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Exploiting semantic information
in a spiking neural SLAM system

Nicole Sandra-Ya�a Dumont*, P. Michael Furlong, Je� Orchard

and Chris Eliasmith

Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada

To navigate in new environments, an animal must be able to keep track of its

position while simultaneously creating and updating an internal map of features in

the environment, a problem formulated as simultaneous localization andmapping

(SLAM) in the field of robotics. This requires integrating information from di�erent

domains, including self-motion cues, sensory, and semantic information. Several

specialized neuron classes have been identified in the mammalian brain as being

involved in solving SLAM. While biology has inspired a whole class of SLAM

algorithms, the use of semantic information has not been explored in such work.

We present a novel, biologically plausible SLAMmodel called SSP-SLAM—a spiking

neural network designed using tools for large scale cognitive modeling. Our

model uses a vector representation of continuous spatial maps, which can be

encoded via spiking neural activity and bound with other features (continuous

and discrete) to create compressed structures containing semantic information

frommultiple domains (e.g., spatial, temporal, visual, conceptual).We demonstrate

that the dynamics of these representations can be implemented with a hybrid

oscillatory-interference and continuous attractor network of head direction cells.

The estimated self-position from this network is used to learn an associative

memory between semantically encoded landmarks and their positions, i.e., an

environment map, which is used for loop closure. Our experiments demonstrate

that environment maps can be learned accurately and their use greatly improves

self-position estimation. Furthermore, grid cells, place cells, and object vector

cells are observed by this model. We also run our path integrator network

on the NengoLoihi neuromorphic emulator to demonstrate feasibility for a full

neuromorphic implementation for energy e�cient SLAM.

KEYWORDS

simultaneous localization and mapping, semantic SLAM, path integration, spiking neural

networks, neuromorphic, hyperdimensional computing, neural engineering framework,

semantic mapping

1. Introduction

Simultaneous localization andmapping (SLAM) is the computational process of keeping

track of one’s location while navigating an unknown environment (i.e., localization) and,

simultaneously, creating a map of the environment (i.e., mapping). Accurate localization is

required for building metric map from egocentric observations, but errors in localization

accumulate when relying solely on internally generated signals or self-motion (i.e., path

integration or dead reckoning). An allocentric environment map can be used to correct

these errors, making localization and mapping interdependent processes. SLAM is a core

problem in mobile robotics, particularly in applications where high-precision GPS data is

not available, such as in autonomous underwater vehicles or planetary exploration (Kim and

Eustice, 2013; Palomeras et al., 2019; Geromichalos et al., 2020).
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Biological systems have evolved to solve these problems.

Animals are capable of navigating and creating maps of novel

environments, deducing their current location, and retracing their

steps. Considerable research has been conducted to investigate the

neural mechanisms underlying spatial cognition in animals. It is

known that many animals—including rodents (Mittelstaedt and

Mittelstaedt, 1982; Etienne, 1987; Benhamou, 1997), bats (Aharon

et al., 2017), and humans (Mittelstaedt andMittelstaedt, 2001) – are

capable of path integration. Tolman (1948) proposed that animals

construct “cognitive maps”: internal mental constructs used to

retain and retrieve information about the relative locations and

features of an environment. Such maps are widely believed to be

used to discover novel shortcuts and provide corrections to path

integration, much like SLAM systems in robots. Indeed, animals

have access to a plethora of external sensory information, such as

visual landmarks and odor trails, which can be used to correct

the errors that would accumulate when using path integration

alone. The hippocampal formation is believed to be crucial for

such computations, with place cells, head direction cells, and grid

cells thought to play significant roles. In fact, Safron et al. (2022)

have characterized the hippocampal-entorhinal system as “themost

sophisticated of all biological SLAMmechanisms".

While SLAM is a well-studied problem, and modern mobile

robots are capable of performing SLAM, animal navigational

abilities are still superior; they are more robust, efficient and

adaptive, making them more useful in challenging real-world

environments. Animals can use information from multiple sensory

modalities (e.g., visual, olfactory, auditory, magnetoreception, and

idiothetic cues) for navigation. Additionally, animals are able to

navigate and map their environment in real-time using power-

constrained computational resources, which is something that

robots are still not able to achieve—brains are far more energy

efficient than the GPUs or CPUs used to execute typical SLAM

algorithms. The brain consumes around 20 Watts of energy while

a single modern graphics card requires around 350 Watts. By

taking inspiration from biology, researchers are trying to develop

SLAM algorithms that are optimized for online processing, and

that can run on resource-constrained platforms. For instance,

neuromorphic hardware—designed to mimic the functionality of

biological neural networks—is particularly well-suited for resource-

constrained computing because it is designed to be energy-efficient

and can perform brain-like computations using minimal resources

(Bersuker et al., 2018; Thakur et al., 2018; Rathi et al., 2021).

Biology has influenced the development of a new category

of SLAM models that includes RatSLAM (Milford et al., 2004),

DolphinSLAM (Silveira et al., 2015), and NeuroSLAM (Yu et al.,

2019), among others. Remarkably, some of these models have

demonstrated performance comparable to contemporary state-of-

the-art approaches. However, this is still an active area of inquiry,

with questions remaining regarding scalability and biological

plausibility of these approaches, as well as their deployability on

neuromorphic hardware. While these types of SLAM algorithms

have made notable progress, they have yet to fully explore the

wealth of knowledge available from neuroscience and cognitive

science. Animals extract and make use of higher-order semantic

information about their environment and landmarks from raw

sensory inputs while navigating. Recent advancements in robotics

have successfully incorporated semantic information into SLAM

models (Bowman et al., 2017; Zhang et al., 2018; Chen et al., 2019;

Fan et al., 2022). Semantic SLAMmodels use deep neural networks

to extract semantic information to build environment maps.

By utilizing higher-level conceptualization of states grounded

in cognitive meaning, these models can augment and improve

upon purely metric SLAM. Consequently, the construction of

maps containing semantic representations empowers such SLAM

systems to interact with environments in sophisticated and

intelligent ways.

In the same way that biology can aid in the development

of AI and robotics, computational modeling can also provide

valuable insights into biological research questions. By creating

computational models of SLAM that are constrained to be

biologically plausible, we can gain a deeper understanding of

the neural algorithms that may underlie spatial cognition in

animals. For example, we can investigate hypotheses on how exactly

cognitive maps may be learned, stored, and used to assist in

navigation. Or how multi-modal sensory information is integrated

during the construction of cognitive maps. Or how such maps may

be accessed and queried to reason about space.

In this work, we unite biologically inspired and semantic SLAM

in our model SSP-SLAM, and consider how our computational

model can explain neuroscientific observations. Specifically, we

present a novel spiking neural network SLAM system, called

SSP-SLAM. This model is built using the Neural Engineering

Framework (NEF) (Eliasmith and Anderson, 2003) and the

Semantic Pointer Architecture (SPA) (Eliasmith, 2013). The NEF

provides a systematic method for embedding a state space model

into a spiking neural network that can run on neuromorphic

hardware. The SPA, which includes Spatial Semantic Pointers

(SSPs), provides an approach for representing and processing

symbol-like information in connectionist systems. The SPA

provides an architecture and “semantic pointer" representations,

for characterizing neural processing, including that of symbols,

as manipulation of high-dimensional vectors. This enables the

development of systems that can learn and reason about symbolic

information in a scalable, differentiable, and compositional

manner. These methods are used in SSP-SLAM to build

environment maps. These maps are core to the functioning of

SSP-SLAM, as they integrate semantic information, while being

combined with an SSP-based path integrator. The resulting model

provides the following contributions:

• We propose and implement a novel spiking neural network

SLAMmodel.

• We constrain our model to only use quantities that are known

to be represented in hippocampus, like spatial representations

of head direction cells, object vector cells, place cells, and grid

cells. Furthermore, biologically plausible, Hebbian-like rules

are used to learn an environment map in the form of an

associative memory.

• We explore compositional semantic map representations

using the SPA and the principles of vector symbolic

architectures more broadly. We demonstrate how such a map

can be queried post-training to recall what landmarks were

in particular areas, recall where landmarks of certain types or
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colors were located, and compute (online) the vector between

self-position and landmarks in memory.

• We illustrate first steps toward a neuromorphic

implementation of our model, showing that the path

integration component of SSP-SLAM can be run on an

emulator of Intel’s Loihi neuromorphic chip.

