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Abstract

The ability to develop expertise through practice is a hall-
mark of biological systems, for both cognitive and motor based
skills. At first, animals exhibit high variability and perform
slowly, reliant on feedback signals constantly evaluating per-
formance. With practice, the system develops a proficiency
and consistency in skill execution, reflected in an increase in
the associated cortical area (Pascual-Leone & Nguyet, 1995).
Here we present a neural model of this expertise development.
In the model, initial attempts at performing a task are based on
generalizing previously learned control signals, which we refer
to generically as ‘actions’, stored in the cortex. The basal gan-
glia evaluates these actions and modulates their contributions
to the output signal, creating a novel action that performs the
desired task. With repeated performance, the cortex learns to
generate this action on its own, eventually developing an ex-
plicit representation of the action that can be called directly.
This transference allows the system to more quickly and con-
sistently execute the task, reflecting development of expertise.
We present simulation results matching both behavioral and
single cell spiking data.
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Introduction

The development of expertise is a feature of biological sys-
tems that allows skills commonly employed to be executed
more accurately and with greater efficiency, while taxing neu-
ral resources less. This is a critical feature of neural systems,
required for the range of behaviors which animals are capa-
ble of displaying by enabling the system to perform tasks of
increasing complexity as expertise develops. Learning exper-
tise is also known as developing automaticity.

Consider a chess player, first learning the rules of the game.
When analyzing the board and trying to visualize the game
several steps ahead, the player must consider how each of
the pieces may move, slowly trying to piece together how the
game may evolve. With practice, commonly employed moves
will become salient, and imagining the modified chess board
will become easier, allowing the player to visualize the board
several turns in the future. As expertise develops, this ability
will grow and the results of more potential moves a number
of turns into the future will be easily drawn up, freeing the
player to focus on deciding which action leads to the best
scenario. Chess experts are those players who have developed
the ability to visualize the board up to 12-15 turns into the
future.

This skill is gained by taking basic cognitive actions (vi-
sualizing the state of the board if a single piece is moved),
combining them to make more complex actions (visualizing
the state of the board 5 turns from now), developing new ’ba-
sic’ actions to represent commonly used complex actions (se-
ries of movements that tend to follow each other), and using

these new actions as building blocks to create even more com-
plex actions (stringing together series of moves to envision
the board 10 steps ahead).

Here we present a biologically plausible spiking neuron
model of expertise development that includes spike timing
based learning, specific anatomical mappings and compu-
tational models of the involved neural structures to control
generic high-dimensional state spaces. Previous models have
not been able to capture pre and post learning time differ-
ences (Gupta & Noelle, 2007), or use single artificial neu-
rons to represent entire actions and targets requiring differ-
ent structural implementations for each task (Ashby, Ennis,
& Spiering, 2007). The model we present avoids these lim-
itations, and provides novel functional hypotheses about the
neuro-anatomical areas involved. For validation, we present
simulation results capturing phenomena from the behavioral
level to the level of single cell spiking data on a motor control
task.

Automaticity and expertise

Automaticity is the ability to perform a given task profi-
ciently, without requiring conscious effort. This is developed
by repeating a task over and over, until the relevant neural sys-
tems have learned to automatically execute the action without
explicit guidance. When learning continues and performance
reaches a threshold level the system is said to have become
an expert.

In (Ashby et al., 2007), the SPEED model of automaticity
was introduced. They proposed that automaticity develops
through two pathways: A fast loop through direct cortico-
cortico connections, and a slow loop that passes through the
basal ganglia. Learned actions are stored in the cortex, and
quickly generate output in response to task information - this
is the fast loop. When actions stored in the cortex are not suf-
ficient for immediately completing the desired task, the slow
loop is involved. The slow loop is a cortico-basal ganglia-
cortico pathway, where the basal ganglia uses a feedback er-
ror signal to converge upon a solution, and projects it to the
cortex. As a solution is found, the action is learned in the
cortex, such that it can be called up through the fast loop in
the future. Thus the slow loop becomes unnecessary and the
neural resources are freed to be allocated elsewhere.

In the same paper, Ashby et al also present a simple neural
model, with one spiking neuron population (representing the
input sensory cortex), and a basal ganglia represented by three
non-spiking nodes, where the number of pathways is changed
for each task, relative to the number of actions possible. Here,
we present a fully spiking model capable of handling high di-



mensional input and system feedback signals, detailing how
a complex basal ganglia model could learn to generate the
correct response by generalizing previous knowledge. Addi-
tionally, we extend the model of the cortex and implement in
the context of a system that is capable of developing increas-
ingly complicated actions.

