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Abstract
Social environments often impose tradeoffs between pursuing
personal goals and maintaining a favorable reputation. We
studied how individuals navigate these tradeoffs using Rein-
forcement Learning (RL), paying particular attention to the
role of social value orientation (SVO). We had human partic-
ipants play an interated Trust Game against various software
opponents and analyzed the behaviors. We then incorporated
RL into two cognitive models, trained these RL agents against
the same software opponents, and performed similar analyses.
Our results show that the RL agents reproduce many interest-
ing features in the human data, such as the dynamics of con-
vergence during learning and the tendency to defect once recip-
rocation becomes impossible. We also endowed some of our
agents with SVO by incorporating terms for altruism and in-
equality aversion into their reward functions. These prosocial
agents differed from proself agents in ways that resembled the
differences between prosocial and proself participants. This
suggests that RL is a useful framework for understanding how
people use feedback to make social decisions.
Keywords: Reinforcement Learning; Trust Game; Instance-
Based Learning; Semantic Pointer Architecture; Altruism; In-
equality Aversion

Introduction
In social decision making, individuals must gather informa-
tion, weigh alternatives, and select actions in environments
that contain other intelligent agents. Such environments often
involve tradeoffs between short- and long-term rewards and
between individual and collective interests. Researchers in
psychology, economics, and neuroscience study these trade-
offs, and the behaviors they encourage, using social dilem-
mas such as the Prisoner’s Dilemma, the Ultimatum Game,
and the Trust Game. To navigate these social dilemmas suc-
cessfully, players must build mental models of their social en-
vironments and adapt their behavior in response to decisions
made by other individuals. We are interested in the cognitive
mechanisms that underlie such learning, particularly the role
of social value orientation (SVO) in promoting cooperative
behavior and achieving long-term collective outcomes.

In this paper, we investigate how humans and simulated
agents learn to play the Trust Game (TG), studying both the
distributions and dynamics of behaviors as heterogeneous in-
dividuals explore and settle on strategies against various types
of opponents. We adopt a Reinforcement Learning (RL) ap-
proach to describe the learning process and propose that SVO
critically influences learned behaviors. We operationalize
SVO within the RL framework, implement RL in two dif-
ferent cognitive architectures, and compare simulated data

from heterogeneous populations of these agents to human
data from the TG, noting in particular the effects of SVO on
behavior in different social settings. Our results are consis-
tent with theoretical and empirical accounts of the relation-
ship between learning, SVO, and behavior, and demonstrate
that SVO can be incorporated into a computational theory of
learning that generalizes across cognitive architectures.

Background
The Trust Game (TG) is two-player, turn-based game in
which individuals repeatedly receive and reallocate resources
in a sequential manner. In each turn of the game, the first
player (the investor), receives ten coins, then gives some of
these coins to the second player (the trustee), keeping the rest.
The trustee receives three times this many coins. Finally, the
trustee returns some number of the resulting coins to the in-
vestor. A single game consists of five turns. Each player’s
final score is the total number of coins collected across all
five turns. In the TG, greater rewards are earned if both play-
ers invest and return generously, but each player will only do
so if they trust their opponent to reciprocate in future rounds.

Behavior in the TG has a clear prosocial component that is
distinct from maximizing individual rewards: while investor
behavior is most closely correlated with expectations of re-
payment and perceived trustworthiness, trustee behavior is
most closely correlated with prosocial tendencies (Ashraf et
al., 2006). For instance, in one-turn versions of the TG, many
trustees will return coins even though they cannot receive re-
turns from future interactions. Prosocial behavior is moti-
vated by numerous drives, including reciprocity, inequality-
aversion, and altruism (Pletzer et al., 2018; Declerck et al.,
2013), and the activity of numerous brain structures corre-
lates with prosocial values estimates and prosocial behaviors,
including the amygdala, striatum, TPJ, mPFC, and dlPFC
(Haruno & Frith, 2010; Hutcherson et al., 2015). Evidence
from psychology and neuroscience supports the idea that
learning is a critical component in social dilemmas: individ-
uals adapt their strategies in response to specific instances of
betrayal (Lount Jr et al., 2008), to the opponent’s behavior in
the recent past (Engle-Warnick & Slonim, 2004), and to trust
estimates made in previous games (Collins et al., 2016).

