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Abstract
Our empirical, neuroscientific understanding of biological motor systems has been rapidly
growing in recent years. However, this understanding has not been systematically mapped to a
quantitative characterization of motor control based in control theory. Here, we attempt to
bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as
a foundation for biologically plausible models of neural motor control. The NOCH has been
constructed by taking recent control theoretic models of motor control, analyzing the required
processes, generating neurally plausible equivalent calculations and mapping them on to the
neural structures that have been empirically identified to form the anatomical basis of motor
control. We demonstrate the utility of the NOCH by constructing a simple model based on the
identified principles and testing it in two ways. First, we perturb specific anatomical elements
of the model and compare the resulting motor behavior with clinical data in which the
corresponding area of the brain has been damaged. We show that damaging the assigned
functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in
patients with Huntington’s disease and cerebellar lesions. Second, we demonstrate that single
spiking neuron data from our model’s motor cortical areas explain major features of single-cell
responses recorded from the same primate areas. We suggest that together these results show
how NOCH-based models can be used to unify a broad range of data relevant to biological
motor control in a quantitative, control theoretic framework.

1. Introduction

Neuroscientific approaches to motor control are largely geared
toward characterizing the basic anatomical elements and
functions of the motor system. As such, they can be considered
a largely ‘bottom-up’ approach to motor control—that is,
an approach that attempts to identify the basic elements
and functions of the system as a whole. These methods
include the tracing of interconnections between different areas
[12, 41], recording single cells to investigate neural sensitivity
to different stimuli [27, 61], examining the effects of neural
activity on motor output through stimulation experiments
[71, 47] and observing lesioned animals or brain-damaged
patients [39, 88]. This focus on specific, simple functions
has resulted in theoretical models that tend to perform poorly
when tested in novel contexts [72, 46, 81]. As a result, such
models often do not provide general, unified explanations of
motor system activity.

Control theoretic methods, on the other hand, can be
considered a more ‘top-down’ approach to motor control.
These methods focus on more global aspects of motor control,
such as movement optimization according to a cost function
[86], learning actions from observation [9], the generalization
of movements such that controlled systems are robust to altered
system dynamics or environmental changes [17], and so on.
Adopting this approach usually entails generating simple limb
or full body models, and then developing effective controllers
that can perform a wide variety of movement with such models.
However, because the dynamic complexity of real systems
is often significantly greater than the generated models,
relating the developed controllers to biological systems is often
difficult. To address such challenges, additional complexity
may be added incrementally to make the controlled model
more like its biological counterpart. Only recently have
models and corresponding control systems been created that
begin to approach the complexity of a musculo-skeletal
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redundant system, such as the human body [80, 14, 54]. These
advancements notwithstanding, a more important concern for
mapping to biological systems is that the proposed controllers
are also typically not constrained by neurocomputational
considerations, and, especially given their complexity, it is
unclear which control algorithms are likely to be employed in
real neural systems.

While some researchers adopt both neuroscientific and
control theoretic approaches, there remains a tendency to focus
on highly specific aspects of one or the other, to the detriment of
their integration. Consider, for example, the incorporation of
feedback delay into control theoretic models. The inclusion of
such delay is inspired by observations that a significant amount
of time is required for visual and proprioceptive signals to
be relayed to motor areas in cortex [25, 76]. The problem
with incorporating such information in this way, that is, out
of the context of the motor system as a whole, is that it
results in misleading claims about necessary neural functions.
Specifically, while incorporating a system feedback delay is
undoubtedly a useful exercise in motor control modeling, and
it is true that cortex plays a central role in motor processing,
control loops that occur in spinal circuits or cerebellum are
also responsible for much motor activity. The amount of delay
in some sensory signals in these areas is significantly different
from that in cortex. No doubt, these systems work together
to deal with delay issues effectively. Understanding how the
neural system handles delay would thus be better served by a
perspective that encompasses most of the motor system.

We believe that a central roadblock to integrating
neuroscientific and control theoretic perspectives lies in the
lack of a common framework that relates directly to both
approaches. Several models developed in the past have
worked toward bridging this gap, including MOSAIC [37]
and MODEM [4]. However, such examples are primarily
driven by control theoretic considerations, and do not provide
a general mapping of control theory to neurobiological
structures that capture motor-related neural activity. In
particular, past work examines some specific neural system
functions, and provides control theoretic characterizations,
but these considerations sit in isolation from the majority
of the motor system. However, we believe that just as
the application of control theory to robotics control has
exposed obstacles in the practical application of control theory
[34, 69], so a general consideration of biological plausibility
should help identify the appropriate control structures for
explaining animal motor control. In short, a careful mapping
of control structures onto the neural substrate will help identify
control structures relevant to biological control, and will allow
additional constraints from experimental observations of both
normals and brain-damaged patients to be brought to bear on
proposed models.

In this paper, we present the neural optimal control
hierarchy (NOCH) framework as an initial attempt to realize
such an integration. We argue that NOCH serves to further
our understanding of the motor control system by bringing
together current neurobiological research and control theoretic
considerations into a biologically relevant framework. Our
goal is to begin to provide a systemic and functional context for

neuroscientific investigations of the neural systems involved
in motor control, while concurrently constraining the required,
and plausible, computations that can be exploited by control
theoretic models. While this integration is in early stages,
here we argue that convincing explanations of a wide variety
of neuroscientific evidence can be generated in the context of
the proposed framework. To make this case, we begin with
general considerations regarding the problem of motor control,
and discuss past quantitative approaches to understanding
the problem. We then present the NOCH framework by
demonstrating how certain of these approaches map well to
biologically identified functions and anatomical areas in some
detail. Finally, we demonstrate how NOCH-based models are
able to explain a variety of experimental observations. At
the behavioral level, we demonstrate how NOCH captures the
abnormal movements caused by both basal ganglia damage in
Huntington’s disease and various forms of cerebellar damage.
At the neural level, we show how NOCH models also capture
specific changes in spiking patterns of primary motor neurons
generated during normal movement. Being able to integrate
this breadth of empirical data with an explicit control theoretic
model that is derived from a general framework can, we
suggest, help set the stage for a deeper understanding of the
neural underpinnings of motor control.

2. Mathematical models of motor control

Control theory research provides critical insight into the
difficulties that efficient, robust control systems must
overcome. Explicitly designing and building control systems
highlight important practical and theoretical challenges, which
is critical for addressing and surmounting these obstacles.
Such an approach also offers motor control researchers’
explicit functional solutions to motor control challenges that
can direct how to empirically probe the underlying neural
systems.

In this section, we review some current techniques used
in control theory that address and overcome major problems
related to designing robust controllers for noisy, complex
systems. Specifically, we identify four important challenges
faced by any attempt to design optimal motor controllers.
In subsequent subsections, we discuss solutions to each of
these challenges that have been incorporated into the NOCH
framework.

The first challenge we consider is captured by the
observation that human motor systems are able to reliably and
repeatably execute motor actions successfully, accomplishing
a given task while rarely explicitly reproducing the details of
a particular motion. While there may be significant variation
between different trials, the task itself (e.g. reaching to a target)
is still successfully completed. This demonstrates that human
movement is robust to intrinsic system noise and external
perturbations. Optimal feedback control theory, discussed in
section 2.1, allows for this kind of highly robust control, and
as such is a basis of the motor control system model in the
NOCH.

