (1990).

3.2    Information Processing
Our best scientific theories tell us that any animal in any environment must rely on its
nervous system to gain knowledge of its environment.  This was true for Quine (1960),
and it is still true today.  We know that signals are transduced from the environment by
our  nervous  system and converted into  neural  spike  trains.  These  spike  trains,  then,
transmit information about the environment.

Even in the often diverse realm of cognitive theories, almost all researchers can
agree on these points (Kitcher, 1984).  Whether they hold the tenets of classical cognitive
science  (i.e.  computationalism,  symbolicism,  GOFAI,  etc.),  or  localist  or  distributed
connectionist theory, or they prefer the dynamical systems approach or the ‘embedded’
approach they agree on these facts.  Though some cognitive scientists deem themselves
nonrepresentationalist (van Gelder 1995; Thelen and Smith 1994), noncomputationalist
(Globus 1992), nonsymbolicist (Churchland 1989), nonconnectionist (Fodor & Pylyshyn
1988;  van  Gelder  1995)  or  nondynamicist  (Eliasmith  1996)  almost  no  one  deems
themselves noninformationalist[5].  Despite  the often controversial  uses of  information
theory (Clark 1993), all agree that the nervous system traffics in information.  The price
for denying this is just too high for most to seriously consider.  Shannon (1948/1949) has
provided us with powerful tools and a general framework for understanding information
processing.  What some have denied is not that information processing is taking place in
the brain, but rather that this particular set of tools is useful for understanding the type of
information processing taking place in the brain. 

Their uncertainty is understandable.  Any animal is in a complex, continuously
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varying environment.  The stimulus of interest (or survival value, etc.) will likely have
complex structure along many dimensions.  We can characterize this problem as one of
determining the continuous sensory signal given the set of spike arrival times produced
by a neuron exposed to that signal.  Shannon’s theory is extremely useful for quantifying
the amount of information in a signal, but only when the signal has discrete states.  In
trying to determine the information of continuous signals we must let the sample size
approach zero and the entropy then becomes infinite.  In this sense, information content is
not well defined for continuous variables (Reike et al. 1997, p. 109).  This has lead some
to conclude that we cannot usefully apply Shannon’s theory to a continuous system like
the brain. 

However, this conclusion is only true if we can not determine a principled discrete
sample  size  which  fully  captures  the  behavior  of  a  spiking  neuron.  If  we  can  not
determine such a sample size, we must conclude that the precise timing of spike arrivals
is  important  to  the information processing characteristics  of  the brain.  If  the precise
timing is important, then an infinite amount of information is transmitted with each spike,
as will be shown shortly.  Put another way, if exact arrival times of spikes is important
then we need a real number to express those arrival times.  Real numbers can only be
expressed by an infinite bit string, so each spike carries with it an infinite amount of
information.  In this case it is clear the that brain is continuous in its fine details (that is,
relative to sub-microsecond time steps).  However, if exact arrival times are not important
then there is reason to think that the brain is not continuous, but rather discrete (relative
to millisecond time steps).

Let me clarify and strengthen these arguments by providing more detail.  As an
example  of  the  application of  information theory  to  neural  spike  trains,  consider  the
methods of MacKay and McCulloch’s (1952) paper.  Probably the first  application of
Shannon’s  theory  to  understanding  the  brain,  this  paper  set  the  tone  for  all  future
analyses.  Given the limitations of Shannon’s method to discrete signals, MacKay and
McCulloch considered the spike train with a limited resolution.  Thus they discretized the
spike train into bins of  width Dt  and considered the presence of  a  spike in a  bin to
transmit  a  1  and  an  absence  of  a  spike  to  transmit  a  0.  This  provides  a  binary
representation of the spike train on which we can perform a Shannon-style analysis.

Extending  this  analysis,  Rieke,  et  al.  (1997)  derive  the  following  equation  to
calculate the maximum entropy rate given a presumed average firing rate, , and bin
size, Dt (p. 116):

With this equation, we can determine the maximum amount of available information per
spike as a function of our chosen bin size as shown in Figure 4.  In this figure a spiking
rate of 10Hz was used as it is the average spiking rate of pyramidal cells in the cerebral
cortex.  Notably, lower spiking rates increase the information transmission rate at a given
bin size.  However, there are both upper and lower bounds on spiking rates, making the
remainder of the analysis unaffected by the particular choice of 10Hz. 
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Figure 4: Number of bits of available information transmission per spike assuming a
firing rate of 10 spikes/s over a range of 10 microseconds (14.7 bits/second) to 5
milliseconds (5.5 bits/second).