Neural coding

The spiking neuron implementation of this model is based on
the Neural Engineering Framework (NEF; (Eliasmith & An-
derson, 2004)). The NEF is a general method for converting
high-level algorithms into realistic spiking neuron models, a
type of ‘neural compiler’ that calculates a connection weight
matrix to perform a desired function. Two basic principles of
the NEF are that a) groups of neurons form distributed rep-
resentations of vectors, and b) connections between groups
of neurons specify a computation to be performed on those
vectors. In essence, the NEF provides a method for analyt-
ically solving for the synaptic connection weights that will
efficiently compute any given function.

To represent a vector using a group of neurons, the NEF
generalizes the idea of preferred direction vectors. Each neu-
ron in a group has a randomly chosen vector e for which it
will fire most strongly. In particular, the amount of current
J flowing into the neuron is the dot product of the preferred
vector e with the represented value x, times the neuron’s gain
o, plus the background current Jp;,s (Eq. 1).

While Eq. 1 lets us convert x into neural activity, we can
also do the opposite by computing d via Eq. 2. This produces
a set of linear decoding weights that can be multiplied by the
activity of each neuron in the group, giving the optimal least-
squares linear estimate of x. This allows us to estimate the
value currently being represented by a set of neurons, given
their spiking pattern.

Most crucially, we can use d to calculate the synaptic con-
nection weights that will compute particular operations. To
compute a linear operation where one group of neurons rep-
resents X and a second group should represent Mx, where M
is an arbitrary matrix, we set the connection weights between
neuron i in the first group and neuron j in the second group
to ®;; as per Eq. 3. For non-linear operations, we need to
compute the values of d via Eq. 4.
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This approach allows us to convert high-level algorithms
written in terms of vectors and computations on those vec-
tors into detailed spiking neuron models.

The model

The anatomical mapping of the model presented here is based
on the Neural Optimal Control Hierarchy (NOCH) frame-
work, proposed in (DeWolf & Eliasmith, 2011). While
broadly consistent with NOCH, the present model signifi-
cantly extends the NOCH framework by detailing the forms
of adaptation occurring in the basal ganglia and cortex. By
building in the context of the NOCH framework, the devel-
opment of expertise can also be examined in terms of its in-
teraction with the rest of the system, forcing generalizability
to be considered and providing insight into the kinds of sig-
nals processed. A simplified diagram of the model is shown
in Figure 1.
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Figure 1: Th: Thalamus; TRN: Thalamic reticular nucleus;
IL cortex: Infra-limbic cortex; A1-A3: Learned actions;
Plant: The system being controlled. Solid arrows are reg-
ular excitatory connections, hollow arrows represent learn-
ing signals, forked connections are modulatory, circular con-
nections are inhibitory, dashed connections represent sensory
feedback.

When a goal is presented to the system, the set of weights
stored in the infralimbic (IL) cortex to apply to the actions
stored in the cortex (Al, A2, A3 in Figure 1) are projected
to both the cortex and the basal ganglia. In the cortex, these
values specify the contribution of each of the actions to the
outgoing signal, which is calculated as a weighted summation
and sent out to the plant in the ‘fast loop’. In the basal ganglia
‘slow loop’ these weights are treated as saliency values for
each action, providing an initial guess at the relevancy of each
action to achieving the specified goal.

System feedback, relating the state of the plant after the
outgoing signal has been applied, is used to generate a corti-
cal error signal, representing the difference between the sys-
tem state and the goal state. The available cortical actions
also project into this neural circuit calculating feedback er-
ror, allowing the circuit to determine which action weights
to increase or decrease to reduce the error. The information



is then projected into the striatum, specifying how to modify
the saliencies of each of the actions. This error signal drives
rapid adaption in basal ganglia through a reinforcement-like
learning process (Stewart, Bekolay, & Eliasmith, 2012), tak-
ing advantage of the high learning rate in the striatum (Cragg,
Rice, & Greenfield, 1997) to attempt to reduce the error to
Zero.