A second major obstacle faced in designing robust
controllers is the generalization of control signals, or the
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application of previously learned knowledge to new problems.
For instance, after solving for a control signal for a complex
system that performs a reach with an arm to a target location 1
foot away, it is desirable to reuse as much of this solution
as possible when reaching to a position 1/2 a foot away.
Similarly, it is desirable to use knowledge of a learned
movement for ‘walking’ as a base for learning to run, rather
than starting from a naive state. This kind of generalization
process, however, is challenging to capture quantitatively. To
address generalization, we look to compositionality theory, as
discussed in section 2.2.

Another obstacle faced by complex motor system
controllers is the coordination of the many degrees-of-freedom
(DOF) required to successfully execute movements [84]. The
third problem we address is this central topic in control theory
research. Application of control theory to robotic systems
highlights the computational costs related to DOF, and forces
the consideration of solving such problems with limited system
resources [30, 56]. As the number of DOF increase, the
difficulty of controlling the system increases exponentially,
a phenomenon known as the ‘curse of dimensionality’. To
address this problem, focus has been placed on developing
highly efficient control algorithms for high-dimensional
spaces, and concurrently on reducing the system complexity
by physically simplifying the controlled system. Here, we
utilize hierarchical control techniques to allow the controller
to act on a lower dimensional representation of the system
[53, 54, 83], as discussed in section 2.3.

Finally, the fourth problem we consider is the high
level of noise often found in motor systems, which affects
both efferent and afferent signals, compromising command
execution and the validity of sensory feedback. In addition
to system noise, signal delays must also be accounted for to
achieve effective control. Linear quadratic regulator (LQR)
and Kalman filtering techniques are two methods that can be
employed to operate in the context of such noise and signal
delay, as we discuss in section 2.4.

In the remainder of this section, we detail technical
solutions to these challenges that we have found map well
to known anatomical and functional aspects of the biological
control system. However, at this point we only present
a technical characterization of these solutions. We return
to a consideration of the specific anatomical mapping that
comprises the NOCH after characterizing these technical
solutions.

2.1. Optimal feedback control for motor modeling

Optimal control theory has long been incorporated into models
of motor control [49]. This work has been driven by the
notion that animals execute motor actions optimally, according
to some cost function that defines the value of movement
parameters and system resources. The system then plans and
executes a movement which minimizes the cost on the way to
the goal.

In traditional control systems, the planning and execution
stages are separated. An optimal trajectory is pre-computed,
and the completion of the task is dependent on the system’s

adherence to that path during movement execution. Optimal
feedback control, however, operates differently. Planning
and execution of a movement occur simultaneously, and
a feedback control law is used to resolve moment-by-
moment uncertainties, allowing the system to best respond
to the current situation at each point in time. Additionally,
instead of explicitly controlling all system parameters during
a movement, a redundant subspace is identified, where
variability will not affect task completion, and controller
influence is exerted only over system elements moving outside
this space. This is known as the ‘minimum intervention
principle’ [84]. This principle has been empirically tested
in several cases and shown to hold for human movement [90].

The minimum intervention principle and optimal
feedback control theory are reasonable underpinnings for a
motor system that has evolved over millennia, been augmented
by learning and is constantly adapting to the environment.
Systems designed using these principles give rise to many
of the phenomena observed in human movement, such as
task-constrained variability, goal-directed corrections and a
very desirable robustness to load changes, noise and outside
perturbations [84]. For these reasons, there has been a
movement toward the use of optimal feedback control as
a driving principle behind motor control models in the
last decade [37, 74, 22, 84]. We also adopt optimal
feedback control as a theoretical cornerstone of the NOCH.
Next, we formally define optimal control and discuss several
implementation techniques.

2.1.1. The Bellman equation. To determine an optimal action
in a given state, it is important to consider not only the cost
of performing that action, but the cost of all future actions
that follow from the current state. This is difficult because the
number of future states grows exponentially the farther away
the current state is from the goal state. The Bellman equation,
which specifies the cost to move optimally from the current
state x to the target state, captures this problem by defining the
‘cost-to-go’ function v(x):

v(x) = min
u

{�(x, u) + Ex′∼p(·|x,u)[v(x′)]}, (1)

where �(x, u) is the immediate cost of performing the action u
from the state x and Ex′∼p(·|x,u)[v(x′)] is the expected cost-to-
go at the next state, x′. The expectation is taken with respect
to the transition probability distribution over all next states,
p(·|x, u), given state x and action u. The notation ‘x′ ∼’ is
used to explicitly indicate that x′ is a random variable whose
values are distributed according to the specified probability
density function. Once the cost-to-go is computed for the
current state, the minimum (over actions u) is chosen, which
selects the optimal action.

Critically, while the Bellman equation defines the cost-
to-go function, it does not specify how to solve for it, and
this has proven quite difficult to do. Most solutions have
been found only for the case where the state transitions
are linear and the cost function is quadratic (and depends
only on the state and action). Methods such as dynamic
programming, reinforcement learning and the iterative linear
quadratic gaussian (iLQG) techniques have been used to solve
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the Bellman equation for problems falling outside this class.
All of these methods are based on identifying progressively
closer approximations to the optimal control signal across
multiple trials. A method that quickly solves for optimal
controllers that overcome such limitations has been recently
suggested [85].

2.1.2. Linear Bellman controllers. It has been shown that it
is possible to solve the Bellman equation efficiently using a
linear form for problems of a specific structure [85], specified
below. To convert the Bellman equation to this linear form,
we first need to change the standard characterization of action.
Instead of considering actions as discrete events dictating
system movement through actions such as ‘go-left’ or ‘go-
right’, which are interpreted and then applied to the system’s
state transition probabilities, the controller is allowed to alter
the transition probabilities across potential next states directly.

Under this characterization, the cost of an action is defined
as the difference between the transition probabilities without
a control signal (the passive dynamics of the system), p(x′|x),
and the transition probability distribution resulting from
applying a control signal, p(x′|x, u) = u(x′|x). Specifically,
the Kullback–Leibler (KL) divergence is used to measure this
difference, which gives a cost function

�(x, u) = q(x) + KL(u(·|x)||p(·|x))

= q(x) + Ex ′∼p(·|x,u)

[
log

u(x′|x)

p(x′|x)

]
, (2)

where q(x) is the cost of remaining in the state x. To make the
KL divergence well defined, a constraint must be applied to the
control signal, specifically u(x′|x) = 0 whenever p(x′|x) = 0,
which means that the controller cannot move the system
anywhere outside the distribution of possible next states under
passive dynamics. This also ensures that the controller does
not issue a command requiring physically impossible state
transitions to the system.

To rewrite the equation more simply, we define a
desirability function

z(x) = exp(−v(x)) (3)

which will be high when the cost of a state is low, and low
when the cost of a state is high. As shown in the appendix,
this allows us to specify the optimal transition probabilities u∗

as

u∗(x′|x) = p(x′|x)z(x′)
G[z](x)

, (4)

where G[z](x) is the necessary normalization term.
The Bellman equation can now be simplified by

substituting in u∗, accounting for the normalization term, G,
and exponentiating, to give

z(x′) = exp(−q(x))G[z](x). (5)

Enumerating the set of states from 1 to n, representing z(x)

and q(x) with the n-dimensional column vectors z and q, and
p(x′|x) with the n-by-n matrix P, where row index corresponds

to x and column index to x′, we can rewrite equation (5) into
an eigenvector problem

z = Mz, (6)

where M = exp(diag(−q)P), ‘exp’ is applied element-wise
and ‘diag’ transforms the vectors into diagonal matrices.
This problem can now be solved using standard eigenvector
methods, or through specially developed methods such as
Z-iteration, described in [85].