Reinforcement Learning (RL) is a widely-acknowledged
framework for understanding how humans and other animals
update their behavior based on external feedback (Sutton &
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Barto, 2018): numerous studies have shown that the sig-
nals and learning rules proposed by RL map onto reward-
prediction errors and synaptic changes in the brain (Glimcher,
2011). Furthermore, recent frameworks such as RLDM have
begun to lay out the relationship between RL, decision mak-
ing (DM), and social value orientation (SVO), noting how
various prosocial motivations may arise from different forms
of learning (e.g., model-based, model-free, and associative)
at various levels of abstraction, in different tasks, and through
different brain regions (Gesiarz & Crockett, 2015). However,
more computational work is needed to elucidate the relation-
ship between RL algorithms and emergent prosocial behav-
ior; specifically, the field needs more models that incorporate
SVO into learning rules and value functions in a manner that
(a) is cognitively and neurally plausible, (b) can be general-
ized to multiple cognitive architectures and behavioral tasks,
and (c) explains a variety of empirical results.

Here, we use computational models to investigate the re-
lationship between learning, SVO, and prosocial behavior.
To model SVO, we incorporate two additional term into the
reward function of RL agents; this encourages agents to
consider the rewards obtained by other individuals in social
dilemmas. In keeping with other computational models of
SVO (Hutcherson et al., 2015; Collins & Juvina, 2021; Mc-
Kee et al., 2020), an agent’s overall reward is a weighted com-
bination of self-reward, other-reward, and reward-inequality,
where the relative weighting determines the agent’s degree
of SVO. Using this reward function, we train two distinct
cognitive architectures to play the TG. Our first architecture
is a Deep Q-Network (DQN), a neural network trained with
backpropagation that has previously been used to learn com-
plex, human-like behavior in multiplayer games (Wang et
al., 2018). Our second architecture is based on ACT-R (An-
derson et al., 2004), an integrated theory of cognition sup-
ported by an extensive history of cognitive models validated
by human behavioral data. In this architecture, the retrieval
and utilization of episodic memories is governed by instance-
based learning (IBL) and blended retrieval (Thomson et al.,
2015), two mechanisms that are closely aligned with ob-
served human recall in natural settings and decision making
tasks (Gonzalez et al., 2003) and have been used as the basis
for decision making in simulated agents playing two-player
social games (Lebiere et al., 2009). For each architecture,
we simulate and train a heterogeneous population of agents,
then compare the distribution and dynamics of simulated data
with human data in the TG. We then discuss whether RL, and
specifically our implementation of SVO, is a suitable frame-
work for studying prosocial decision making, independent of
the computational implementation of agent’s internal model.

Methods

To model human learning in the TG, we used RL to
train agents from both different computational architectures.
Agents learn a “Q-function” which assigns a value to (state,
action) pairs, then selects the action a with the highest es-

timated value when present in state s. The state consists of
the current turn (1 through 5) and the number coins available
(0 to 30). Actions determine the number of coins the agents
give and keep. The Q-function is updated using the standard
TD(0) Q-learning formula,

∆Q(s,a) = α
[
r+ γmax

a∗
Q(s′,a∗)−Q(s,a))

]
, (1)

where α is the learning rate, r is the reward, γ is the discount
factor, and maxa∗ Q(s′,a∗) is the maximum over possible ac-
tions in the next state s′. In order to explore the (state, action)
space, agents take random actions with a probability ε, which
decays over the course of learning. If a random action is not
taken, the agent chooses the action with the greatest Q-value.
To model SVO, agents compute a weighted sum between the
rewards they themselves received, the rewards their opponent
received, and any inequalities between them:

r = wsrs +woro −wi|rs − ro|, (2)

where ws, wo, and wi are the weighs for self-reward, other-
reward, and inequality, and the rewards rs and ro are the coins
earned on any given turn. For convenience, we fix ws = 1
and interpret wo and wi as an agent’s SVO. When initializing
heterogeneous agent populations, each individual is given a
unique wo and wi, a discount factor γ, and a learning rate α.

Although Q-learning, exploration, and SVO are common
features of all our agents, the two architectures implement
learning, function approximation, and memory in different
ways (Figure 1). Our Deep Q-Network agent is a three-layer
network with rectified linear activation, a loss function of
∆Q2, and Adam backpropagation. To facilitate comparisons
between the learning trajectories of DQN agents and our other
agents, we did not use an experience replay buffer.