The difference between the weights determined by the
basal ganglia and output by the IL cortex is calculated in the
thalamus. This difference is projected both to the cortical ac-
tion set to supplement the signal received from the IL cortex,
and to the IL cortex directly to be used as a training signal
for learning. The learning rate in the IL cortex is several or-
ders of magnitude less than that of the striatum, so the basal
ganglia is able to explore the effect of different action weight-
ings on the system without causing system instability. Only
those weights that minimize the error are held long enough to
influence the IL cortex.

Simultaneously, another cortical population learns to pro-
duce the outgoing action, using an error modulated learning
rule (MacNeil & Eliasmith, 2011). This newly learned action
is subsequently added to the set of actions available in cortex
(i.e. action ‘A4’ would be added to the cortical set in Fig-
ure 1). Consequently, the action created through slow loop
modulation to minimize error is consolidated in the cortex,
and in the future preferentially activated upon presentation
of the same goal, allowing the goal to be achieved utilizing
fewer system resources.

In this way expert actions for novel goal states can be de-
veloped by generalizing previously learned motor actions and
learning to generate the action specified by the basal ganglia
slow loop automatically in a faster cortical-cortical loop.

The basal ganglia

The basal ganglia model used here, shown in Figure 2, is a
spiking neuron implementation of the computational model
proposed in (Gurney, Prescott, & Redgrave, 2001), that has
been extended to operate in high-dimensional vector spaces.
This implementation based on neuro-anatomy performs a
type of soft winner-take-all (WTA) functionality, identifying
among its input signals those with the highest utilities. It fea-
tures a unique efficiency of execution and scalability, and ad-
ditionally matches experimental timing data (Stewart et al.,
2012). WTA functionality has direct implications for the pro-
cess of action selection, in which the basal ganglia is com-
monly implicated (Barto, 1994; Doya, 2000).

In past work, this basal ganglia model has been used with
the intent of selecting a single winner from a set of input sig-
nals (Stewart et al., 2012; Eliasmith et al., 2012), requiring
further post-basal ganglia neural circuity. Here, however, we
wish to take advantage of its nonlinear character to modulate
a set of learned actions to determine how they best combine
to complete the desired task. This necessarily involves having
more than one non-zero value output from the basal ganglia,
which, when input saliency values are very similar, is the nat-
ural behavior of the circuit.
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Figure 2: STN: Subthalamic nucleus; GPe: Globus pallidus
external; GPi: Globus pallidus internal; SNr: Substantia nigra
pars reticulata. Note that each area is a population of 100
neurons. Taken from (Stewart et al., 2010).

To appropriately do this, the population of neurons that the
cortex projects to, representing the striatum, receives a feed-
back error signal from the cortex and action saliency values
are modified based on their contribution to the current sys-
tem error. If the error signal is high in a particular dimension,
actions that contribute to that dimension have their saliency
reduced. The system does this across all dimensions, attempt-
ing to drive the error to zero.

Continuing the chess example, if there is a set of cortical
actions that represents moves the player can take at different
points in time, then by choosing a subset the player can envi-
sion the resulting state of the board. Evaluating this state, it
might be decided that it would be best for one of the pieces
to be in a different position; forming a feedback error sig-
nal. The saliency of actions moving this piece in the desired
direction would then be increased, until the output from the
basal ganglia specifies a different set of actions, whose con-
sequences can then be evaluated.

Eventually, the system will converge upon a combination
of cortical actions that minimizes the feedback error signal.
The next time the same goal is presented, the slow loop will
generate the same set of modulatory output values to again
minimize the error.

The cortex, transference, and the TRN

There are two parts of the cortex where learning occurs that
drives the ability to quickly perform actions, and to acquire
increasingly complicated actions: The IL cortex and the site
where actions are stored.

Being able to reproduce the movement generated by the
basal ganglia reduces to generating the same modulatory val-
ues to drive the cortical actions. A region in the medial pre-
frontal cortex, known as the infralimbic (IL) cortex, is an
area of the brain that is associated with the subcortical sup-
pression of activity and has been implicated as an executive
controller of habits and behavioral strategies (Smith, Virkud,
Deisseroth, & Graybiel, 2012; Daw, Niv, & Dayan, 2006). In



this model the IL cortex is responsible for learning the correct
weights to apply given a specific target, such that the cortex
can quickly drive the system to the target, without requiring
the guidance of the slower subcortical loop.