Conceptually, linear Bellman controllers (LBCs) are
important because they demonstrate how large, parallel
systems like the brain may be able to quickly compute optimal
control signals for complex control problems. Notably, we
have said little about how the cost function is generated, which
allows much flexibility is specifying in what way the control
signal is optimized. Speed constraints, accuracy constraints,
etc may be included naturally into such a formulation. In
addition, because the controller picks an optimal set of
transition probabilities, the exact control signal provided may
change across different trials, as seen in biological systems.
We consider other biological constraints in more detail later,
in subsection 3.2. For present purposes, we take it that LBCs
represent a solution to the general problem of optimal control
which has the potential to be biologically plausible, addressing
the first of the four control challenges we introduced.

2.2. Compositionality of motor commands

The second control challenge we identified is the
generalization of learned control signals to novel
circumstances. Learning movements that effectively and
efficiently complete various goals can be a very costly
process, in terms of both computational power and time.
It is therefore desirable to be able to generalize learned
movements to unlearned but similar movements. However,
identifying a good procedure for combining a set of learned
movements, or ‘components’, to effect a desired trajectory
has long posed a significant challenge. Recent developments
applying LBCs, however, have provided a means of quickly
and cheaply creating optimal control signals from previously
learned optimal movements.

Specifically, compositionality of commands specifies a
method for weighting and summing movement components
by expressing movements in terms of quickly calculated
state desirabilities described by equation (3). Once
such a desirability is determined, the LBC determines a
corresponding control law that specifies how to move from
a start state such that the target is reached optimally. The cost
resides in computing such control laws. However, if we can
decompose such functions into a set of learned, but widely
used basis functions, computation of the control laws can be
simplified.

Thus, using a established set of basis movement
components that gives rise to a wide variety of desirability
functions and control laws can allow any novel movement
problem to be restated as a problem of recreating the
corresponding desirability function through a weighted
summation of the available component functions. A
determined set of weights can then immediately be applied

4



J. Neural Eng. 8 (2011) 065009 T DeWolf and C Eliasmith

to find corresponding control laws to create an optimal control
signal for the new movement. In this way, knowledge of
similar movements can aid in the execution of novel actions.

Formally, the compositionality of optimal commands can
be described as follows. Let K be a collection of optimal
control problems with the same dynamics, the same cost
function and defined over the same set of system states, where
the only difference between the problems is the target. Let
zk(x) be the desirability function for the problem k, and
let u∗

k(x) be the corresponding optimal control law. The K
problems for which a u∗(x) is already defined are termed
component problems, and their optimal control laws can be
used to construct laws for new problems that fall into the same
class.

For a given desirability function, z(x), the goal is to find
weights wk such that the desirability function can be written
as

z(x) =
K∑

k=1

wkzk(x). (7)

The weights wk represent the ‘compatibility’ between the
control objective of the component problems, zk(x), and the
control objective of the composite problem, z(x). These
weights can be found by projecting each component onto the
new desirability function.

The composite control law u∗ can also be expressed
as a state-dependent combination of control laws u∗

k , using
component problems k where the desirability of the state x is
greater than zero, or zk(x) > 0. Starting with equation (4),
substituting equation (7), and introducing G[z](x) in both the
denominator and numerator gives

u∗(x′|x) =
∑

k

wkG[zk](x)∑
s wsG[zs](x)

p(x′|x)zk(x′)
G[zk](x)

, (8)

where the normalization term for the optimal action is the sum
(over s) of the normalization terms of all the components.
In this form, the first term is the state-dependent mixture
weight, which can be denoted mk(x), and the second term
is distribution over optimal actions, i.e. u∗

k . Rewriting
equation (8) with these terms, the optimal control law for
composite problems becomes

u∗(·|x) =
∑

k

mk(x)u∗
k(·|x). (9)

For more details, please see the appendix.
This form of the control law is useful because it

demonstrates how optimal control components can be reused
for novel actions. Specifically, the control components can be
reused by rapidly computing mk(x), which is a simple function
of the weights identified by decomposing the desirability
function. In general, such an approach shows how a control
system can take advantage of past solutions when similar,
though possibly novel, control problems are encountered.
The efficient computation of such required functions by
summing over a basis has been shown to be biologically
plausible in several past applications [68, 19, 64, 42, 23].
In systems operating under variable dynamics or ever-altering
environments, as animals do, it is necessary that the basis

set of actions be extensive. It has been suggested that such
a set of basis functions is exactly what humans develop
during their early years [1, 57, 67], and there has been much
promising research into analogous techniques in robotics for
the development of effective action sets for robots [13, 18, 66].

2.3. Hierarchical control systems

The third challenge for control systems that we consider is
the ‘curse of dimensionality’. The curse of dimensionality
refers to the exponentially increasing difficulty of solving for
optimal trajectories for a system as the DOF increase [79].
Hierarchical system architectures can provide a method of
effectively addressing this increased complexity by reworking
the system representation into a lower dimensional space,
where optimal trajectories and control signals can be efficiently
planned. These low-dimensional control signals can then be
used to define the commands in the higher dimensional spaces.
If the mapping between the lower and higher dimensional
spaces is (even approximately) known, this approach affords
an effective means of controlling highly complex dynamical
systems in an efficient manner.

In general, a control hierarchy is built in a pyramidal
fashion, where the highest level has the fewest dimensions,
and the lowest level has the most. Once a high-level signal
has been identified, it is used to constrain the lower levels
of the hierarchy, thus restricting the range of the low-level
state space to be searched for a solution. Even constrained,
however, the additional DOFs in the lower level system space
may allow a multitude of solutions that respect the higher level
command, due to the possibility of redundant configurations.
For example, when controlling an arm to reach to a specific
target we may identify a high-level path for the tip of the finger
in three dimensions. However, there are endless possible
shoulder, elbow and wrist configurations that will realize a
given finger tip trajectory. To determine the appropriate
optimal solution for every level of a hierarchy, each level of the
hierarchy must hold a cost function which describes preferred
movement in that space.

Formally, a hierarchical system can be described as
follows. As in a standard dynamical system, the plant, or
underlying system, dynamics are characterized with a low-
level system representation

ẋ(t) = a(x(t)) + B(x(t))u(t), (10)

where x ∈ R
nx is the system state vector, u ∈ R

nu is the control
vector, a(x) are the (possibly nonlinear) passive dynamics and
B(x)u are the control-dependent dynamics. This is a control-
affine system formulation, standard in control theory, where
the system dynamics are linear in terms of the control signal,
u, but nonlinear with respect to the state, x.

We can then define the high-level state, y, as a function of
the low-level plant state:

y = h(x), (11)

where h transforms the low-level system state x into a reduced
representation, y. It is important to identify a high-level
state space that captures the salient features of the low-level
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dynamics, but has fewer dimensions in both the state and
control space.

Let us define the high-level dynamics as

ẏ(t) = f(y(t)) + G(y(t))v(t), (12)

where f and G are the passive and control-dependent dynamics
on the high level, and v is the high-level control signal. To
get the high-level transformation of the actual dynamics of the
low-level system, we differentiate equation (11):

ẏ = H(x)(a(x) + B(x)u), (13)

where H(x) = ∂h(x)/∂x is the Jacobian of the function h. By
equating the actual and desired high-level dynamics

H(x)a(x) + H(x)B(x)u = f(y) + G(y)v, (14)

the dynamics on both sides is defined. If we assume that
a high-level control signal v has been issued, the goal of
the low-level control signal u(x, v) is to match the actual
(equation (13)) and desired (equation (12)) high-level system
dynamics.