2. Materials and methods

2.1. The semantic pointer architecture

Our computational SLAM model is built using the tools

and principles of the semantic pointer architecture (SPA). This

framework has been used to model various cognitive processes,

such as action selection (Stewart et al., 2012b), planning (Blouw

et al., 2016), memory and free recall (Gosmann and Eliasmith,

2021), and reinforcement learning (Rasmussen and Eliasmith,

2014; Duggins et al., 2022). Furthermore, it has been used to

construct a large-scale functional brain model, Spaun (Eliasmith

et al., 2012; Choo, 2018), with over 6 million neurons and 20

billion connections. The SPA proposes that semantic pointers are

the fundamental representations of biological cognition (Eliasmith,

2013). Semantic pointers are spiking neural implementations of

high-dimensional vectors that are defined by their compression

relations to other neural representations. In the case of cognitive

semantic pointers, they can be used to represent concepts, objects,

or states, and can be combined in a distributed and compositional

manner to represent more complex meanings or structures. By

means of the neural engineering framework (NEF), semantic

pointers in the SPA are generated by the activities of a collection

of spiking neurons. Operations on the underlying vectors are then

performed through setting the connections within the spiking

neural network. As such, the SPA provides a means to translate

symbolic cognitivemodels into biologically plausible spiking neural

networks, and is an approach to neurosymbolic AI. As we will

demonstrate, it can be used to build a spiking neural network SLAM

model that is deployable on neuromorphic hardware.

2.1.1. Algebra of cognition
The cognitive representations in the SPA are based on

hyperdimensional computing, also known as vector symbolic

architectures (VSAs), which bridge symbolic and connectionist

approaches to AI. A VSA is any computing framework in which

symbols and structured compositions of symbols are represented

as high-dimensional vectors. The VSA includes a set of algebraic

operations, defined over the vector space, that correspond to

operations on the underlying symbols, effectively creating an

algebraic language for cognition. The key operations that define

this algebra are a similarity measure, a hiding operation, a

bundling operation, a binding operation, and an inverse operation.

The specification of these operations differentiates particular

VSAs. In this work, we implement the SPA using Holographic

Reduced Representations (HHRs; Plate, 1995), realized in spiking

neural networks.

The similarity measure between two semantic pointers indicates

the semantic similarity of the symbols they represent. This is

given by the cosine similarity (or dot product), which is also the

measure for semantic similarity used in many vector encodings in

machine learning (Mikolov et al., 2013). The bundling operation

is addition, and is used to group semantic pointers in a set.

The binding and hiding operations are used to combine symbols

together (e.g., combining a slot and filler, to have a single slot-filler

representation). In HRRs, binding and hiding are done by one

operation, circular convolution,

A⊛ B = F
−1{F{A} ⊙ F{B}}, (1)

where F is the Discrete Fourier Transform (DFT), and ⊙ is the

Hadamard product. The inverse operation takes a single input

vector and produces a single output vector that reverses the effect

of binding with the input vector, (A ⊛ B) ⊛ B−1 = A. In

HRRs, an easy-to-compute and numerically stable approximate

inverse (involution) is frequently used. It is defined as B−1 =
[

B1,Bd,Bd−1, . . . ,B2
]

.

To understand how these operations are used to compose

and reason about structured representations, consider a concrete

example. Let X denote the semantic pointer representation of the

concept X. The sentence, “a brown cow jumped over themoon", can

thus be represented via binding and bundling operations as follows:

SUBJECT⊛ (COLOR⊛ BROWN+ ANIMAL

⊛COW)+ VERB⊛ JUMP+ OBJECT⊛ MOON (2)

The semantic pointer representations of various slots (e.g., subject,

color, verb) are boundwith the semantic pointers representations of

various fillers (e.g., cow, jump), all of which are summed together

to represent their collection in a single sentence. The final vector

can be queried via the inverse operation to retrieve information.

For example, by binding the final vector with VERB−1 we can

approximately obtain the semantic pointer JUMP.

Typically, VSAs have been used to represent discrete symbols

with a one-to-one mapping used to translate between symbols

and vectors. Random high-dimensional vectors are often used.

Certain models have employed machine learning techniques to

obtain vector embeddings with desired similarity characteristics

(Mitrokhin et al., 2020). In recent years, VSAs have been extended

to represent continuous features using a mapping conceived as a

fractional version of the binding operator.

2.1.2. Spatial semantic pointers
Spatial Semantic Pointers (SSPs) extend VSAs to support

representation of continuous features (Komer et al., 2019). Here,

the mapping from input features to an output vector, Rm →

R
d, is explicitly defined. A d-dimensional SSP representing an

m-dimensional variable x is given by

φ(x) = F
−1

{

eiAx
}

(3)

where A ∈ R
d×m is the encoding matrix of the representation,

Ax is a d-vector, and eiAx is a vector of d complex numbers. The

dot products of x with a fixed set of d vectors—the rows of the

encoding matrix—are cast as the phases of complex exponentials

to obtain the high dimensional SSP useful for hyperdimensional
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computing. There is freedom in the selection of this matrix.

However, to ensure the SSP is real-valued, the encoding matrix

must be chosen so that eiAx is conjugate symmetric. Though

originally SSPs were developed as a fractional extension to the

binding operator of HRRs, the resulting mapping is similar to

the encoding used in Random Fourier Features (RFF), a popular

method for approximating kernels in machine learning (Rahimi

and Recht, 2007; Furlong and Eliasmith, 2022).

A useful property of SSPs is that binding in the SSP space is

equivalent to addition in the variable space,

φ(x)⊛ φ(x′) = F
−1

{

eiAx ⊙ eiAx
′
}

= φ(x+ x′) . (4)

Thus, it is easy to “update" SSP representations without any

decoding. For instance, it is easy to “move" an object located

somewhere with one or more binding operations.

Generally, the SSP representation of a number is similar to

nearby numbers (in terms of Euclidean distance), and dissimilar

to distant ones—with some rippling effects. As a result, similarity

between SSPs provides a method for visualizing these high-

dimensional vectors (see Figure 1). The similarities between a

particular SSP and a set of SSPs that represent points gridded over

m-dimensional space can be computed and plotted. We refer to

such plots as similarity maps. For example, a similarity map of an

SSP, φ′, representing a 1−D variable is a plot of x vs. φ′ ·φ(x), which

has been shown to be a sinc function in the limit d → ∞ (Voelker,

2020). For SSPs representing 2D variables, a similarity map can be

depicted as a surface plot or a heat map as in Figure 1.

A primary advantage of the SSP representation is that it can

be used in combination with semantic pointers encoding discrete

symbols. Figure 1 provides a concrete demonstration of such a

representation. Consider a simple 2D environment consisting of

different objects and landmarks: a robot, two boxes, and a wall (see

Figure 1A). The position of the robot, (x1, y1), can be encoded

as a SSP, φ(x1, y1). This, in turn, can be bound (i.e., circularly

convolved) with the semantic pointer representing the concept of

a robot, ROBOT, to obtain ROBOT ⊛ φ(x1, y1)—this represents a

robot at a particular location. Likewise, the semantic pointer for a

tool box can be bound with SSPs encoding their locations, (x2, y2)

and (x3, y3), to obtain BOX⊛
(

φ(x2, y2)+ φ(x3, y3)
)

; in this case,

the sum of SSPs is used to represent a set of locations. The wall

in the environment covers an area D, which can be represented by

integrating the SSP encoding over that area,
∫∫

D φ(x, y)dxdy. All

together, the complete environment can be represented by adding

all of these object-location vector encodings:

M = ROBOT⊛ φ(x1, y1)+ BOX⊛
(

φ(x2, y2)+ φ(x3, y3)
)

+WALL⊛

∫∫

D
φ(x, y)dxdy (5)

This vector was constructed and “queried" for different locations

with approximate unbinding. The results of this unbinding are

shown in Figures 1B–D. The high-dimensional SSPs are visualized

in this figure via their similarity to neighboring points.

2.1.3. Probability representations
Recent work has demonstrated that the algebra of cognition

defined by VSAs and SSPs has a probabilistic interpretation

(Furlong and Eliasmith, 2022). Using the tools provided by the NEF,

it is possible to construct spiking neural networks that embody

probability distributions and perform computations related to

probability, such as determining entropy and mutual information

(Furlong et al., 2021; Furlong and Eliasmith, 2023).