To do this, the output of the basal ganglia modulates the
weights of the cortical actions, so that it can explore the state
space to converge on a correct solution, and slowly drive the
IL cortex to represent these values. As the IL cortex learns
these weights, the guidance of the basal ganglia is required
less and less and its contribution goes to zero with the feed-
back error. In this way, the ability to generate the correct
action is transfered from the slower subcortical loop to faster
direct cortical control.
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Figure 3: A diagram of the thalamic reticular nucleus (TRN).
IL: Infralimbic cortex. w are the weights output by the IL cor-
tex. Solid arrows are regular excitatory connections, circular
connections are inhibitory. See text for details.

The thalamic reticular nucleus (TRN) plays a key role in
this process. The TRN lies between the thalamus and cor-
tex, and has been thought to prevent information from pass-
ing from the thalamus to the cortex through its inhibitory
projections onto thalamic neurons. Additionally, it has been
shown to be responsive to changes in firing pattern from its
input (Guillery, Feig, & Lozsadi, 1998). A diagram of the
TRN model presented here is shown in Figure 3. Projec-
tions from the IL cortex (w) are monitored for change above
a certain threshold (i.e. |w| > thresh). If there is a significant
change in w, which occurs when a goal is first presented or
changed but not during gradual learning, then an integrator
circuit is strongly excited and begins to fire. These neurons
send a constant inhibitory output to the thalamus, suppressing
basal ganglia output. Due to the recurrent connection these
neurons self-excite, and the inhibition of basal ganglia output
will continue unless the error signal, conveying the discrep-
ancy between the system state and the desired state, is high
enough to suppress their activity. In essence, the TRN acts
as a mechanism for waiting to see where the cortex drives the
system before letting the basal ganglia exert control.

In order to develop the ability to perform increasingly com-
plicated actions, the cortex contains feedback connections
from the outgoing action such that it is driven to learn signals
that are repeatedly output. With practice, cortical resources
(shown as “... in the Cortex block in Figure 1) will be allo-
cated to develop a representation of the novel outgoing mo-

tor command. Because the basal ganglia has an upper bound
on the number of actions that it can select at one time, as
representations develop and sets of complex actions become
available, the system will become better able to move through
action space.

As an example of these types of cortical learning, consider
a chess player who has arrived at an effective sequence of
moves for a particular situation. The first several times this is
repeated, effort is still required to ‘re-deduce’ the sequence,
but with practice it becomes easier and easier to produce the
steps. This is the IL cortex learning the correct modulatory
values and requiring less and less corrective guidance from
the basal ganglia. At this point, the sequence of steps re-
quires little attention to generate, but looking past those steps
proves difficult, due to the basal ganglia’s limit on selecting
multiple actions. With enough practice, however, applying
this sequence seems much more like only one step, reflect-
ing its consolidation as a single complex action in the cortex.
Now, the player is capable of stringing further movements on
to the end of this series, and envision more steps into the fu-
ture. With continued practice and development, the player
will become able to string together longer chains of potential
actions, and explore and evaluate consequences further and
further into the action space.

Through these two types of cortical learning the system
will develop the ability to quickly perform tasks and learn
increasingly complicated actions.

Results

For validation of our model, we perform the same empirical
data comparisons presented in (Ashby et al., 2007), looking
at striatal neuron activity, the effect of outside interference in
the basal ganglia on performance, and the response times pro-
file throughout the course of developing expertise in a task.
These comparisons test the model from the level of behav-
ioral phenomena to single cell spiking data.

Striatal dropout with extended practice

In this task, (Carelli, Wolske, & West, 1997) train rats to
press a lever when a tone is played. The rats were trained
with 70 trials each day over 18 days, and their mean response
time decreased throughout the training. Of interest here is
the change in striatal neuron activity over the course of the
experiment.

In this simulation the model is trained to respond with a
specified weighting over a set of actions when an input signal
(representing the audio tone of the experiment) is received.
As the system learns the correct response and the cortex is
trained the striatal neuron activity profile from the model re-
flects that of the single cell recording. Shown in Figure 4, the
activity of both the monkey’s striatal neurons (Figure 4 A)
and the model’s striatal neurons (Figure 4 B) shift their peak
activity from before the lever pressed to after, before fading
down to no activity at all.
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Figure 4: Striatal neuron activation throughout learning, ex-
perimental recordings on the left, model results on the right.