There are two standard methods for updating the high-
level passive dynamics: explicit and implicit modeling. In
explicit modeling, analogous to open-loop control, the high-
level has a model of the low-level system dynamics for
simulating the state of the plant. The simulation feedback is
used to update the high-level control signal, which stresses the
importance of having an accurate low-level dynamics model,
as no actual state feedback is received from the lower level.

In implicit modeling the high-level control does not model
the low-level system dynamics, rather it has online access
to the transformed system plant state, H(x)a(x). With no
discrepancy between f(y) and H(x)a(x) in this approach,
equation (14) becomes

H(x)B(x)u = G(y)v. (15)

The implicit modeling method allows the high-level controller
to take advantage of the plant’s exact passive dynamics while
still operating on a lower dimensional system.

By constructing similar links between many levels of a
hierarchy, a very high-dimensional plant may be controlled
in a reasonably low-dimensional control space. Issues of
redundancy are thus taken care of at each level of the
hierarchy, through the use of level-specific control constraints.
This provides an effective means of handling the curse of
dimensionality, while also matching the known structure of
biological motor systems, which we discuss in more detail
shortly. First, however, we consider the fourth challenge for
optimal control—noise.

2.4. LQR and Kalman filters

Noise in a system can be very damaging to the effectiveness of
a controller, by both interfering with control signals causing
the system actuators to receive an incorrect command, and
by pervading the sensory feedback signal. Sensory feedback
can be distorted either at the sensors themselves, or during
transmission to the controller. In any case, such distortions
mislead the controller as to the current state of the system.

Perhaps the best-known method for accounting for such
expected distortions is the use of LQR. LQR accounts for the
effects of noise interference on efferent signals by modeling
the system noise on the pathway, and producing compensatory
signals to negate its effect. Kalman filters play an analogous
role on sensory feedback signals, attempting to account for and
cancel out the noise resulting from sensor and afferent pathway
distortions. Both LQRs and Kalman filters are dependent
on having accurate models of the system dynamics, such
that unwanted features can be attributed to noise rather than
improper control signals. In addition, both methods assume
Gaussian noise and linear dynamics.

Formally, the effects the desired control signal, u0, will
have on the system state, x0, are modeled, as well as the system
output, y, in the ideal situation of no noise or external forces
being applied. The actual system state x(t) at time t can then be
compared to the desired system state x0 and used to define the
error, δx(t) = x(t) − x0, termed the state perturbation vector.
Once δx(t) is defined, a control correction vector δu can be
generated using a linear approximation of the system [59, 5].
This correction signal can then be applied to account for the
noise in the system and allow accurate implementation of the
desired commands in the face of noise. We do not derive LQR
or Kalman filters here, as they can be found in many standard
textbooks.

While we suspect that the brain uses more sophisticated
methods for handling noise than the linear ones mentioned
here, we have found little biological evidence that suggests
which such methods may be most appropriate. For present
purposes, we adopt these methods for simplicity, but feel that
this is one respect in which the NOCH stands to be significantly
improved.

3. Neural optimal control hierarchy

To this point, we have discussed several quantitative methods
for generating optimal control signals. We have chosen
these specific methods because of their biological plausibility,
though we have not yet made the case that they are biologically
relevant. In this section, we describe specifically how
we believe these methods can be employed to capture the
biological functions of the main brain areas involved in motor
control. We demonstrate how this mapping is effective
at providing behavioral and neural level explanations in
section 5.

The NOCH framework is a product of integrating control
theory with neuroscientific evidence related to motor control.
In developing the NOCH we have focused on assigning
function to neural structures such that they are consistent with
results from current experimental studies and overall system
functionality. In addition, we have attempted to identify
underlying computational principles that capture the role of
the various neural structures in the motor system. In short, the
NOCH identifies multiple components that carry out processes
in parallel, and exploits cortical circuit structure and specific
neural mechanisms to underwrite these processes. However,
any such characterization will remain hypothetical for the
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Figure 1. The NOCH framework. This diagram embodies a high-level description of the central hypotheses that comprise the neural
optimal control hierarchy (NOCH). The numbering on this figure is used to aid description, and does not indicate sequential information
flow. See the text for details.

foreseeable future, as the neuroscientific evidence is seldom
irrefutable regarding neural function.

To be clear, we take it that the NOCH is an evolving
framework which currently over-simplifies the functions of
many of the relevant anatomical areas. Given the lack of
alternative frameworks, however, these simplifications do
not prevent the NOCH from usefully contributing to our
understanding of how control theoretic functions map to the
neural substrate. In the remainder of this section, we describe
each of the main elements of the NOCH, appealing to both
control theoretical and neuroscientific characterizations of
motor control. We begin with a brief description of all the
elements of the NOCH and then discuss central aspects of the
framework in more detail in subsequent sections.

3.1. NOCH: a brief summary

A block diagram of the NOCH framework is displayed in
figure 1. The numbering on this figure is used to aid
description, and does not indicate sequential information flow.
For additional details see [20].

3.1.1. Premotor cortex (PM) and the supplementary
motor area (SMA). The premotor cortex (PM) and
the supplementary motor area (SMA) integrate sensory
information and specify target(s) in a low-dimensional, end-
effector agnostic, and scale-free space. End-effector agnostic

means that at this stage, no lower level dynamics for any
limbs or body segments that might carry out the action are
considered. It is strictly a high-level space, which may specify
control signals in terms of, for example, 3D end-point position.
Scale-free refers to the fact that solutions found for LBCs (see
section 2.1.2) for optimal movement in an area of a particular
size can be subsequently manipulated by rescaling, due to the
fact that this high-level space is end-effector agnostic [20].

An example of the PM/SMA function in arm reaching
begins with the planning of an optimal path from current hand
position to target, which incorporates information from the
environment, such as obstacle position. Previously learned
motor components (i.e. synergies) are used as a basis, and
linearly combined through weighted summation to compose
the desired movement, as described in section 2.2. If the
desired movement cannot be created from the available set of
basis synergies, the system may explore new paths through
space to determine a satisfactory trajectory. These areas
act as the highest levels in a motor control hierarchy (see
section 2.3) that proceeds through M1 and eventually to muscle
activations.

3.1.2. Basal ganglia. Recently, the basal ganglia has been
characterized as a winner-take-all (WTA) circuit [35], as
responsible for scaling movements or providing an ‘energy
vigor’ term [89], and as performing dimension reduction
[6]. Spiking neuron implementations that employ the
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same methods of neural simulation employed here (see
section 4.2) have been used to construct a WTA circuit model
that has strong matches to neural timing data [78], and can
incorporate both movement scaling and dimension reduction
[87]. Consequently, in the NOCH, the basal ganglia is taken to
weight movement synergies for the generation of novel actions,
perform dimension reduction to extract the salient features of
a space for training cortical hierarchies and developing new
synergies and scale movement during directed action.