In particular, SSPs can be used for kernel density estimation

(KDE), a non-parametric method used for estimating a probability

density function of a random variable X. To approximate a

PDF f given a set of samples, {x1, x2, . . . , xn}, drawn from an

unknown distribution, one can average kernel functions around

each data point, k(x − xi), to obtain a smooth estimate, f̂ , of the

underlying PDF:

f̂ (x) =
1

n

n
∑

i=1

k(x− xi). (6)

KDE has the advantage of being non-parametric and flexible,

allowing the estimation of complex and multi-modal distributions.

However, the choice of the kernel function is crucial for the

accuracy and smoothness of the estimate. Common kernel

functions used in KDE include the Gaussian, Epanechnikov, and

triangle kernels.

The similarity, or dot product, between SSPs approximates a

sinc kernel function. Consequently, we can define k(x − xi) =

φ(x) · φ(xi). Our KDE is given by 1
n

∑n
i=1 φ(x) · φ(xi) = φ(x) ·Mn,

where Mn = 1
n

∑n
i=1 φ(xi) is the average over datapoint SSP

representations. Unlike the kernels listed above, the normalized

sinc can take on negative values, but it can be used to obtain

probability densities with a simple correction,

f̂ (x) ≈ (φ(x) ·Mn − ξ )+ (7)

where ξ is a fixed scalar chosen so that
∫ ∞
−∞(φ(x) ·Mn− ξ )+dx = 1

(Glad et al., 2003, 2007). Note that this is simply a ReLU neuron

with bias ξ , and either weights Mn and input φ(x), or vice versa—

weights φ(x) and input Mn. In the former case, a population of

many such neurons (with varying incoming synaptic weights Mn)

can be interpreted as estimating the probability of a query φ(x)

under different distributions. In the later case, the activities of a

population of neurons would represent the probabilities of different

sample points x under a given input distribution represented by

SSPs,Mn. Notably, the sinc estimate is often more accurate than the

“optimal” Epanechinikov estimate (Section 1.3, Tsybakov, 2009).

Using SSPs for neural probability computations in this way

results in different interpretations of the standard VSA operations,

which are useful in the context of SLAM. Under this interpretation,

bundling is used to add new datapoints to a running meanMn, and

is a kind of belief update, binding can be used for multivariate KDE,

and the inverse operation that performs unbinding is analogous

to conditioning.

2.1.4. The neural engineering framework
The SPA is not just a VSA, but rather a full architecture

that includes a variety of functional components, as well as

the neural instantiation of a VSA. To create spiking neural

networks that implement algorithms involving VSAs and SSPs,

we require methods to embed vector representations into the
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FIGURE 1

(A) A toy 2D environment consisting of a robot, boxes, and walls. Information about the objects and their locations was encoded in single vector M,

as per Equation (5). (B) The vector M was queried for the location of the robot by approximate unbinding: M⊛ ROBOT−1 ≈ φ(x1, y1). The heat map

shows the cosine similarity between the query output and SSP representations of points gridded over 2D space. (C) The similarity map obtained from

querying the map M for the location of boxes. (D) The similarity map obtained from querying for the wall area.

activity of spiking neurons, and to be able to perform computations

on these vectors via projections between neural populations.

The NEF provides such methods, which are described by three

primary principles.

The first principle of representation specifies how the collective

neural activity of a population encodes a vector and vectors can be

decoded out of spike trains. The activity of neuron i in a population

encoding a vector, φ ∈ R
d, is given by,

ai(t) = Gi [αiei · φ + βi] , (8)

where αi > 0 is the neuron’s gain, βi is its bias, ei is its encoder,

and Gi is a non-linear function—in this work, the leaky-integrate-

and-fire (LIF) function. The gain and bias parameters vary amongst

neurons to create a heterogeneous population. Encoders determine

the type of input a specific neuron is responsive to, thus capturing

the neuron’s “receptive field". In the case of a neural population

representing SSPs, it is reasonable to set encoders as SSPs that

represent random points in space. This produces a population of

neurons that are sensitive to specific spatial locations—i.e., place

cells. Other types of spatial sensitive neurons can be constructed

using different neural encoders and SSP encoding matrices. In

Dumont and Eliasmith (2020), grid cells were obtained this way.

A vector represented by the activity of a population of N

neurons can be decoded from a linear combination of the spiking

neural activity after post-synaptic filtering:

φ̂ =

N
∑

i=1

ai(t) ∗ h(t)di, (9)

where ∗ is convolution and di ∈ R
d are called the decoders of

the population. Least-squares optimization is typically used to solve

for the decoders. The function h(t) is a post-synaptic filter and is

parameterized by τsyn, the post-synaptic time constant:

h(t) =

{

e−t/τsyn if t > 0

0 otherwise.
(10)

The second principle of the NEF, transformation, provides the

method for setting weights between two neural populations to

compute a desired function. Assume a population of N neurons

representing a vector, φ, is fully connected to a different population

of N′ neurons. Suppose we would like second population to

represent some function of the vector, f (φ). This function can be

decoded out of the first population’s activity,

f̂ (φ) =

n
∑

i=1

ai(t) ∗ h(t)d
(f )
i . (11)

These function-specified decoders, d
(f )
i , can be solved for using

samples of the desired function output or, if sample outputs

are not available, decoders can be learned online in response

to error signals (see Section 2.1.5). Decoding the output of the

first population and encoding it into the activity of the second

population is equivalent to multiplying the filtered activities of the

first population with a weight matrix and feeding that current into

the second population, which will have activities given by

bj(t) = Gi

[

N
∑

i=1

wijai(t)+ βj

]

, wij = αjej × d
(f )
i (12)

where× is an outer product.

The result is a standard neural network, with populations

connected via weighted synapses. The NEF provides a method to

generate the weight matrices that are the outer product between

the decoders of the first population (which are optimized) and

the encoders of the second (which are pre-set, usually to match

biological tuning curves).

The last principle of the NEF is dynamics. Dynamical systems

can be embedded into in a recurrently connected population of

spiking neurons using this principle. The NEF proposes that to

implement a non-linear dynamical system φ̇ = f (φ)+g(u) (where u

is some input signal), the incoming connection from the population

representing the input umust compute the transform τg(u) (where

τ is the post-synaptic time constant), and the recurrent connection

from the population representing S to itself must compute the

transform τ f (φ)+ φ. This is due to the use of post-synaptic filters.

This principle allows us to embed a wide variety of non-linear

dynamical systems into spiking neural networks, which we exploit

in Section 2.2.1.
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2.1.5. Learning rules
Biologically plausible learning rules that only use local

information can be used in the NEF for modifying synaptic

weights online. The Prescribed Error Sensitivity (PES) (MacNeil

and Eliasmith, 2011) is an error-driven learning rule in which,

to learn a connection between a pre- and post-population of

neurons, the pre-population’s decoders are modified in response to

an error signal:

1di = κEai, (13)

which is equivalent to modifying weights by

1wij = −καjej · Eai (14)

where κ is a learning rate, ai are pre-population neural

activities (filtered spikes), αj are post-population gains, ej are

the post-population encoders, and E is an error signal we

seek to minimize. This signal may be computed by other

neural populations in a model. Biologically, we can think

of those populations as dopaminic neurons that can modify

weights in this way via dopamine levels. Real data of spike

timing dependent plasticity is matched by PES when used in

combination with the unsupervised Bienenstock, Cooper, Munro

(BCM) learning rule, which sparsifies weights (Bekolay et al.,

2013).

Another, unsupervised, learning rule is the Oja learning rule

(Oja, 1982), which modifies the Hebbian learning rule in order

to improve stability. The vector version of this rule, the “Voja”

learning rule, shifts encoders so that neurons fire selectively at

particular inputs and activity is sparsified:

1ei = κai(x− ei). (15)

This rule has been used for training heteroassociative memory

networks (Voelker et al., 2014), and is used in SSP-SLAM, along

with the PES rule, to train an associative memory.

2.2. The SSP-SLAM model

In this paper, we develop a spiking neural network

SLAM model using semantic pointers, SSPs and the

NEF. The model, SSP-SLAM, consists of six main neural

populations, grouped into four modules, that provide all the

necessary functionality.

• Localization module

– Path integrator: A network maintaining an allocentric self-

position estimate, represented as a SSP φ̂(x(t)), that is

dynamically updated using a velocity signal. Specifically,

this is a recurrent neural network, consisting of many sub-

populations representing controlled oscillators that contain

heading direction cells.