Our Instance-Based Learning agent contains an episodic
memory and a working memory, which work together via
queries and retrievals to recall relevant pieces of information
from previous experiences. These “chunks” contain the state
s, the selected action a, the returned reward r, and the esti-
mated value Q. When choosing an action, the agent looks
through all chunks in episodic memory and loads into work-
ing memory those chunks which satisfy two criteria: the
chunk has sufficient activation due to recent or frequent use,
and its state is sufficiently similar to the current state. The ac-
tivation of a chunk is given by the standard ACT-R equations,
and state similarity depends on the number of coins available
(normalized absolute difference) and the turn number (zero if
turn number is different, otherwise one). The value of each
potential action is calculated using blended retrieval,

Q̂(a) =
M

∑
i

Qi(a)Ai, (3)

that is, all chunks i where action a was taken are queried for
their estimated value Q, weighted by their activation A, and
summed. Finally, the Q value assigned to each new chunk
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Figure 1: Network Architectures for the RL agents. Boxes represent inputs/outputs, circles represent individual neurons, and
purple ovals represent ACT-R memory systems.

is equal to the reward returned for that action plus the dis-
counted expected value of “future” chunks. For this expecta-
tion, the agent recalls all chunks j with sufficient similarity to
the game’s next state (st+1) and blends their values

Qi = r+ γ

M

∑
j

Q jA j, (4)

where the sum is over the chunks j that pass the activation and
state similarity thresholds for st+1. This mechanism is a novel
realization of RL within the ACT-R framework, which typi-
cally learns the value of procedural rules (actions) directly.

To validate the simulated data produced by these agents,
we also ran a simple human experiment through Amazon Me-
chanical Turk in which participants learned to play the TG
against simulated opponents. Participants completed a tuto-
rial that introduced the rules and strategy of the game, then
played thirty five-turn games alternating between the investor
and the trustee. The investor began each round with ten coins,
and the transfer sent to the trustee was tripled. Participants
earned $0.10 per game plus $0.003 per coin they collected,
incentivizing them to play strategically rather than quickly.
Participants were classified as “proself” or “prosocial” based
on a post-trial survey:

• I tried to earn as many points for myself as possible, with-
out considering my opponent’s score. (N=83)

• I tried to achieve a high score for both myself and my op-
ponent. (N=115)

Participants were secretly sorted into two groups: the first
group faced opponents who could profitably be exploited

with a greedy strategy, while the other group faced oppo-
nents where the best strategy was to be consistently gener-
ous. To minimize the antisocial effects that humans exhibit
when playing against simulated opponents with fixed strate-
gies (Mota et al., 2016), we strove to make our agents human-
like: all agents (a) played according to an adaptive “Tit-for-
Tat” (T4T) strategy, responding generously if the human was
generous and greedily if the human was greedy, (b) had ran-
domized response times that matched human response times,
and (c) were initialized with parameters that controlled the
initial response and the magnitude of the T4T update, pro-
ducing (i) heterogeneous behaviors across turns and games
and (ii) exploitable versus cooperative behaviors in the two
experimental groups. We were interested in whether partic-
ipants would learn high-reward strategies against the oppo-
nents they faced, whether their social orientation would influ-
ence this process, and to what degree our RL agents would
reproduce the dynamics and distributions of these behaviors.

Results
We began by training our RL agents against simple soft-
ware opponents, tuning model hyperparameters until agents
learned the optimal policy. We then created heterogeneous
populations of agents by modestly varying these hyperparam-
eters (notably γ and α) and by introducing SVO (wo and wi),
which we set to zero for proself agents and to random values
between 0 and 0.5 for prosocial agents. We trained these pop-
ulations against the same T4T opponents used in the human
experiment. To compare the human and agent data, we trans-
formed the actions taken by individuals into a normalized
generosity, which indicates the fraction of available coins the
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individual transfers on each turn.
To examine the final strategies learned by humans and

agents, we plot the distribution of generosities in the final
n = 3 games1 versus different opponents, when playing as
different players, and grouped by SVO, Fig. 2. Looking at
the human data, we observe several patterns that are con-
sistent with the RLDM literature and demonstrate that this
dataset is a valid point of comparison for our RL agent data.
First, human behaviors are diverse: generosities vary be-
tween zero (keeping all available coins) and one (sending
all available coins) in every condition, indicating that par-
ticipants learn a wide variety of strategies that differ across
turns and/or between individuals. Second, the distribution
of generosities differs significantly (a) when playing against
different opponents and (b) with participant SVO. To quan-
tify differences between generosity distributions, we use the
two-sample Kolmogorov-Smirnov test: the magnitude of the
test statistic indicates the difference between these distribu-
tions, while the p-value describes whether this difference is
statistically significant. Participants adopted significantly dif-
ferent behaviors against each opponent (p < 0.0001 in 4/4
conditions), confirming that humans learn strategies that are
adapted to the social environment; and prosocial participants
learned significantly different behaviors than did proself par-
ticipants (p < 0.0001 in 3/4 conditions). Furthermore, proso-
cial individuals were significantly more generous (Welch’s t-
test, t = 17.1, p < 0.0001, ∆Ḡ = 0.15) and significantly less
likely to defect (generosity < 0.2) on the final turn when play-
ing the as the trustee (t = 2.8, p = 0.007, ∆P̄ = 0.16); these
results confirm that SVO influences human DM with regards
to both the learned distributions of generosities and several
descriptive metrics.