3.1.3. Cerebellum. The cerebellum is widely regarded as
an adaptation device, performing online error correction, and
is thus often taken as the site for the storage of internal
models [21, 7, 93, 48]. In the NOCH, the cerebellum
is taken to play a similar role. While in the cortex
movement synergies stored are for well-learned environments
and situations operating under normal system dynamics, the
cerebellum stores synergies that allow the system to adapt to
new environments and dynamics, and learn or recall situations
to adapt current movements appropriately based on sensory
feedback. Additionally, the cerebellum plays a central role
in correcting for noise and other perturbations, correcting
movement errors to bring the system to target states as specified
by higher level controllers. Consequently, the cerebellum is
also responsible for control of automatic balance and rhythmic
movements, such as locomotion.

3.1.4. Primary motor cortex. In the NOCH, the primary
motor cortex (M1) is understood as containing the lower levels
of a hierarchical control system. The primary motor cortex
thus acts as a hierarchy that accepts high-level commands, such
as end-effector force in 3D space, from the PM and SMA, and
translates them through hierarchical levels to muscle activation
signals. The main functional role of this hierarchy is to map
high-level control signals to low-level muscle activations in
an efficient manner, as specified in section 2.3, allowing the
PM and SMA to develop control signals in a reduced, lower
dimensional space. The synergies at each level are assumed
to change over time, as skills are developed or lost.

3.1.5. Brain stem and spinal cord. For our purposes, the
brain stem acts as a gateway for efferent motor command and
afferent sensory input pathways. Here, descending commands
from different neural systems in the NOCH can be combined
and passed on to the spinal neural circuits and motor neurons
for execution.

3.1.6. Sensory cortices (S1/S2). The primary sensory
cortex (S1) is used for sensory feedback amalgamation and
processing in the NOCH, serving to produce multi-modal
feedback which is then relayed to the motor areas such as
M1 and the cerebellum. Both of these systems are taken to
work in lower level, higher dimensional spaces, and are thus
in a position to incorporate appropriate feedback signals into
the working motor plan. The secondary sensory cortex (S2) is
responsible for transforming the information from the primary
sensory cortex into high-level sensory feedback information,

as described in section 2.3, which is then relayed to the
high levels of the M1 hierarchy, as well as PM and SMA.
Additionally, S1 and S2 perform a noise filtering on sensory
feedback, combining different types of feedback to arrive at
the most reliable prediction of body and environment state,
analogous to the function of a Kalman filter (see section 2.4).

In the remaining subsections, we provide further
discussion and justification for the characterizations presented
in the preceding brief outline.

3.2. Hierarchies in the motor control system

One notable feature of brain structure that has proven broadly
salient to neuroscientists is its hierarchical nature. The best-
known example of this structure in neuroscience is the visual
hierarchy. For object recognition, this hierarchy begins with
the retina, and proceeds through thalamus to visual areas V1
(primary visual cortex), V2 (secondary visual cortex), V4 and
IT (inferotemporal cortex) [24].

In many hierarchical models of visual cortex, each higher
level attempts to build a model of the level below it. Taken
together, the levels define a model of the original input data
[38]. This kind of hierarchical structure naturally allows the
progressive generation of more complex features at higher
levels, and progressively captures higher order relationships
in the data. Furthermore, these kinds of models lead to
relations between hierarchical levels that are reminiscent
of the variety of neural connectivity observed in cortex:
feedforward, feedback and recurrent (interlayer) connections
are all essential. Such models have also been shown to generate
sensitivities to the input data that look like the tuning curves
seen in visual cortex when constructing models of natural
images [51, 63].

The motor system is also commonly taken to be
hierarchical [82, 37]. There is a strong case to be made that
the motor hierarchy can be considered the dual of the visual
hierarchy [82]. Typically, however, we think of information as
flowing down rather than up the motor hierarchy. This duality
is displayed in figure 2. As an example of information flow
through a three-layer implementation of this system, suppose
you would like to move your hand toward a target object. First,
the goal state is identified and passed to the cortical hierarchy.
This information arrives at the top layer of the hierarchy,
which operates in 3D end-effector space (the PM/SMA). The
controller at this level identifies the direction the hand needs to
move to reach the target optimally, and generates the 3D force
control signal to move the hand along that path. This 3D force
signal, however, does not tell the system what torques to apply
to move the arm joints appropriately. This is the job of the
controller of the second layer of the hierarchy (in M1). The
lowest level of the hierarchy is then responsible for taking the
joint torque control signal of the second level and generating
the muscle activation commands to effect the specified joint
movement, which is then applied to the arm itself (through
M1 and cerebellum). While useful for explanatory purposes,
we do not expect the hierarchy to pick out these particular
hierarchical levels. Instead, we expect the actual hierarchy
in M1 to be defined over spaces spanned by motor synergy
bases that are useful for movement. Since we do not have a
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Figure 2. An illustration of the dual relationship between motor
control and perception. In both cases, there is strong evidence for a
hierarchical organization. Computational descriptions of both
processes can consistently identify lower dimensional spaces and a
more complex representational basis, as we move higher in the
hierarchy. However, the typically characterized dominant direction
of information flow is reversed. Hierarchical motor control models
are much less common than hierarchical perceptual models, but the
duality is striking both conceptually and mathematically [82].

description of such spaces, we use standard identifiable control
variables as a stand-in in our subsequent models.

In short, as the motor command becomes more and more
specific to the particular circumstance (e.g. including the
particular part of the body that is being moved, the current
orientation of the body, the medium through which the body is
moving, etc), lower level controllers are recruited to determine
the appropriate control signal for the next level as the command
descends the hierarchy. Ultimately, this results in activity in
motor neurons that cause muscles to contract executing the
desired motion.

In the NOCH, the hierarchical transformations from the
top level to the bottom are divided into a series of stages.
While mathematically it is possible to amalgamate all of
the transformations, and reduce the hierarchy to a two-level
structure, multiple state spaces allow the control system to
easily apply a number of different types of constraints on
motor actions. For example, consider a system where the top
level of the hierarchy represents movement in a 3-DOF end-
effector space, the second level represents 7-DOF joint space
and the bottom level represents the 27-DOF muscle space of
the arm. With such a configuration, it is straightforward to
specify constraints in joint space (such as holding the elbow
angle constant while reaching); the cost function of the second
layer is simply adjusted to make certain movements highly
expensive. In a two-level hierarchy, application of such a
constraint is significantly less intuitive, as it must be done in
either end-effector or muscle space.

Importantly, from a theoretical perspective, the
decomposition of the problem into a hierarchy plays a similar
computational role as in the visual system. Specifically, this
decomposition allows nonlinearities to be interleaved with
linear mappings to capture sophisticated relationships between
the highest and lowest levels of analysis in a resource efficient

manner. In both cases, the nonlinear mappings between linear
representational spaces (which themselves may be defined
over nonlinear bases) allow sophisticated transformations to
be performed at each level of the hierarchy.

Given the utility of motor hierarchies, it is natural to ask
what kinds of neural representations we would expect at each
level of the hierarchy. In the context of our previous discussion
(e.g. section 2.2), this amounts to asking for the components
that form the basis for the control space, which can be summed
to create control signals. A natural answer to this question is
the now pervasive concept of a ‘motor synergy’.

A synergy is a combination of movements across space-
time. Synergies give rise to two very useful features for motor
controllers, providing both movement components that can be
used to simplify the creation of more complex movements,
and a translation between lower and higher dimensional
representations. There is good evidence that the motor system
optimizes the control of synergies, rather than the actuation
of individual muscles, both from experimental studies [8] and
model simulations [44].