– Grid cell (GC) population: A population representing a

“cleaned-up" version of the SSP self-position estimate,

φ(x̂(t)).

• Landmark perception module

– Object vector cell (OVC) population: A population that

encodes the SSP representation of distances and directions

to landmarks and environmental features in view—i.e., an

egocentric representation of feature locations.

– Object location (OL) population: A population that

performs circular convolution to obtain an allocentric SSP

representation of feature locations.

• Environment map module

– Associative memory (AN) network: A network that learns

a mapping between landmarks and locations using the

biologically plausible PES and Voja learning rules.

• Loop closure module

– Map estimate (ME) population: A population that performs

circular convolution to obtain an alternative estimation of

self-position using the environment map. This provides

corrections to the path integrator.

Each element of the SSP-SLAM model is described in more detail

below and a high-level overview of the model is given in Figure 2.

2.2.1. Localization module
In prior work, we have used SSPs to maintain a neural

estimate of an agent’s self-position while navigating an environment

(Voelker et al., 2021; Dumont et al., 2022). To build a network that

maintains an encoding of position, consider how φ(x) changes if x

is a function of time. We can relate the rate of change of φ to the

velocity ẋ(t):

φ̇(x(t)) = F
−1{eiAx(t) ⊙ iAẋ(t)}, (16)

where ⊙ is element-wise multiplication. Now consider the

dynamics of an SSP in the Fourier domain. Taking the Fourier

transform of Equation (16), we get,

F{φ̇(x(t))} =
(

iAẋ
)

⊙ F{φ(x(t))} . (17)

Note that the dynamics of the Fourier components of an SSP

are independent of one another. The dynamics of the jth Fourier

coefficient of the SSP can be written as

d

dt

[

ReF{φ(x)}j
ImF{φ(x)}j

]

=

[

0 −ωj

ωj 0

][

ReF{φ(x)}j
ImF{φ(x)}j

]

, (18)

where ωj ≡ Aj,: · ẋ(t)

Each Fourier coefficient of the SSP is thus a simple harmonic

oscillator. The real and imaginary components of the Fourier

coefficients of the SSP oscillate about the unit circle with time-

varying frequency ωj = Aj,: · ẋ(t). The oscillator frequencies

are modulated by the velocity; in other words, they are velocity

controlled oscillators (VCOs). In our model, we modify the
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FIGURE 2

The SSP-SLAM model. Output of the localization module is used (along with the egocentric feature locations encoded by the OVC population) to

train an associative memory network, which can be thought of as an environment map. The output of this map is, in turn, used for error correction of

the PI model.

dynamics of Equation (18) so that the unit circle is an attractor and

the oscillators self-stabilize:

d

dt

[

ReF{φ(x)}j
ImF{φ(x)}j

]

=







−ωjImF{φ(x(t))}j +
1−r2j
rj

ReF{φ(x)}j

ωjReF{φ(x(t))}j +
1−r2j
rj

ImF{φ(x)}j






,

(19)

where rj ≡ |F{φ}j|.

This reduces drift and ensures the entire SSP vector remains unit

length. Thus, our path integrator is a hybrid between continuous

attractor and oscillatory inference models of path integration.

To realize this representation and dynamics in a spiking neural

network, we use the tools of the NEF as described above. The SSP

estimate of self-position is encoded in ⌊ d2 ⌋ recurrent populations

of spiking neurons, each of which is a VCO. Only ⌊ d2 ⌋ VCO

populations are needed since the Fourier transform of the SSP

has conjugate symmetry (half of its Fourier components can be

computed from the other half).

To compute the non-linearities bet ween the frequency and SSP

Fourier coefficients, we must represent both in a single population,

as is standard in the NEF. The vector being represented by the

collective activity of the jth VCO population is,

[

ωj ReF{φ̂(x)}j ImF{φ̂(x)}j

]T
. (20)

We write φ̂(x) here to emphasize that this is an estimate of

φ(x). Due to noise inherent in neural encoding and the dynamics

being approximated by recurrent connections rather than being

computed exactly, this estimate will drift from the SSP encoding of

the ground truth position over time. Indeed, the vector encoded by

the path integrator will even drift from the sub-space of SSP vectors

in R
d without some form of correction.

A population of speed- and heading-direction cells that encode

the agent’s velocity projects onto the VCO populations. The

connection weights compute the linear transform needed to obtain

the input frequencies, Aẋ(t) = ω. Each VCO neural population

is recurrently connected to itself with weights optimized by least

squares to implement the dynamics of Equation (19).

An advantage of this model is its ability to perform localization

in space of different dimensionality without major modification.

Consider the SSP representation of a x(t) ∈ R
m, given by

φ(x(t)) ∈ R
d, compared to an SSP of the same dimension d, but

encoding a higher dimension variable, φ(y(t)) where y(t) ∈ R
p

and p 6= m. In either case, the dynamics of the SSP are given

by Equation (18). The same set of VCO populations can model

the dynamics of φ(x(t)) and φ(y(t)) – the only difference between

their computations is the calculation of the frequencies, ωj, used in

the VCOs. These frequencies are input to the path integrator, with

incoming synaptic weights performing the linear transformation

from self-motion to frequencies, Aẋ(t). The same path integrator

network can receive input from multiple sources, with synaptic
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gating used to switch between localization in different dimensional

spaces and coordinate frames.

Note that the VCO populations consist of spatially sensitive

neurons, but these neurons will not resemble place or grid cells.

Each oscillator is a population representing a frequency (derived

from velocity) and a single Fourier coefficient of the SSP. This

results in neurons with conjunctive sensitivity to heading direction,

speed, and spatial position (in a periodic fashion, resembling a

plane wave). Their firing patterns are velocity dependent bands or

stripes. Banded cells have been predicted by other VCO models

(Burgess, 2008) and have been a point of contention since reports

of band cells in the hippocampal formation are limited, and their

existence is controversial (Krupic et al., 2012; Navratilova et al.,

2016). Additionally, grid cells do not intrinsically emerge from PI

in the model presented in this section. Nevertheless, SSPs naturally

represent grid cells, and we use such a population to represent the

collective output of all VCOs after a clean-up operation and provide

a better basis for the downstream construction of place cells and

spatial maps (Orchard et al., 2013; Dumont and Eliasmith, 2020).

This is not unwarranted, given the observations from theMEC. The

deeper layers of the MEC receive hippocampal output [along with

input from many other cortical areas (Czajkowski et al., 2013)],

and is where head-direction cells, speed cells, and conjunctive grid

cells are primarily located (Witter andMoser, 2006). The superficial

layers of the MEC, specifically layer II, mainly provide input to

the hippocampus and consist mostly of “pure" grid cells (Sargolini

et al., 2006). This suggests that the deeper layers and head direction

cells may play a crucial role in integrating external input, much

like the path integrator network in SSP-SLAM. The output of

this integration is then processed into more stable, purely spatial

representations in the superficial layers, like the grid cell population

in SSP-SLAM, which are used for downstream tasks. However, this

narrative is subject to debate, and not universally accepted.

As described in Section 2.1.3, SSPs can be used to construct

probability distributions. When performing path integration, we

are interested in obtaining an estimate of the agent’s position at a

given point in time. Let φ̂(x(t)) be the vector represented by the

path integrator network at time t. The network is initialized to

encode the SSP φ(x(0)), from which a prior probability distribution

can be computed. At every simulation time step this belief state

is updated according to the dynamics given in Equation (19).

Then, the probability density of the agent being at a location x̂

is f̂ (x̂) ≈ (φ(x̂) · φ̂(x(t)) − ξ )+. The position estimate of the

path integration model is taken to be the x̂ that maximizes this

posterior distribution, i.e., the maximum a posteriori probability

(MAP) estimate. A simple example path decoded in this manner

is shown in Figure 3. The SSP representation of the MAP estimate,

φ(x̂), is computed as a part of the “clean-up" process applied to the

output of the VCOs to obtain the input to the grid cell population.