These results, like those of MacKay and McCulloch determine an upper bound on
information transmission rates.  This means that any particular choice of coding scheme
could not possibly carry more information about the input signal waveform.  Rieke, et al.
(1995) have shown that information transmission in the frog auditory system gets as high
as 90% of this theoretical limit when presented with naturally occurring stimuli.  These
experiments  show both  that  the  biological  systems  are  functioning  near  the  physical
limits of information transmission and that the coding scheme used is, as expected, most
efficient for natural stimuli.

However, from the graph it is clear that as the bin size decreases, the information
transmission rate increases asymptotically.  Thus, if we choose a small enough bin size,
we  can  have  infinite  information  transmission  rates  and  the  brain’s  information
processing capacity is dependent on the infinitesimal precision of spike arrival times and
hence continuous.  How can researchers confidently make claims about the efficiency of
spike train encoding in real systems if this is the case?  The answer is simple.  This is not
the case  and the reason is noise.

3.3    Noise
If there is any expectation of noise or uncertainty in the signal being passed from one
neuron to the next, the precision of a neural code will drop dramatically.  This is because
the precise  spike arrival  times will  no longer  be used to  encode the stimulus  signal.
Consider sending a message down a telephone wire using spike train encoding.  If the
wire itself introduces a small amount of noise into the signal, the distance between spikes
at their destination will be slightly different from the distance between spikes as they
were sent.  Therefore it would be unwise and, in fact, impossible to rely on the exact
distance between spikes to transmit our message.  The axon, it seems, is just like our
noisy  telephone  wire.  Lass  and  Abeles  (1975)  have  found  that  mylenated  axons
introduce a few microseconds of jitter over a length of about 10cm. 

A few microseconds of jitter is not much noise, but there are other sources of
noise as well.  In particular, synapses have been found to be rather unreliable in their
release of vesicles into the synaptic cleft given the presence of an action potential in the
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presynaptic axon (Stevens and Wang 1994).  Furthermore, the amount of neurotransmitter
in  each  vesicle  can  vary,  as  can  the  ability  of  the  presynaptic  neuron  to  release  the
vesicles (Henneman and Mendell 1981).  Despite these various sources of noise, neurons
have been shown to reproduce and respond similarly (though not identically) to similar
signals (Baer and Koch 1994; Gallant, Conner et al. 1994). 

Given the empirical fact of the matter concerning the noisiness of neurons and
their ability to extract and pass the signal of interest, it seems the code used by neurons is
a robust one, as we would hope.  However, the only way it can be robust is if it does not
depend on precise spike arrival times; that is, if it is discrete at some level.  Reike, et al.
(1997) have empirically demonstrated that coding efficiency in neurons peaks at .4 ms
and actually decreases for smaller bin sizes.  Thus, the various sources of noise introduce
uncertainty into spike arrival times to the point where measuring the arrival times to a
precision of about a half a millisecond will gain you the best reproduction of the original
signal.  Reike, et al. also note that this coding efficiency is within a factor of two of the
physical limits set by the statistics of the spike train.  Thus, no coding scheme could use
such spike trains to encode more than about twice as much information regarding the
stimulus signal.  The information transfer rates with a time step of .4 milliseconds are
about 3 bits per second.  Three bits of information is far more information per spike than
some have claimed (e.g. Cummins 1980, p. 189) but it is far less than the infinite amount
of  information  needed  to  encode  a  real  number.  Clearly,  the  effects  of  noise  on
information transfer are significant.  In fact, the effects are significant enough to allow us
to convincingly claim that the brain is discrete in time at a time step on the order of 1
millisecond. 