We then compared the simulated data from our RL agents
to the human data. In many cases, RL agent strategies cap-
tured interesting features of the human data: for instance,
the proself IBL agents have a tendency to be less generous
on each successive turn when playing the investor against a
generous opponent, an unexpected (suboptimal) pattern that
also appears in the corresponding human data. A majority
of agents also learned to defect in the final turn when play-
ing as the trustee, but there remained a significant percentage
of both humans and agent that did not discover (or did not
adopt) this strategy. In other instances, the strategies learned
by RL agents differed significantly from the human data: for
example, many agents architectures returned more than 50%
of the available coins when playing as the trustee, a behavior
that was rarely exhibited by humans.

With respect to SVO, significant differences between the
behaviors of proself and prosocial agents were observed in
all conditions (4/4 conditions for both agents, p < 0.0001).
Prosocial agents were more generous on average than their

1We chose n > 1 to (a) increase the amount of data and give
greater statistical power to our tests, and (b) to ensure that random
fluctuations in the behavior of opponent agents (from game to game)
did not skew our analysis of final strategies. The reported results
remain consistent for various choices of n.

proself counterparts (∆Ḡ = 0.08 (DQN) and 0.03 (IBL), both
p < 0.0001), and were also less likely to defect on the final
turn when playing the trustee (∆P̄ = 0.34 (DQN) and 0.22
(IBL) both p < 0.0001). However, the learned behaviors of
prosocial agents were not significantly better fits to the proso-
cial human data than were the learned behaviors of proself
agents (as measured by the KS-test).

We also analyzed how behaviors changed during the course
of learning for participants and our RL agents. To exam-
ine how individual’s strategies converged with experience, we
plotted the similarity between an individual’s generosity dis-
tribution in each game and their generosity distribution in the
final n = 3 games, Fig. 3. These plots show qualitatively dif-
ferent patterns of convergence between agent architectures,
especially in reference to the human data. Participant strate-
gies converged in a fairly linear manner, although in some
conditions there was a period of rapid change in either the
initial or final games. Additionally, there was less within-
individual variability in the final strategies of investors than
there was for trustees. IBL strategies converged in a simi-
lar manner, exhibiting linear change in most conditions and
more variation among endgame trustee strategies. In con-
trast. DQN strategies tended to converge only during the
final games. There were no noticeable differences between
the learning trajectories of proself and prosocial humans or
agents with respect to patterns of convergence.

Discussion
In this paper, we investigated how humans learn to make so-
cial decisions by observing the development of their strate-
gies in the Trust Game and modelling this adaptation using
Reinforcement Learning. As expected, our empirical data
showed that participants learned a variety of strategies that
differed significantly between individual, were well-suited
to the opponents they faced, and were strongly influenced
by SVO. To model the learning process and account for
the effects of SVO, we designed and trained two classes of
agents from modern cognitive architectures, then endowed
them with SVO by adding terms for altruism and inequality-
aversion into their reward functions. These agents learned
effective TG strategies that captured several features of the
human data, including the tendency to defect when future re-
ciprocation was impossible, sustained generosity by proso-
cial individuals against greedy opponents, and a steady con-
vergence of behaviors towards a final strategy as exploration
gave way to exploitation.

The observed differences in learning and behavior between
agent architectures, and in contrast to the human data, suggest
several tentative conclusions. With regards to learning, hu-
mans develop coherent strategies much faster than RL agents
(15 versus 200-400 games). While our data suggest that
some RL agents converge on human-like strategies according
to human-like dynamics, humans probably utilize additional
cognitive mechanisms to speed up learning and decrease the
experience needed to discover effective strategies. For in-
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Figure 2: Strategies learned by humans and RL agents, divided according to player, opponent identity, and SVO. The
y-axis of these histograms indicates the percent responses in each generosity bin, with a polygon interpolation applied for
visualization. Each column represents data from one experimental condition (player and opponent), while the top and bottom
rows represent proself and prosocial individuals, respectively.