2.2.2. Landmark perception module
In the SSP-SLAM model, the agent not only receives a self-

velocity signal as input, but additionally receives observations of

its local environment. As an animal moves through space, sensory

systems and other brain regions provide information about its

surroundings. The inferotemporal cortex, for example, plays a

vital role in object recognition (Rajalingham and DiCarlo, 2019),

and populations in the medial entorhinal cortex (MEC) appear

to encode vectors to nearby objects (Høydal et al., 2019). It is

possible to create a spiking neural network that uses raw sensory

data to recognize objects and estimate their displacement from

the observer, though it remains an active area of research. For

example, Osswald et al. (2017) presented a spiking neural network

model and neuromorphic demonstration of stereo-correspondence

in 3D space. Spiking neural algorithms for object detection (Kim

et al., 2020b) and place recognition (Hussaini et al., 2022) have also

been developed. Moreover, deep learning has proven to be highly

successful in computer vision tasks such as semantic segmentation

(Lateef and Ruichek, 2019), and these pre-trained artificial neural

networks can be converted to spiking neural networks (Cao et al.,

2015). However, in this work, visual processing of raw sensory data

is out of scope. Instead, we assume that information regarding

distance to landmarks and landmark identity is provided directly

as input to SSP-SLAM.

Specifically, we let {B1,B2, . . . } be a set of semantic pointers

representing features or landmarks in an environment, at locations

{x1, x2, . . . }. The input to SSP-SLAM uses these representations to

determine the SSP representation of the vector from the agent to

each landmark within the agent’s field of view, φ(xi−x(t)). In short,

the input is represented in a population that encodes an egocentric

representation of landmark locations that will change over time

as the agent passes by landmarks. The neurons in this population

have activity patterns like those of object vector cells (OVCs) in the

MEC, so we call the population the OVC population. The output

of the path integrator and OVC populations are bound together to

compute allocentric features locations, φ̂(x(t)) ⊛ φ(xi − x(t)) =

φ̂(xi) ≈ φ(xi). This is stored in the object location (OL) population.

As with path integration positions, the allocentric SSP estimate

of an landmark location, φ̂(xi), can be converted into probabilities.

The probability density of landmark Bi being at a location x is

(φ(x) · φ̂(xi)− ξ )+ (see Figure 4 for examples).

2.2.3. Environment map module
In SSP-SLAM, an environment map is stored in the weights

of a heteroassociative memory network. This memory network

architecture was first presented in Voelker et al. (2014). It is a

neural population that maps input to some desired association.

The PES learning rule, given in Equation (13), is used to train the

decoders (i.e., the outgoing synaptic weights) of the population.

Concurrently, the Voja learning rule, given in Equation (15), is used

to modify the population’s encoders. This shifts neurons’ encoders

to be more similar to input they receive. It results in sparser

representations in the population, which helps prevent catastrophic

forgetting or interference.

Networks that map between landmarks and locations can

be thought of as encoding a cognitive map. In SSP-SLAM,

several landmark-location mappings are of interest. The

associative memory network just described maps features in

the agent’s field of view (e.g., objects, landmarks, barriers,

colors, etc.) to the current estimate of those feature’s locations

as SSPs, φ̂(xi). Notably, these environmental features can be

structured representations. For example, vector representations
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FIGURE 3

The time evolution of the posterior distribution f(x) = (φ(x) · φ(t)− ξ )+, where φ(t) is the output of the vector encoded by the collective activities of

neurons in the path integrator network. The black “x" shows the ground truth x(t) at the sampled times, and the grey line shows the complete ground

truth path.

FIGURE 4

(A) An example 2D environment consisting of three point landmarks (a blue square, blue triangle, and orange triangle) and a wall region. An agent

transverses a 60 s long trajectory through the environment (the black line). The agent has a limited field of view. The grey circles around landmarks

indicates the distance at which the landmark is visible to the agent. SSP-SLAM is used to estimate the agent’s location and learn a map of this

environment. (B–E) The environment map network, trained to map features to locations, is probed at the end of the simulation. In (B), the location of

the blue triangle is recalled by passing in B⊛ T to the environment map network. The heat map shows the similarity of the output of the network to

SSPs representing points over the 2D. This represents the probability over locations. (C) The recall of the location of all blue landmarks, plotted as a

similarity map. (D) The recall of the location of all triangle landmarks, plotted as a similarity map. (E) The recall of the wall area.

of a color, smell, and shape can be bound or bundled

together to create a multi-sensory landmark. Using such

representations, complex semantic environment maps can

be learned.

Other mappings can be used as well. For example, a network

can be trained to map feature locations φ̂(xi), to feature symbols.

Or, alternatively, a mapping from feature locations to feature

symbols bound with their location, φ̂(xi) ⊛ B, can be learned.

Given an SSP input that represents the whole area of an

environment, the network will approximately recall
∑

i φ(xi)⊛ Bi,

and so a single vector representation of a complete map can be

recovered. We demonstrate a variety of these mappings in the

Section 3.

2.2.4. Loop closure module
The combination of the PI model (presented in Section

2.2.1) and the associative memory network (for environment

mapping) provides the core components of a SLAM model. As

landmarks are discovered, their perception drives the training

of a memory network, which learns a mapping from a symbol-

like representation of features, Bj, to their locations, φ̂(xi). When

landmarks are re-encountered, the past estimate of their location is

recalled by the memory network. This might be different than the

current estimate of their locations computed in the OL population,

due to errors accumulating in the PI computation. The difference in

estimations is used to correct the PI model. This full loop is shown

in Figure 2.
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TABLE 1 The hyperparameters used for experiments with SSP-SLAM,

exceptions are noted in the text.

Parameter Default value

Number of neurons

PI 45,000

GC 1,000

OVC 1,000

OL 27,000

AM 1,000

ME 27,000

Dim of SSPs, d 181

View radius of agent 0.3× env. radius

Post-synaptic time constant, τsyn 0.05

Max firing rate of LIF neurons 200–400 Hz

Proportion of active neurons 0.1

Voja learning rate 5× 10−3

PES learning rate 1× 10−2

3. Results

3.1. Mapping in 2D environments

In this section, we focus on a single example environment to

demonstrate map querying and accuracy in SSP-SLAM. As shown

in Figure 4A, we use a simple 2D environment that contains three

point landmarks (a blue square, blue triangle, and orange triangle)

as well as a wall region. To provide a path, we generate a random,

frequency-limited trajectory through the environment and use

finite differences to obtain velocities along the path (see Figure 4).

The velocity input signal is represented by a spiking neural

population, introducing noise to the signal. Model parameters used

in this and subsequent experiments (unless stated otherwise) are

given Table 1.

The environment map network is trained to map semantic

pointers representing environment features to the feature locations

as SSPs. Given the map in Figure 4, it ideally learns the

following associations:

BLUE⊛ SQUARE → φ([0.6, 0.2]) (21)

BLUE⊛ TRIANGLE → φ([0.0,−0.6]) (22)

ORANGE⊛ TRIANGLE → φ([−0.2, 0.2]) (23)

WALL →

∫ 1.1

0.5

∫ −0.95

−1.1
φ(x, y)dxdy

+

∫ 1.1

0.95

∫ −0.4

−1
φ(x, y)dxdy (24)

where BLUE is a semantic pointer representing the color

“blue", SQUARE is the semantic pointer representing the shape

“square", etc.

At the end of the simulation, the actual mapping learned by the

environment map network is probed. The locations of particular

point landmarks is recalled by feeding in semantic pointer input,

e.g., BLUE ⊛ TRIANGLE as shown in Figure 4B. Additionally, the

map was queried for locations of all landmarks sharing certain

characteristics. For example, the locations of all blue landmarks

was queried by giving the network input BLUE ⊛ (SQUARE +

TRIANGLE) (see Figure 4C).

In Figure 5A, theMAP estimates of point landmark locations at

the end of the simulation are shown. Also plotted is the output of

a biologically plausible computation of the vector from the model’s

self-position estimate to all recalled landmark locations. The output

from querying the environment map network for each landmark’s

SSP location, φ̂(xi), is combined with the output of the localization

module to compute these vectors over the simulation run time. This

is done by taking the inverse of the SSP output of the localization

module, φ(x̂(t))−1, and binding it with recalled locations from the

associative memory, φ(x̂(t))−1
⊛φ̂(xi) = φ̂(xi−x(t)) ≈ φ(xi−x(t)).

This produces an estimate of the vector distance between the agent

and landmark i – a useful quantity for navigation. The error in

this computation is plotted in Figures 5B, C. At the beginning of

the simulation, environment map has not yet been learned and

so the output φ̂(xi − x(t)) is inaccurate. After an item has been

encountered, the error drops.

An associative memory that maps landmark location SSPs to

landmark semantic pointers is also trained in this experiment. After

learning, SSPs are passed into this network to recall the semantic

pointers of landmarks or features at particular locations or over

particular areas. An example of querying an area is shown in

Figure 6.