Researchers  tend  to  agree  that  discreteness  in  time  is  more  contentious  than
discreteness  in  state  in  the  case  of  the  brain.   The ‘look and see’ argument  is  quite
compelling for discreteness in state.  Neurons do seem to be discrete in state and there are
finitely many of them.  Furthermore, neurons are necessary for our cognitive behavior. 
From these premises it is natural to conclude that the brain is discrete in state at this level
of description amenable to explaining cognitive phenomena.  Furthermore, we can realize
that the sources of noise which limit the precision of the temporal code will also serve to
limit any voltage coding on the part of the neurons (though it is not clear there is any). 
So even if we are currently overlooking important state differences, they will be subject
to a discrete description as well.

Together, the ‘look and see’ argument for discreteness in state and the information
theoretic  argument  for  discreteness  in  time support  the strong claim that  the brain is
discrete in time and state at a time step on the order of 1 millisecond and with respect to
neural firings at a state step of about 70mV.

3.4    Discussion
It seems we now have an answer to the question posed by the cyberneticists some 50
years ago.  They asked “whether information be continuously coded or discretely coded”
(McCulloch  1951,  p.  43).  We  can  confidently  answer:  “Discretely.”  How  have  we
arrived at this answer?  Recall that first we needed relative definitions of discreteness in
time and state.  By examining an information theoretic analysis of the neural spike train,
we  saw  how  it  is  possible  to  establish  an  upper  bound  on  possible  information
transmission at a given temporal resolution.  In the case of real systems, any expectation
of noise will make the temporal resolution drop dramatically.  Current neurophysiological
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evidence suggests that the temporal resolution necessary or adequate for understanding
the neural code is on the order of one millisecond.  At this resolution, neurons seem to
transmit between about 3 and 7 bits of information per spike or about 300 bits per second
(Rieke  1997).  This  means,  of  course,  that  another  implementation  able  to  transmit
information at  a similar rate should be able to have the same information processing
characteristics as the brain[6].

The assumptions needed to arrive at this conclusion are minimal.  We have to
hypothesize that cognitive function, broadly construed, is information processing.  We
have to assume that all the information processed by the brain is coded in the neural spike
train before it is cognitively relevant.  This latter assumption may seem contentious, if we
consider the effects of hormones or other holistic effects which may change our cognitive
function.  However,  these  sorts  of  effects  will  merely  moderate  the  functioning  of
neurons.  It would be unlikely if they could enable a neuron to pass more information
than normal, though they may cause it to pass information differently.  In any case, they
will not eliminate noise and thus any effects are still bound by the above analysis.

Many will be discomforted to know that the brain can be analyzed into ‘bits’. 
“The brain is more like a slide rule than a digital computer,” they will protest.  However,
if we consider a slide rule more carefully, the assumed dichotomy is not evident.  For a
slide rule to provide an answer to a calculation it performs, the answer must be ‘read off’
by something, probably a human eye.  If the reader can not access the results of such a
calculation, the result useless.  Of course, the eye which must read the slide rule has a
limited resolution.  In fact, the physics of diffraction places limits on what it is possible
for any imaging system to read off of the slide rule.  The finite number of rods and cones
in  our  retina  and  any  visual  noise  introduced  by  the  atmosphere  (or  reflections  or
movement), serve to limit the amount of information available to us when reading the
continuous  slide  rule.  The  limitations  are  such  that  we  can  express  the  amount  of
information available from the slide rule as a number of bits. 

The case is analogous in neural systems.  For a neuron to receive information
from its neighbor, it must examine its neighbor’s message in the presence of noise.  For a
neuron to send a message to its neighbor, it must encode the message in the presence of
noise.  It is truly amazing at how effective neurons are at preserving the information they
pass through encoding and decoding spike trains.  In fact, neural systems approach the
theoretical  limits  of  coding  efficiency.  Nevertheless,  there  is  a  finite  amount  of
information passed per neural spike.  This allows us to consider the system as discrete in
time on a time scale of about one millisecond.

4.    Consequences for Cognitive Science

As  long  ago  as  1951,  it  was  suggested  that  the  information  passed  by  neurons  is
contained in the spike trains (Von Neumann 1951, p. 31).  Now we can quantify that
hypothesis.  Not surprisingly, this has important consequences for the theoretical claims
underlying the various research programs of cognitive science.  In what follows, I will
consider the significance of the preceding discussion for symbolicism (or classicism, or
computationalism), connectionism, and the more recently proposed dynamicist view of
cognition.