Figure 3: Convergence of behaviors for humans and RL agents. The x-axis represents cumulative experience playing the
TG, while the y-axis plots the similarity between the generosity distribution in the current game and the generosity distribution
in the final n = 3 games. Shaded regions represent confidence intervals across individuals. Note that the x-axis is scale-free: it
does not indicate the number of games required to learn a strategy.
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stance, where our RL models rely on random exploration to
explore the (state, action) space of the TG, humans probably
use previously-acquired knowledge and heuristics to facilitate
efficient learning. With regards to SVO, we found that proso-
cial agents learned behaviors that were statistically-distinct
from their proself counterparts, and observed that prosocial
agents made more generous transfers and defected less often
than proself agents, all trends that we also noticed in the hu-
man data. However, when comparing the final distribution of
agent generosities to human generosities in each experimen-
tal condition, we found that prosocial agents were not signif-
icantly better fits than their proself counterparts. From these
contrasting results, we conclude that our operationalization
of SVO in RL agents was sufficient to reproduce several im-
portant qualitative trends in human behavior, but insufficient
to reproduce the exact strategic differences adopted by proso-
cial humans. It is important to note, however, that we did not
optimize model parameters to fit the human data: we sim-
ply created heterogeneous populations of agents with wo and
wi drawn from a wide range of possible values, and compared
the resulting distribution of learned generosities to the learned
generosities of humans. In future work, we plan to optimize
these parameters to fit individual participants, then investi-
gate whether the optimal SVO parameters from our agents
predict participants’ SVOs and improve the overall fit of our
RL models.

Experimental conditions in which prosocial agents poorly
fit the prosocial human data often reflect understandable
failures of our SVO mechanism. Specifically, agents with
nonzero altruism and inequality aversion continued invest-
ing against greedy opponents, a trend that was also appar-
ent in prosocial humans. Participants manifested this trend
by occasionally investing the maximum amount, but quickly
returned to zero-investment strategies after observing a lack
of reciprocation. Our RL agents, on the other hand, man-
ifested this generosity as steady levels of small investment,
a strategy which satisfied the agent’s concern for others’ re-
wards but ended up scoring lower on our similarity metric
than the invariant zero-investment strategy of proself agents.
In future work, we would like to explore the relationship
between reciprocity and sustained cooperation, a trend ob-
served in prosocial humans (Pletzer et al., 2018) that has been
operationalized in other computational models of RL using
IBL (Juvina et al., 2015) and which may relate to context-
dependent weighting of proself and prosocial value in vmPFC
(Declerck et al., 2013).

Agent architecture made a noticeable impact on the dy-
namics and distributions of learned generosities, despite be-
ing governed by identical update rules (Eq. 1) and exploration
schedules. While DQN agents learned strategies that led to
high average rewards in the TG, they were some of the poor-
est fits to human data: these agents required twice as much
training data, demonstrated little convergence in the early
games, and learned policies with few minimal turn-to-turn
variation. Given that this architecture has fewer cognitive and

biological constrains, it is not surprising that it gave poorer
matches to human data (but recall that we did not train the
network with this objective in mind). IBL agents, on the other
hand, successfully captured the dynamics of convergence and
turn-to-turn variation. This correspondence may reflect the
cognitively-grounded mechanisms for episodic memory for-
mation and recall in the architecture. However, the differ-
ences between proself and prosocial IBL agents were less ap-
parent than they were in the human data, and IBL agents play-
ing the trustee behaved more erratically than did our human
participants. We also built and trained a third class of agent
based on the Semantic Pointer Architecture (SPA), a frame-
work for building biologically-constrained neural networks
that perform cognitive tasks and reproduce neural and behav-
ioral data (Eliasmith, 2013). In this model, we used an online,
error-driven learning rule to implement Q-learning within the
network, as well as a short-term memory system to recall pre-
vious states and an independent-accumulator model for action
selection that resembles the drift-diffusion model (Ratcliff &
McKoon, 2008). This agent also successfully learned to play
the TG, and preliminary results showed that it behaved sim-
ilarly to the IBL agent, with respect to the dynamics of con-
vergence and the differences between proself and prosocial
agents. Unfortunately, due to time constraints, we were not
able to gather sufficient data to include these agents in the
above analyses, but future work will continue the develop-
ment of these neurally-plausible agents.

Our results suggest that RL is a sensible framework for
modelling the learning process behind social decisions and
can be implemented in various cognitive architectures. They
also show that SVO can be operationalized into the RL frame-
work if individuals consider the rewards of others when esti-
mating the value of states and actions. However, given the
complexity of empathy and mentalizing in the human brain,
and the inability of our prosocial agents to reproduce spe-
cific prosocial behaviors, more work is needed to extend these
learning mechanisms within cognitively plausible architec-
tures.
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