3.2. Maintaining neural activity patterns

The activity patterns of spiking neurons in various components

of the SSP-SLAM are presented and discussed here. SSP-SLAM is

run on a 150 s path, recorded from a rat by Sargolini et al. (2006),

with ten landmarks at random locations added to the environment

for our experiment. Spike trains are recorded from neurons in

the path integrator network, GC population, OVC population, and

the associative memory network during the simulation. Activity

patterns from certain example neurons are shown in Figure 7.

In Figure 7A, we see that a neuron in the GC population

indeed has hexagonally patterned activity, as expected. However,

this pattern deteriorates when using the path integrator alone. The

corrections computed using the trained environment map module

ensure the pattern’s stability. This environment map is learned

by modifying the outgoing connection weights in the associative

memory population using the PES rule, while the Voja learning

rule is used to modify the encoders of the associative memory

population. This results in neurons developing selective sensitivity

to particular encountered landmarks, similar to hippocampal place

cells (Geiller et al., 2017; Kim et al., 2020a). This is apparent in

Figure 7C. In Figure 7B, the activity of a neuron from the OVC

population is shown and, as expected, its activity is like that of the

object-vector cells of the MEC.

Activity from an example neuron from aVCOpopulation in the

path integrator is shown in Figure 7D. Here the spatial sensitivity of

the neuron is not discernible. There are no obvious stripe or band

patterns, due to the neuron’s conjunctive sensitivity to velocity. In

a non-random path with correlation between path velocity and

position, a stripe pattern would be more apparent (for example,
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FIGURE 5

The results from querying vectors to landmarks in the same environment from Figures 4, 6. (A) Each “X” marks the model’s MAP estimate of a point

landmark’s location at the end of the simulation. The arrows are estimates of the vectors between self-position and recalled landmarks at the end of

the simulation. These approximate vectors are estimated from φ̂(xi − x(t)), obtained by binding the model’s other SSP estimates,

φ(x̂(t))−1 ⊛ φ̂(xi) ≈ φ(xi − x(t)). (B) The similarity error, 1− φ(xi − x(t)) · φ̂(xi − x(t)), over the simulation time t. (C) The distance between the MAP estimate

obtained from φ̂(xi − x(t)) and the ground truth vector between self-position at time t and landmark locations, xi − x(t).

FIGURE 6

(A) An example 2D environment and a query area (the dark grey shaded region). The SSP representing the query area is given as input to an

associative memory network that learned to map object location SSPs to object features, using the output of SSP-SLAM’s path integrator and OB

network components. (B) The similarity of the output of the associative memory network to all object semantic pointers in the environment. The

results indicate that the orange triangle and blue square are within the queried area.

the spiral path example used in Dumont et al., 2022). However, the

histogram in Figure 7D showing the distribution of spike counts

by heading direction shows that the neuron has selective sensitivity

to heading directions between 337.5◦ and 360◦ from north. Thus,

this neuron is not unlike the head direction cells with conjunctive

sensitivity to velocity and position found in the MEC in Sargolini

et al. (2006).

3.3. Localization in 2D environments

In this experiment, the accuracy of localization in SSP-SLAM

is explored. SSP-SLAM is tested on ten different environments. In

each environment, ten random locations were chosen for point

landmarks, and a two minute-long path generated. The paths are

randomly generated from band-limited white noise signals. The

model is initialized with the SSP representation of the starting point

of the path, and receives the velocity along the path (computed

using finite differences) as input over the simulation run time.

To determine the accuracy of the model, the raw spiking data

is interpreted as a position estimate as follows (see Figure 8).

The vector represented by the path integrator network, φ̂(x(t)),

is decoded from neural activities. Then the x̂ that maximizes

(φ(x̂) · φ̂(x(t)) − ξ )+ is computed. This is the MAP estimate

of self-position.

The average accuracy of SSP-SLAM localization output is

shown in Figure 8. Plotted are similarity and distance errors.
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FIGURE 7

Firing patterns of neurons in SSP-SLAM. The path used for the simulation is shown in grey [obtained from Sargolini et al. (2006)]. Red dots indicate the

positions at which a neuron fired. (A) A neuron from the GC population encoding φ(x̂(t)). Spikes are recorded with the normal functioning of

SSP-SLAM in the top row. For the second row, error correction from the learned environment map is turned o� (i.e., the GC population was

representing the output of path integration alone). The first column of both rows presents result half way through the simulation, while the second

column displays the complete recording. The corrections from the environment map help maintain the grid-cell-like activity pattern over time. (B) A

neuron from the OVC population encoding the SSP representation of the vector between x(t) and any landmarks in view. Object locations are

marked with an “x". For this simulation, only three landmarks are included for clarity of the visualization. This neuron fires when an landmark is east of

the agent. (C) A neuron from the associative memory population. The Voja learning rule shifts the neuron’s encoder toward its input, resulting in the

neuron firing when a particular landmark (marked with an “x") is in view. (D) A neuron from a VCO population in the path integrator. Neurons in this

population have conjunctive sensitivity to velocity and position. On the right panel, spike counts are binned by the heading direction of the path,

demonstrating the neuron’s preference for a particular head direction.

The increasing similarity error for SSP-SLAM shows that it is

not perfectly representing the SSP encoding of the ground truth.

However, the low distance error indicates that an accurate position

estimate can be decoded from the output of SSP-SLAM. The

absolute trajectory error (the average deviation from ground truth

trajectory per time-step) for SSP-SLAM is 0.0529± 0.0315 in these

experiments. For the PI model alone, this error is 0.7876 ± 0.2958

Integrating the RMSE between SSP-SLAM’s MAP estimate and the

ground truth over the entire simulation time yields 5.758 ± 3.704

for SSP-SLAM and 73.728 ± 33.69 for PI. The error corrections

provided by the environment map in SSP-SLAM result in a more

than ten-fold improvement in localization error.

Figure 9 shows examples of the path estimate of SSP-SLAM

compared to the exact path and the path integrator network alone

(i.e., dead reckoning); the full SSP-SLAM model accurately follows

the true path for the entire trajectory. In contrast, the results

from the path integrator alone are very poor in these experiments

due to the length of the paths and the number of neurons used.

Early on in the simulation, the vector represented by the path

integrator leaves the manifold in R
d of the SSPs. Since it is no

longer representing a valid SSP, an accurate position cannot be

decoded and so the position estimate jumps wildly in the space. In

contrast, the corrections computed using the environment map in

SSP-SLAM keep the path integrator output near the ideal result.

3.4. Localization in 3D environments

While we have focused on 2D environments in this work, the

model and all representations naturally generalize to any number of

dimensions. In Figure 10, we show how the same model structure

using 3D SSPs can be used to accurately perform 3D localization.

There are no differences between this and the 2D models, other

than using SSP vectors, φ(x), encoding x ∈ R
3.

3.5. Neuromorphic simulation of dead
reckoning

To investigate the feasibility of deploying SSP-SLAM on

neuromorphic hardware, we simulated the path integrator network

on the NengoLoihi emulator. This Python package allows spiking

neural network models built in Nengo to be run on Intel’s Loihi
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FIGURE 8

The solid line is the performance measure averaged over ten trials of di�erent paths. Also shown are shaded error bars. (A) The similarity error,

1− φ(x(t)) · φ̂(x(t)), over the simulation time t – i.e., how far the o� the vector output of the path integrator is from the SSP encoding of the ground

truth. (B) The distance between the model’s MAP estimate of self-position and the ground truth over the simulation time.

FIGURE 9

Each panel shows model results for a di�erent environment/ trial. The ground truth paths are plotted as grey solid lines. The dashed blue line is the

location estimate from SSP-SLAM. The dashed orange line is the estimate from the path integration network without any corrections from the

environment map network (i.e., dead reckoning).

architecture. It includes both support for running models on the

Loihi hardware and a Loihi emulator, which we used for these

experiments. In this experiment, we run the model on paths

derived from the KITTI odometry benchmark (Geiger et al., 2012).

However, we do not use raw visual input from the KITTI datasets,

as our model does not support visual SLAM. Rather, we use velocity

signals computed via finite differences on the ground truth paths

and represented by a neural population. To compensate for the

absence of the landmark perception, environment map, and loop

closure modules, the total number of neurons in the path integrator

was increased to 90,000 to reduce drift. Results are shown in

Figure 11.