Consequently, we take the fundamental organization
of the NOCH to be hierarchical, and the basic units of
representation to be motor synergies. Neither of these
assumptions are novel. However, in the context of the entire
framework, they provide a general means of relating optimal
control methods and the neural representation underlying the
NOCH described in section 4.2.

3.3. The motor cortices: M1, PM and SMA

Numerous studies have linked the neural activity of the motor
cortices to a vast array of different movement parameters,
ranging from arm position to visual target location to joint
configuration [84]. In the NOCH framework, the descending
output signals generated through the cortical hierarchy are in
terms of muscle activation, operating either directly on motor
neurons, or by driving or modulating the inter-neurons and
neural circuits of the spinal cord. Muscle activation as cortical
output gives rise to all of the correlations observed in the above-
mentioned studies, and can be justified from an evolutionary
vantage as well [84].

The assumed hierarchical structure of the motor cortices
allows for abstraction away from this intrinsically high-
dimensional space to a lower dimensional representation such
that the ability to perform effective, efficient control is not lost,
and a mapping down to muscle activations is still available.
The hierarchical structure of the motor cortices is divided into
two main elements in the NOCH, the premotor cortex (PM)
and supplementary motor areas (SMA), which generate an
end-effector agnostic, scale-free, high-level control signal, and
the primary motor cortex (M1), which receives the output from
the PM/SMA, and transforms the signal into a limb-specific
set of muscle activation commands to carry out the specified
high-level control signal.

The functional division of the motor cortices in this
manner allows for the generation of a high-level control
signal that can be executed by any available or desired end-
effector without reformulating the high-level trajectory. This
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type of high-level control matches experimental observations
noting that high-level path planning, such as handwriting
style, are preserved regardless of the end-effector chosen for
implementation [93].

3.4. The cerebellum

In the NOCH, the cerebellum is modeled as three anatomical
areas, each responsible for a function: the intermediate
spino-cerebellum for error correction, the lateral cerebro-
cerebellum for maintenance of internal models and the vermis
for control of automatic and rhythmic action. This functional
assignment arises from examining neuroscientific pathway
tracing studies of the input and output cerebellar connections,
the neuroanatomical structure of the cerebellum and the
required control theoretic functionality. The cerebellum
constitutes only 10% of the total volume of the brain, but
contains more than half of its neurons [31]. Additionally, the
neural architecture of the cerebellum is remarkably uniform,
with a very regular structuring repeated throughout the area
[33]. These features suggest that the cerebellum is ideal
for massively parallel computations, and hence the NOCH
employs it to meet the demands of robustness, generalizability
and feedforward predictive modeling.

When the execution of a motor command results in
unexpected movement, or otherwise does not effect the
desired outcome, the cerebellum is responsible for providing
corrective signals to the system. These errors break down into
two main categories, caused by either unexpected external
forces, or by inaccurate models of the system dynamics. In
both cases, a short-term solution can be enacted through error
integration [3], analogous to the error correction signal an
LQR mechanism provides (see section 2.4). Indeed, biological
modeling simulations support this system as a site for a neural
implementation of error correction [33, 50]. The intermediate
zones of the cerebellum are part of the spino-cerebellum,
named for the area’s strong connectivity with the spinal cord
sensory feedback pathways. Neural activity is relayed from
the intermediate cerebellum through the interposed nuclei out
to the motor cortices, specifically to areas which influence the
neural activity of the lateral spinal tracts, which house motor
neurons responsible for distal muscle control, suggesting it as
a likely candidate for motor error correction based on system
feedback.

This functionality is supplemented by the second main
responsibility of the cerebellum, the storage and maintenance
of internal models. These include predictive models that
can be used for feedforward control, which are important
for explicit high-level control (see section 2.3). In addition,
such models can be employed to adapt motor actions under
a given set of environmental conditions. To perform these
functions, the cerebellum requires an efferent copy of the
motor plans that are sent to descending pathway for execution.
In combination with the massive sensory feedback projections
the cerebellum receives, corrective signals can be generated,
and tested on the working system. These can then be used to
correct cortical motor synergies or develop internal models for
context-dependent adaptation, in the case where system error

is consistent and predictable. These functional requirements
match the input/output structure of the cerebro-cerebellum,
located in the lateral cerebellum, which has massive reciprocal
connections with the cerebral cortex, making it an ideal site
for the integration of internal model signals into generated
motor commands, as well as the training of motor synergies
for persistent errors.

The third major functional responsibility assigned to the
cerebellum is the control of balance and rhythmic movements.
Damage to the cerebellum has been associated with impaired
locomotor performance and balance, and it is proposed to
play a role in the generation of rhythmic movements, dynamic
regulation of equilibrium and adaptation of posture and
locomotion through practice [60]. The assigned biological
correlate of this functionality is the vermis in the cerebellum,
which maintains strong spinal feedback connections and
projects through the fastigial nuclei to systems influencing the
activity of the medial tracts of the spinal cord. Additionally,
experimental studies have confirmed vermis activity to be
strongly associated with automatic and rhythmic movements,
such as balance and locomotion.

3.5. The relation between cerebellar and cortical control

The motor cortices became renowned for being deeply
involved in the control of motor actions from early stimulation
experiments presented in [65] in 1950. While it is indisputable
that the motor cortices play an integral part in motor control,
it is also important to consider that they appeared relatively
late in the evolutionary development of the brain. There are
many species that have little-to-no cortex, but are very skilled
at carrying out motor actions arising from seemingly simple
interactions of spinal neural circuits [45, 43, 40].

For example, animals such as the salamander or lamprey
are capable of performing very efficient and effective
locomotive movements, which can be characterized solely
through the activity of spinal motor nuclei and circuits [16].
As the ability of animals to produce more complex, dexterous
movements increases across species, the respective size of
their cortices, and cortical areas dedicated to motor control,
as well as the number of cortico-spinal projections, increases
[55, 11]. These observations provide some clues about the
respective roles of the long-standing cerebellum versus the
relatively recent motor cortices. The characterization of
cerebellar and cortical motor function in the NOCH framework
is based on the above observations, the connectivity of each to
spinal neurons and circuitry, biological modeling results and
localized damage/lesion studies.

For instance, pathways from the cerebellum relay to the
spinal cord through the fastigial nucleus and project to medial
spinal tracts, where motor neurons and interneuron circuits
with broad projections to proximal muscle groups are housed
[10]. The resulting co-activation of motor neurons offers a
type of intrinsic muscle synergy structure to the cerebellum,
coordinating the activation of sets of proximal muscles [32],
and acts to provide a base set of features in muscle space
that are useful for simplifying the creation of complex actions
(see section 2.2). Dense connectivity with the brain stem
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[26], strong sensory feedback from ascending spinal pathways
[10], a recognized error correction functionality [31] and
results from damage studies [60] suggest that the cerebellum
is a centre for control of larger proximal actions, specifically
balance and rhythmic movements such as locomotion. These
features integrate well with the characterization of cortical–
cerebellar interactions as being one of more controlled and
volitional action from cortex being corrected and supported
by cerebellum.

The motor cortex holds strong connections to spinal
neurons controlling proximal muscles, but is also responsible
for the vast majority of projections to the lateral spinal tracts
[70], where motor neurons controlling distal muscles are
housed. Notably, the control effected by these neurons is
far more localized than that of the medial motor neurons
controlling proximal muscle activation [32]. The information
processing ability of cortical hierarchies discussed in the
last section, along with the projections to more individually
actuated distal muscles, makes the motor cortices a natural
complement to the cerebellar processes, allowing controllers
to operate in abstracted muscle spaces, enabling efficient,
dexterous control of high-level system parameters.