4.1    Symbolicism
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It would seem that symbolicists should celebrate an analysis which concludes that the
brain is fundamentally discrete, as they are typically thought to be the major proponents
of such a view.  However,  discreteness being a relative attribute,  it  is  significant that
discreteness claims can be made at different levels.  Unlike the position just presented,
symbolicist claims are seldom explicit about the time step relative to which the system is
supposed to be discrete.  Van Gelder (1995) has argued strongly that symbolicists do not
take time seriously in their models.  This oversight on the part of symbolicists renders
their discreteness claims difficult to evaluate or, more often, indefensible at the implicit
level of analysis. 

In  cases  where  time  is  discussed,  the  systems  constructed  do  not  adhere
consistently  to  any  one  level  of  temporal  analysis.  Consider,  for  example,  Newell’s
(1990)  book length  discussion of  symbolic  computation  in  the  context  of  his  SOAR
model.  On the basis of neurological data, Newell explicitly identifies a time step relative
to which the system is discrete; 10 milliseconds.  The system is discrete at this level
because this is how long it takes to execute a production in the SOAR system.  However,
productions range from encoding whether or not a light is on or off (p. 275) to: “If the
problem space is the base-level-space, and the state has a box with nothing on top, and
the  state  has  input  that  has  not  been examined,  then  make the  comprehend operator
acceptable, and note that the input has been examined” (p. 167).  There is little reason to
think these productions would both be executed in the same length of time.  If the 10ms
time step is to be a rigorous constraint we deserve an explanation of why productions of
seemingly disparate complexity would be executed in one time step.  This difficulty has
arisen because  the  number  of  productions  per  step  in  the  model  has  been chosen to
approximate human performance only on certain tasks.  When generalized from these
tasks to others, the hypothesized time step is no longer realistic (see, for example, pp.
274-282).

Thus, even Newell’s ‘time conscious’ modeling efforts are unconvincing in their
ability to provide an argument for discreteness.   As well, most of the symbolicist models
assume discreteness at an even higher level.  Dynamicists have provided lengthy critiques
of why such models are often contradicted by human behavior (Thelen and Smith 1994;
Globus 1992; van Gelder 1995).

4.2    Connectionism
The results in section 3, that neurons should not be modeled as encoding real numbers, is
an important constraint on connectionist models.  Paul Churchland (1995) has made a
point of trying to distinguish connectionist models from symbolicist ones on the basis of
their continuity (p.243):

Genuinely parallel implementation is important for the further reason that
only then will the values of all of the variables in the network... have open
to them every point in the mathematical continuum.  So-called "digital" or
discrete-state  computing  machines  are  limited  by  their  nature  to
representing and computing mathematical  functions that  range over the
rational numbers...This is a potentially severe limitation on the abilities of
a digital machine...Therefore, functions over real numbers cannot strictly
be computed or even represented within a digital machine.  They can only
be approximated.
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Such  claims  are  simply  misleading.  Just  like  digital  machines,  neurons  can  only
approximate functions over real numbers.  However, there are many connectionists who
have  directly  addressed  the  questions  of  the  noisiness  of  real  neurons  (Mainen  and
Sejnowski 1995),  and are well  aware of the importance of time (see Churchland and
Sejnowski 1992 for numerous examples).

Different approaches to connectionism should consider different aspects of this
analysis.  Connectionists who feel is important that their models are continuous, or who
have  such  assumptions  built  into  their  models,  should  rethink  their  position. 
Connectionists who rely on static or localist models should realize that they will run into
many of the same difficulties encountered by the symbolicists when trying to account for
the information characteristics of the brain (see previous section).  In sum, connectionists
should  be  aware  of  the  consequences  of  the  various  assumptions  they  make  when
constructing their  models.  The less  likely those assumptions are  to  conflict  with the
information capacities of the brain, the more plausible the models they provide.

4.3    Dynamicism
The  application  of  dynamical  systems  theory  to  understanding  the  brain  has  been
welcomed, and suggested, by many (Skarda & Freeman 1987; Churchland & Sejnowski
1992).  Many of these are connectionists, and so it is not surprising that the consequences
of an information theoretic analysis for connectionism are should be equally applicable to
dynamicism.  As  for  connectionists,  claims such as:  “the  system's  entire  operation is
smooth and continuous; there is no possibility of nonarbitrarily dividing its changes over
time into distinct manipulatings, and no point in trying to do so” (van Gelder 1995, p.
354) are false on the analysis in section 3.