Notably, the NengoLoihi emulator implements the same

limited precision mathematics as the actual hardware, using 8-

bit weights and a quantized neuron response function. Figure 11

shows that the path integrator network is robust to these additional
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FIGURE 10

Results from 3D SLAM. The ground truth path is shown in grey, the SSP-SLAM MAP estimate is in blue, and the locations of ten point landmarks are

given by the black dots.

constraints, and continues to perform largely as expected, although

with more error compared to the typical performance of the full

SSP-SLAMmodel (Section 3.3).

4. Discussion

4.1. Prior research

The development and implementation of SLAM algorithms for

mobile robots has garnered significant attention in academic and

engineering communities. Approaches generally involve recursive

Bayesian estimation—via various kinds of Kalman Filters (Smith

et al., 1990; Brossard et al., 2018), Particle Filters (Montemerlo

et al., 2002; Sim et al., 2005), or occupancy grid methods

(Stachniss et al., 2004)—or graph optimization (Thrun and

Montemerlo, 2006; Sünderhauf and Protzel, 2012). In recent years,

researchers have focused on incorporating semantic information

into SLAM systems, using deep artificial neural networks,

particularly convolutional or recurrent neural networks for object

detection and semantic segmentation. The use of semantic

information in SLAM has been found to improve performance

and robustness of robot localization (Frost et al., 2016; Stenborg

et al., 2018; Bowman, 2022). Furthermore, robots equipped with

semantic SLAM hold the promise of performing higher-level tasks,

such as planning paths based on human instructions that reference

objects in the environment. Concurrently, an alternative approach

to SLAM, drawing inspiration from the brain, has continued to

develop novel algorithms with the goal of improving efficiency

and robustness (Milford et al., 2004, 2016; Silveira et al., 2015;

Yu et al., 2019). In this line of research, models of neural path

integration inspired by hippocampal cells are used for localization.

Coupling such neural algorithms with recent developments in

neuromorphic hardware, as we have done here, aims to both

improve our understanding of how the brain accomplishes SLAM

and to improve the power efficiency of engineered solutions.

Neural localization models used in this alternative approach

can generally be divided into two categories: Continuous Attractor

Network (CAN) models (Samsonovich and McNaughton, 1997;

Tsodyks, 1999; Conklin and Eliasmith, 2005) and Oscillator-

Interference (OI) models (O’Keefe and Burgess, 2005; Burgess

et al., 2007; Hasselmo et al., 2007; Welday et al., 2011). In

CAN models, path integration is performed by a recurrently

connected neural sheet, whose dynamics sustain a single Gaussian-

like activity bump that represents the self-position estimate of

an agent. In contrast, in OI models, the self-position estimate

is encoded by the phase differences between Velocity-Controlled

Oscillators (VCOs)—oscillators whose frequency is modulated by a

velocity signal.

The seminal application of neural-inspired methods to SLAM

is RatSLAM, in which visual odometry is used to drive a CAN

(Milford et al., 2004, 2016). The CAN consists of “pose cells"

(similar to the place and head direction cells found in the

hippocampal formation) and maintains an estimate of self-position

and orientation. Sensor data is processed outside the neural

network to create a template array (for example, raw visual input

is converted to an intensity profile vector). When a novel template

is observed, a new “local view cell" (similar to the spatial view

cells in the hippocampus) is added to the network. The population

of these cells is sparsely connected to the CAN, with associations

learned via Hebbian learning. Additionally, a graph is constructed

and updated with a graph relaxation algorithm online to create a

topological environment map. Its nodes store experiences in the

form of activity of pose cells and local view cells along with robot

pose estimates.

In contrast, a hybrid OI-CAN model is used for path

integration in SSP-SLAM and a graphical environment map is

not learned—instead, the outgoing connection weights from the
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FIGURE 11

Results from the path integrator network simulated on the NengoLoihi emulator using two di�erent 3D paths constructed from the KITTI odometry

dataset (Geiger et al., 2012). (A, D) Comparison of the ground truth paths (in grey) to our model’s MAP estimate (in orange) along di�erent

dimensions. (B, E) The probability the model assigns to the ground truth over time. (C, F) The RMSE between the MAP estimate and ground truth.

memory network implicitly store a map which can be retrieved

by querying the network. The Voja rule, which is used to shift

the associative memory population encoders toward observed

input in SSP-SLAM, plays a similar role to the template novelty

detection and addition of local view cells that occurs in RatSLAM.

Furthermore, we have not implemented an externalmodule for pre-

processing of sensory data, and we use landmark semantic pointers

and displacement SSPs in lieu of templates. Object detection and

depth estimation algorithms would be required to obtain this input

from visual data.

Many models have since extended the original RatSLAM.

CAN SLAM models with place cell-like activity were also used by

BatSLAM (Steckel and Peremans, 2013), an extension to RatSLAM

for handling environment information from sonar sensors, and

DolphinSLAM (Silveira et al., 2015), developed for 3D SLAM in

underwater environments. A CAN consisting of conjunctive grid

cells was used in the SLAMmodel presented in Zeng and Si (2017).

Three-dimensional SLAM in realistic environments with grid cells

was also explored in NeuroSLAM (Yu et al., 2019). Unlike our

work, none of these models use spiking neural networks.

More recent research has focused on developing spiking

networks for SLAM and testing them on neuromorphic hardware.

Spiking 2D SLAM models were presented in Tang and Michmizos

(2018), Tang et al. (2019), and Kreiser et al. (2020a,b). In Kreiser

et al. (2020a), a SLAM system on the Loihi chip was used to estimate

the head position of an iCub robot as it visually explored a wall with

a dot pattern acting as the environment. Tang et al. (2019) made use

of a depth camera and Bayesian updates on a posterior distribution

represented by neural population. They found that their SLAM

system, when run on Loihi, was more energy efficient by two orders

of magnitude compared to a baseline method on a CPU. While

the models discussed here use raw sensory input, it should be

noted that non-spiking visual modules are used to process this

information and obtain input for SLAM. For instance, intensity

profile vectors or feature colors and distances from the observer

are used. In contrast to SSP-SLAM, none of the models mentioned

incorporate any elements of OI to perform path integration, or

perform 3D SLAM. Furthermore, some of these models employ

“localist"/discrete representations, such as using one neuron to

represent each integer value for heading direction or discretized

distance to features. This approach does not support generalization

and does not scale well to higher dimensional representations,

unlike SSPs.

Taken together, and summarized in Table 2, past work provides

examples of spiking and non-spiking networks, using CANs

for path integration. However, unlike SSP-SLAM, none of these

approaches provides a methodology for incorporating semantic

information or for online learning of semantic environmental

maps. In addition, none of these employ SSPs, or the same

combination of a OI-CAN network in a fully spiking model capable

of functioning equally well in both 2D and 3D spatial environments,

as demonstrated above.
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TABLE 2 Comparison of bio-inspired SLAMmodels.

Model Sensors Input
representation

Dim. Localization Env. map Cells Experiment
scale

Spiking Neuromorhpic
hardware

SSP-SLAM None Displacement to

features as an SSP

and feature

identities as SPs

Any, tested on 2D

& 3D

OI-CAN hybrid Weights between

landmark

population to

landmark locations

HDC, GC,

landmark cells,

OVC

Small Yes Partially

RatSLAM (Milford

et al., 2004, 2016)

Monocular camera Greyscale image

intensity profile

2D CAN Topological map

associating local

views with position

stored as a graph

Pose cells, local

view cells

Large No No

BatSLAM (Steckel

and Peremans,

2013)

Biomimetic sonar Intensity difference

between left and

right Echolocation

Related Transfer

Functions

2D CAN Topological map

local views with

position stored as a

graph

Pose cells, local

view cells

Small No No

DolphinSLAM

(Silveira et al., 2015)

Sonar & visual One-hot

representation

obtained from

FabMAP algorithm

on top of a Bag of

Words model

3D CAN Graph with nodes

storing local view,

place cell and

position while edges

store displacements

3D PC, local view

cells

Small No No

NeuroSLAM (Yu

et al., 2019)

Panoramic camera Greyscale image

intensity profile

3D CAN Topological map

storing activities of

local view cells,

GCs, HDCs, and

estimated pose

3D PC, conjuctive

3D GC and HDC,

local view cells

Large No No

Kreiser et al.