In the NOCH framework, the control provided by the
motor cortices is tuned to operate under a standard set of
environmental and operating conditions. The negotiation
of external forces and load or system parameter changes is
provided by additional processing centers in the cerebellum.
The cerebellum has long been assumed to provide storage
of internal models used for feedforward/predictive control
[93, 48, 21], ideal for the adaptation of motor commands
trained for general control problems. When the system
dynamics or environment are altered and performance
declines, the control signals from the motor cortices are
dynamically adapted through the incorporation of cerebellar
output, and the resulting amalgamation is sent to the
descending pathways. The function provided by the
cerebellum in this case is analogous to that of the LQR, in
that it attempts to account for deviations of the system from
the ideal movement trajectory (see section 2.4).

Additionally, the corrective signal from the cerebellum
serves to train the motor cortex if applied for an extended
period of time. This is the case where the environmental
or system dynamics have been altered, such as when one
is at sea for a long time and adapts to the swaying of the
boat, or when the efficacy of a limb is reduced during a
long-term injury. This process supports modifying stored
cortical synergies which may be more efficient than constantly
applying the same adaptation to descending control signals
under such circumstances.

3.6. The basal ganglia

The basal ganglia have long been implicated in the processes
of action selection [28, 2, 58], with clear application to
motor control. A recent spiking neuron implementation [78]
of a biologically plausible model of the basal ganglia [35]
provides a neural implementation of a winner-take-all circuit.
This implementation is able to quickly determine a winner

among large numbers of input, while scaling input values
and matching a wide variety of neural data. Results from
this implementation have shown that with slightly altered
dynamics this circuit can perform thresholding and similarity
evaluation. In the NOCH, the action selection functionality
of such a circuit is employed for composing novel actions
from movement synergies. Specifically, the basal ganglia is
assumed to compute the similarity between a desired action
and the available synergies, and generate a set of normalized
weights that determines the composition of the synergies and
scales the movement. Each of these functions is implemented
by these past models of basal ganglia.

Interestingly, these same models can be understood as
performing dimensionality reduction [87]. As discussed
above, optimal control is more efficient in low-dimensional
spaces. However, to move from the high-dimensional muscle
space to a lower dimensional synergy space for efficient
control, a hierarchy must be established during development.
Understanding the basal ganglia as performing dimensionality
reduction lends it a natural role to play in identifying prominent
features of a space. Its broad cortical connectivity, central
location and known role in training cortical connections [89]
places it in an ideal position to train muscle synergies on
the various cortical hierarchical levels, by identifying salient
features of a space, and feeding them back to cortex.

Considerations consistent with this functionality are found
in infant studies of ‘motor babbling’, which is thought to
perform a similar function to verbal babbling; it supports
building up a set of movement components that can be
combined to create more complex actions [77, 66]. Initial
motor actions would be in a very high-dimensional muscle
space, though controlling a much lower dimensional action
state space. Dimension reduction in the basal ganglia is highly
useful for developing a hierarchy, training a low-dimensional
analog of the higher dimensional space for efficient control.

This dimension reduction through development is taken
to be employed until a hierarchy has been created where
movements can be efficiently planned without leaving any
critical DOFs unspecified on lower levels. The definition
of a ‘critical DOF’ is task dependent, as some movements
may be concerned only with hand position, while others
may also constrain joint angles or muscle activation. This
variety suggests that control may influence various levels of
the hierarchy, depending on the type of action being carried
out.

Notably, the proposed functions of the basal ganglia are
consistent across levels of the motor cortex hierarchy. In
addition, this functionality is important for development, but
not critical to the system’s real-time operation. That is, basal
ganglia under this characterization is not explicitly involved in
action selection much of the time. This view is supported by
lesion/damage studies in which subjects have had a bilateral
pallidectomy (i.e. there are no output pathways from basal
ganglia), but show no marked motor deficiencies, except those
relating to the proper scaling of movement and performance
of novel movement sequences [89].

In sum, the basal ganglia is proposed to be responsible
for composing novel actions from motor synergies, scaling
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movements and training synergies for the cortical hierarchy.
While speculative, this characterization is supported by both
experimental studies and model simulation results that suggest
that the basal ganglia is largely responsible for these processes.

3.7. The NOCH: a summary

In the preceding two sections, we identified four major
technical challenges for developing control systems and
suggested quantitative methods for addressing each challenge.
Then, more speculatively, we provided a high-level
characterization of the mammalian motor control system,
identifying plausible functions for the main anatomical
components of the system. In doing so, we suggested how the
various technical solutions introduced earlier mapped into this
anatomical and functional characterization of the biological
motor system.

While this discussion has remained largely abstract,
and our understanding of the details of the neurobiological
system is largely incomplete in many cases, we believe that
proposing large-scale characterizations such as the NOCH are
useful for directing future research. This is because such
characterizations can help identify assumptions that must be
made in order to complete a functional specification of the
system. In doing so, it becomes clear where our theoretical
and experimental understanding is the weakest. However, it
may also be the case that various problems (e.g. delay) may be
more simply characterized in the context of the entire system
than if they are viewed in isolation.

In any case, the utility of such a view must be grounded
in specific applications of its principles. To this end, in the
remainder of this paper we present simulations based on the
principles of the NOCH. First, we reproduce normal human
reaching trajectories and velocity profiles with a two-level
hierarchical control system, that includes motor cortices, basal
ganglia and cerebellum. We then lesion the system to impair
specific functionality of the model and compare the results
with clinical data from studies of patients where corresponding
neural structures have suffered physical trauma. Second, we
employ the same controller in a neural simulation environment
and examine the spiking patterns of neurons in the model’s
primary motor cortex, as it controls a 2D arm. We compare
the responses of single neurons in the model with neural
recordings from monkeys performing the same task. These
two examples help elucidate the utility of the NOCH, and
demonstrate methods of connecting the framework to both
behavioral and neurophysiological results.

4. Simulation methods

In this section, we describe the details of the simulations whose
results are presented in the next section. We have chosen
two different kinds of simulations to demonstrate different
applications of the NOCH. In the first instance, we provide a
somewhat high-level simulation of arm control, to explore the
functional contributions of various components of the NOCH.
By performing lesioning experiments on this model, we are
able to determine if the proposed NOCH mapping of control

function to anatomy captures gross functional constraints. In
the second instance, we provide a detailed mapping of motor
control signals in M1 to specific neural firing patterns during
arm movement. This allows us to determine if the NOCH
can be used to capture the details of highly nonlinear neuron
responses with a simple mapping between functionally derived
control signals and single spiking neurons.

4.1. Human arm reach

To reproduce human arm reaching movements, we developed
a two-level hierarchical control structure that accepts target
positions in Cartesian coordinates, and optimizes arm
movement in the task space. We perform simulations
of standard behavioral experiments by running the model
through eight reaching movements from a constant initial
position to target locations placed in a circle around the
starting position of the hand. The control signal is
generated through compositionality of movements, by defining
a weighted summation on predefined ‘learned movements’, or
movement components, calculated a priori using a LBC (see
section 2.1.2).