However,  for  those  dynamicists  who  wish  to  be  non-connectionists  (e.g.  van
Gelder and Port, 1995; Thelen and Smith 1994), new concerns arise. In particular, the
insistence  of  some  researchers  that  only  low-dimensional  dynamical  descriptions  are
necessary for describing cognition introduces further difficulties (van Gelder 1995; van
Gelder and Port 1995).  Because they assume low-dimensional models, these dynamicists
must  posit  continuous  ‘collective’ parameters  which  aggregate  the  behavior  of  many
neurons.  This poses some important problems.  For one, it is not clear that there is a
principled way to discover such parameters (Eliasmith 1996; 1997).  As well, it is not
clear  with  respect  to  what  time  or  state  step  such  parameters  are  to  be  considered
continuous.  Normally, these parameters are treated as ‘completely’ continuous (see van
Gelder  1995)  but  the  analysis  here  suggests  this  is  not  true  of  the  brain.  More
importantly,  it  is  not  at  all  clear  if  such  parameters  can,  in  principle,  preserve  the
information processing capacities of the brain.  Assuming that low-dimensional models
are capable of capturing the high-dimensional behaviors of the brain is dangerous.  We
can characterize the high-dimensional information processing capacities, but we do not
know how continuous approximations of underlying finite processes affect overall system
behavior.

5.    Conclusion

In retrospect, Kant seems to have identified both the deeper source of the debate and,
implicitly, its resolution.  He notes that the tension between continuity and discreteness
arises from a parallel tension between the certainty of theory and the uncertainty of how
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the real world is; in short, between theory and implementation.  If we focus on theory, it
is not clear that the continuity of the brain can be determined.  But, since the brain is a
real world system, implementational constraints apply.  In particular, the effects of noise
on limiting information transfer allow us to quantify the information transmission rates of
real neurons.  These rates are finite and discretely describable.  Thus, a theory informed
by implementation has solved our question, at least at one level of description.

Whether  the  brain  is  discrete  at  a  higher  level  of  description  is  still  open  to
debate.  Employing the provided definitions, it is possible to again suggest that the brain
is discrete with a time step of 10ms as first proposed by Newell.  Empirical evidence can
then be brought to bear on this question, likely resulting in its being disproved.  Similarly,
one might propose that the brain is continuous at a similar level of description.  Again,
empricial evidence can be used to evalute such a claim.  However, what has been shown
here is that the brain is not continuous ‘all the way down’.  There are principled reasons
for considering the cognitively relevant aspects of the brain to be discrete at a time step of
about one millisecond.  In a sense,  this does not resolve all  questions concerning the
analogicity of the brain, but it resolves perhaps the most fundamental one:  Can the brain
ever be considered digital for explaining cognitive phenomena?  The answer, it seems, is
“Yes”.
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[1]   Future references to the transcript of these discussions will indicate the speaker, not the author or editor
of an article or book.

[2]   See Blachowitz (1997) in support of the ubiquity of this synonymizing and for an alternative to it.
[3]   The definition could be restated with x as a vector in which case we would define a state step Dx which

would also be a vector and would contain the state steps along all dimensions.  However, it is more
general to define discreteness along one dimension since we could have a system which is discrete along
some dimensions and not others.

[4]   Notably, this definition ignores the transients between states.  Thus, a periodic function like a sine
wave will count as discrete in state with respect to a state step of the amplitude.  However, this situation
is unavoidable without conflating time and state discreteness.  This does not matter to the remaining
discussion which is concerned with state discreteness of neural spike trains.

[5]   Searle (1990) claims that the brain does not do information processing (p.34-5).  However he seems to
mean information processing in a sense equivalent to computation.  On the more general sense intended
here, perhaps he too would agree.
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[6]    As  Maudlin  (1989)  notes,  this  sort  of  claim is  necessary  for  a  functionalism to  be  a  reasonable
hypothesis.  However, in itself, this claim does not support functionalism as standardly construed.  It is
supportive only of neural level functionalism, not to psychological level functionalism.
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