(2020a)

Event-based camera Detection of

blinking LEDs at

different

frequencies

2D CAN Weights from

landmark

population to a

HDC population

HDC, landmark

cells

Small Yes Fully

Tang et al. (2019) RGB-Depth camera Discretized

distances to

landmarks

2D CAN Weights from PC to

a displacement-

from-border

population

2D PC, HDC,

border cells,

Bayesian cells

Small Yes Fully
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4.2. Performance

We have presented the results of several experiments on

SSP-SLAM to assess its performance and utility. The model

demonstrates accurate localization capabilities on different paths,

both two-dimensional and three-dimensional. To achieve this, a

hybrid OI-CAN model is employed for path integration. Notably,

this is the only SLAM model (to our knowledge) that uses

OI techniques for localization. This approach has the advantage

of easy generalization to higher dimensional spaces. Typically,

CAN models describe a neural population as a 2D sheet or

3D array (often with periodic boundary conditions), where the

geometry specifies the recurrent connectivity pattern required

for localization. However, this only supports unimodal position

estimates, and the connectivity pattern must be modified and made

more complicated tomove to higher dimensional path integration.1

In contrast, in our approach the recurrent connectivity of the

path integrator network remains the same regardless of spatial

dimensionality. This allows the same model to switch seamlessly

between SLAM in different spaces and domains.

Furthermore, SSP-SLAM encodes environment maps in the

outgoing connections of an associative memory network, which

are learned online using biologically plausible learning rules. The

map generated is a semi-metric, semantic map that uses symbol-

like vector representations that have been leveraged in a variety of

large-scale cognitive models (Eliasmith, 2013; Arora et al., 2018;

Kajić et al., 2019; Kelly et al., 2020; Gosmann and Eliasmith,

2021). By working in the SSP and VSA paradigm, we are able

to formulate the problem in such a way that unites metric and

semantic SLAMs. This approach unites analytical models of vehicle

motion and map construction with neural networks, resulting in

a formulation that is compatible with modern ML approaches to

robotics, while still maintaining the explainability of the system.

These feature distinguishes SSP-SLAM from other bio-inspired

SLAMmodels and makes it the first spiking semantic SLAMmodel

to our knowledge.

This inclusion of semantic information helps SSP-SLAM be

more accurate. Specifically, SSP-SLAM performs loop closure via

corrections to the PI network provided by the environment map,

which leads to significant improvements in localization accuracy.

After training, the map can be queried to obtain object locations

given their symbol-like representation as a semantic pointer.

Alternatively, item representations can be obtained by querying

specific areas, or vectors between the agent and landmarks can

be computed. These kinds of direct queries of semantic map

knowledge cannot be easily made with past spiking network

map representations.

Finally, a key element of the model, the path integrator, was

tested on a neuromorphic emulator. The results indicate that the

model can maintain expected accuracy (given the absence of error

1 Recent research has explored variants to traditional CANs that overcome

these limitations. A multimodal CAN model was presented in Wang and

Kang (2022) and research exploring CANs with arbitrary dimensional

attractor manifolds and more biologically realistic asymmetries in synaptic

connectivity was presented in Darshan and Rivkind (2022). Such CAN variants

have not been used in SLAM systems.

correction mechanisms) on neuromorphic hardware. Notably, all

additional operations used in the model have been implemented on

neuromorphic hardware in other work (Knight et al., 2016; Mundy,

2017), so we believe this demonstration strongly suggests that a

full neuromorphic implementation is achievable. Overall, this study

presents a novel and promising approach to SLAM based on a fully

spiking neural network.

4.3. Limitations

This study presents a novel model that employs biologically-

inspired mechanisms to solve SLAM. However, SSP-SLAM has

several limitations. First, the full SSP-SLAM model has not been

tested on a neuromorphic chip emulator nor has the model

been deployed on an actual neuromorphic hardware platform.

Second, the model was tested on a small scale and artificial

environments, which restricts what conclusions we can draw as to

its generalizability to more complex, real-world environments.

To improve the model’s utility, it is essential to test it on real-

world input and integrate it with a network that can process raw

sensory data. Such an approach would enhance the model’s ability

to handle more complex and diverse environmental conditions.

Moreover, the current model’s accuracy is inferior to that of non-

biologically inspired SLAM methods, which limits its usefulness

to mobile robotics. This accuracy drop and the use of small

scale test environments is true of current spiking SLAM models

more generally. Despite this, the use of neuromorphic computing

and hardware has the potential to improve energy efficiency of

SLAM systems, which is particularly useful in mobile robotics

applications. This encourages further research into spiking SLAM

systems. Reduced power demands permits the deployment of

SLAMs in progressively more power-constrained environments,

such as edge computing or operations in GPS-denied settings, like

space or sub-sea exploration. An increasing number of algorithms

have harnessed the advantages of spike-based computing to make

gains in efficiency and speed (Yakopcic et al., 2020; Davies et al.,

2021; Yan et al., 2021).

Therefore, while the current model shows promise in enabling

biologically-inspired SLAM, its limitations in terms of testing

and accuracy should be addressed before considering its wider

application in real-world scenarios. Further research could focus

on testing the model on larger networks and more complex

environments, as well as investigating ways to improve its accuracy.

4.4. Future work

One clear direction for future work is ameliorating the

limitations discussed in the previous section. Beyond this, there

are several other directions that warrant further exploration—

for example, explicit modeling of sensor uncertainties using

SSPs, introducing coupling dynamics to increase localization

accuracy, higher-dimensional SLAM, and integration with other

cognitive models.

Accurate of localization is vital and phase drift is one of the

main factors contributing to SSP inaccuracy. As path integration
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progresses, errors can accumulate in the phases of the velocity-

controlled oscillators (VCOs), resulting in inconsistencies that

degrade the spatial information (e.g., see Figure 8). The loop-

closure error corrections (Figure 2) can shift the phases toward the

true values, but the phase inconsistencies would still be present.

However, one could take advantage of the redundancy in the SSP

representation by adding coupling between the VCOs that enforce

their proper phase relationships (Orchard et al., 2013).

Additionally, higher-dimensional SLAM could be a promising

area of investigation. The proposed model can be extended to

localization and mapping in any dimension of space by modifying

the input without changing the model or hyperparameters.

Although SLAM is mainly applied to navigation and mapping

in physical spaces, operating in dimensions equal to or less than

three, it is possible that the same neural mechanisms underlying

spatial navigation and mapping could be applicable to non-spatial

domains, such as mapping in high-dimensional conceptual space.

The idea that similar computations to those behind SLAM may be

understood as core cognitive processes has been proposed in Safron

et al. (2022).

The application of SSP-SLAM to localization and mapping in

various spaces (including non-spatial ones) via interactions with

other cognitive systems is promising area for future research. By

employing control mechanisms to manipulate the input to SSP-

SLAM, it may be possible to model different cognitive functions.

For instance, one could switch between motion input from sensory

systems to perform localization and input from memory and

cognitive maps to simulate path replay or planning. This could

be realized by integrating SSP-SLAM with more complex memory,

action selection, and reasoning systems. Since the proposed model

was developed using the SPA, it fits naturally within the context

of NEF and other SPA models, including Spaun (Stewart et al.,

2012a; Choo, 2018). Integration of the proposed SLAMmodel with

other models constructed with these tools could be used to develop

systems equipped with more sophisticated cognitive capabilities

and able to tackle multiple tasks. Exploiting memory and reasoning

capabilities in large spatial environments remains a challenge for

models of biological cognition.

4.5. Summary

In conclusion, we have proposed a novel spiking semantic

SLAM model, SSP-SLAM, which is inspired by the hippocampal

formation in the mammalian brain. The model is unique in

its integration of a hybrid OI-CAN path integrator, online

biologically-plausible learning of an environment map, and use

of symbol-like object representations in a spiking network. This

combination enables the model to perform SLAM accurately

in small scale environments and learn representations that can

be queried in powerful ways. For example, it can provide

information about what is located in a particular area of

the map, report vectors between landmarks, and identify the

location of objects based on their properties, such as their

color. Furthermore, these techniques advance the sophistication of

biologically plausible SLAM networks, showing a wide variety of

previously identified cell types while demonstrating functionality

in 2D and 3D environments.

Finally, we have tested a core component of the network on a

neuromorphic hardware emulator, which represents an important

step toward achieving a full system running on neuromorphic

hardware. While significant work remains to achieve this goal,

we believe that the methods and components employed in this

study provide a foundation for future research in this area. With

continued progress, this spiking semantic SLAMmodel could have

important applications in a wide range of fields, including robotics,

artificial intelligence, and neuroscience.
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