The role of dopamine in early vs late training

In this task, the model is compared against results from (Choi,
Balsam, & Horvitz, 2005), where rats were trained to put their
head in a compartment to receive a food reward when a tone
sounded. Throughout the experiment, three different doses
of a selective dopamine D1 antagonist were given to rats at
different points of their training. The results show that the rats
ability to learn the task is reduced proportional to the amount
of D1 antagonist injected during the early days of training,
but not at later stages in the experiment.

In (Ashby et al., 2007), injection of D1 antagonist is sim-
ulated reducing the dynamic range of the dopamine levels.
Because the dopaminergic signal in the striatum is often pro-
posed as an error signal for learning (Stewart et al., 2012),
here, we model the D1 antagonist injection by reducing the
range of values that the error signal may take on.

In the simulation the model was trained to move to a target
location. The connection weights and simulation data were
saved after every trial during normal learning, and then the
system was loaded up at various points and driven with a re-
duced range on the striatal error signal. The results here (seen
in Figure 5) show, analogous to the experimental results, that
early in training the effect on the system performance is dras-
tic, but is much reduced when the dopamine antagonist is in-
troduced later in the learning process.

Response time profile

In this task, the response times (RT) profile of the model is
compared to clinical data from (Nosofsky & Palmeri, 1997).
Humans have a stereotyped response time (RT) profile over
the course of learning a skill, where the mean RT decreases
as a power function of the amount of practice. Analyzing the
data from the model simulations (seen in Figure 6) used to
generate the striatal dropout results, we can see that the re-
sponse times profile throughout learning very clearly follows
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Figure 5: The effects of introducing D1 antagonist injections
at different points during learning. A) Experimental results
indicating the number of trials missed during a training ses-
sion. B) Model results across 7 simulation trials showing the
error introduced by decreasing the dopamine levels at differ-
ent points during learning.
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Figure 6: The response times profile of the model throughout

learning, shown following a stereotypical exponential decay

as seen in humans.

Discussion

The experimental results discussed above suggest that the
basal ganglia is initially important to complete the task, but
it becomes less involved in control of execution with further
training. The results of the neural model of expertise devel-
opment presented here match this data, in terns of shifting
spiking activity and reducing it, sensitivity to dopamine an-
tagonists, and exactly reproducing the classic exponential de-
cay curve seen in human response times.

The presented model extends the model of automaticity
proposed in (Ashby et al., 2007), incorporating both the in-
fralimbic cortex, thalamic reticular nucleus, and a complex
model of the basal ganglia. Several novel predictions are



made about the function and mechanisms used in these neural
areas, such as the basal ganglia modulating the contributions
of a set of cortical actions to outgoing control signals, and the
neural circuit underlying the TRN. Additionally, it should be
noted that the model is general enough to apply to learning
automaticy in cognitive systems, as well as in motor systems.

There is, of course, much room for expansion of the pre-
sented model. Currently the model operates under the as-
sumption of a static base set of cortical actions to build from.
An interesting direction to explore would be to incorporate
learning into these actions such that with continued exposure
to a specific set of actions resources from previously learned
populations are reallocated. Another interesting direction
would be to develop a layered model, where the weighted
output of cortical actions from one system projects to another,
specifying the subsequent layer’s goal. This is especially of
interest in the context of the NOCH framework, which pro-
poses a hierarchical abstraction of control where the premotor
areas specify end-effector movement through 3D space, and
the primary cortex is responsible for generating the correct
muscle activation commands to carry out the movement on a
limb (DeWolf & Eliasmith, 2010).

The model was built and simulated in Nengo
(http://www.nengo.ca), using leaky-integrate and fire
neurons, run in Ubuntu 12.04 on a Intel Core i7 Quad Core
running at 3.2GHz with 14GB of ram.

Conclusion

We have presented a biologically plausible neural model of
the development of expertise, featuring spiking neurons, high
dimensional feedback and control signals, a complex model
of the basal ganglia, and the ability to generalize previously
learned data.

For validation of the model we compared simulation re-
sults to single cell recordings, neural systems level experi-
mental interference studies, and behavioral data. These re-
sults demonstrate the potential of this model for providing
further insight into the development of expertise in the brain.
In particular we have shown that the model matches mam-
mal performance not only in terms of behavior, but also in
response to neurochemicals and the detailed spiking behavior
of an individual neuron. Unlike Ashby’s model, here we take
into account a much wider range of brain areas, with all of
them fully implemented in spiking neurons. We are aware of
no other model at this level of complexity.
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