This implementation thus combines the proposed
functionality of the motor cortices, the basal ganglia and
the cerebellum. Specifically, the high-level control signal
in these simulations determines the desired application
of force to the end-effector, and represents the output
from the PM/SMA. This output is given as a weighted
summation of synergies in generalized coordinates and must
be scaled to fit the current operating space. This scaling
represents basal ganglia and cerebellar synergy adaptation.
The adapted signal is then transformed into torque signals
through quadratic programming optimization, analogous to
the function performed by the basal ganglio-cortical loop with
M1. The basal ganglia element of the model thus performs a
weighted action selection function to identify the final control
signal routed through M1.

Formally, the lower level system state and plant
are defined as the joint angles and velocities x =
[θ1, θ2, θ̇1, θ̇2]T , with system dynamics

ẋ = Ax + Bu, (16)

where A = [0 I
0 0

]
, B = [0

I

]
and u = [

τ1

τ2

]
, where τ1 and

τ2 are the torques applied to the shoulder and elbow joints,
respectively. Recall from section 2.3 that the system is
assumed to be linear in control.

Following the process described in section 2.3, we
continue by defining our high-level system. In this model
the high-level system state will be the Cartesian coordinates
of the end-effector, y = [px, py, ṗx, ṗy]T , relative to an
absolute reference frame placed at the shoulder, with ideal
system dynamics

ẏ = Gy + Fv, (17)

where G and F are the same as A and B, and v = [
fx

fy

]
, where

fx and fy are the forces applied to the end-effector.
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The transformation function between the two levels, h,
such that y = h(x) is defined as

h(x) =
⎡
⎣cos(θ1)L1 + cos(θ1 + θ2)L2

sin(θ1)L1 + sin(θ1 + θ2)L2

J (θ)θ

⎤
⎦ , (18)

where L1 and L2 are the lengths of the upper and lower arm
segments, respectively, and J (θ) is the Jacobian defining the
effect of the effect movement of the low-level state parameters
on the high-level.

The actual dynamics of the high-level system are then
defined by differentiating y = h(x) as specified in equation

(13), with H(x) = [
J (θ) 0
J̇ (θ) J (θ)

]
. The hierarchical system used

here will employ the implicit method, meaning that the high-
level system state, y, will be updated through online access
to the transformation of the low-level state, h(x). When we
equate the actual high-level system dynamics to the ideal high-
level system dynamics, our equation is then

H(x)Ax + H(x)Bu = Fy + Gv, (19)

H(x)Bu = Gv, (20)

since Fy = H(x)Ax. Here, quadratic programming
optimization is employed to minimize u with equation (19)
as a constraint. This generates a low-level control signal u
that best matches the high-level control signal v.

The high-level control signal is designed to be a
simplification of component-based optimal control, where four
movements are predefined, specifically the situations where
the target is in one of the four corners. The component
signals are then scaled based on the distance between the hand
and the target, a process called dynamic scaling (see [20] for
details). This process allows a simplification of the weighting
of components in 2D end-effector independent space, such
that one is weighted at full value, and the others suppressed
entirely. The cost function used in this implementation is a
summation of quadratic functions of the distance from the
target at the next time step and magnitude of current velocity.

4.2. Spiking neuron model of M1

To construct a simulation of M1 neurons, we employed the
neural engineering framework (NEF) [23]. In the NEF, a group
of spiking neurons represents a vector (e.g. a control signal) in
a distributed manner. This is achieved by each neuron having
a randomly chosen ‘preferred direction vector’ e, the vector
for which this neuron will fire most strongly (and a common
feature of M1 neurons [29]). If we want a group of neurons
to represent a particular vector x, we can determine the input
current J to each of these neurons by

Ji(x) = αi 〈x · ei〉m + J bias
i , (21)

where α is the neuron gain, Jbias is the background input current
and e is the neuron’s preferred direction vector. We choose
Jbias and α from distributions to match those found in motor
neurons [29].

By taking this input current and using any standard neuron
model (such as the leaky-integrate-and-fire model used here),
we can convert a vector into a pattern of spikes that represent

that vector. To determine how well that vector is represented,
we also need to be able to convert a pattern of spikes back into
a vector. This is done by calculating a decoding vector di for
each neuron using

d = �−1ϒ, (22)

where

�ij =
∫

ai(x)aj (x) dx (23)

and

ϒj =
∫

xaj (x) dx, (24)

where ai(x) is the average firing rate of the neuron i for a given
value of x, and the integration is over all values of x over the
relevant range (e.g. movement space).

The resulting di values are the least-squares linearly
optimal decoding vectors for recovering the original value of
x given only outputs from each of these neurons. That is, if
we take the post-synaptic currents that would be generated in
a receiving cell by each neuron (i.e. the ionic current caused
by the neural spiking) and add them together weighting each
one by di , then the result is a time-varying estimate of x. The
amount of error for this decoding decreases linearly with the
number of neurons used, so any degree of accuracy can be
achieved by increasing the number of neurons [23].

One advantage of calculating d is that we can use it
to determine synaptic connection weights that will compute
transformations of the vectors being represented as well.
If one group of neurons represents x and we have another
group of neurons that we want to represent Mx (any linear
transformation of x), then this can be achieved by setting their
synaptic connection weights ωij using

ωij = αj ej Mdi . (25)

Furthermore, we can calculate connections that compute
any nonlinear function f (x) by finding a different set of
decoding weights. We proceed as before, but use

ϒj =
∫

f (x)aj (x) dx (26)

to find df (x), which will provide estimates of the function of
interest.

These methods have been used in a wide variety of
biologically realistic neural simulations [23, 78]. They
are incorporated into the simulation software, Nengo
(http://www.nengo.ca), which we used to construct the
simulations reported here. The arm model employed here
is the same one used in the other simulations, described above.
Specifically, using Nengo we generate populations of 400
spiking neurons that represent the two-dimensional control
space represented in M1, generated to drive the arm model
described above.

A single simulation experiment consists of generating the
control network and reaching to seven targets placed in a circle
around the initial starting point of the hand. The neural spiking
activity and arm trajectories were recorded, and the data were
then exported to Matlab. The neural spikes were filtered by an
80 ms Gaussian filter to match the filtering applied to the spike
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Figure 3. Comparison of human and model reaching trajectories
and velocity profiles. The human data are in the left column (1 and
3), and the model data in the right (2 and 4). A comparison of
figures 1 and 2 demonstrates that the model reproduces the typical,
smooth reaching movements of normals. The distance between
points indicates the reaching velocity. A comparison of figures 3
and 4 demonstrates that the model also reproduces the velocity
profiles observed in the human data. Both axes, time and velocity,
respectively, have been normalized. Data from [76], with
permission.

trains gathered from monkeys performing the same task [15].
The activity of single neurons for the seven different reaches
was then amalgamated, and preferred reaching movements
identified by selecting the four trials with the highest overall
activity. Additionally, a Gaussian filter of 70 ms was applied
to the arm trajectories to account for the unmodeled movement
smoothing implicit in muscle-based movements.

5. Results

5.1. Normal human arm trajectories

The resulting trajectories and velocity profiles from the
simulation of normal human reaching are shown in
figure 3. As can be seen, the resulting movements created
by the model are highly similar to those produced by human
subjects. Specifically, the total squared jerk (TSJ) of the
model falls well within the 95% confidence interval of normal
movements reported in [76]. For the two movements shown in
figure 3, the TSJ is 0.91 and 1.08, while the confidence interval
of the human data spans [0.7–1.1].

While more qualitative, it is also important that the
velocity profile of the model is not a Gaussian, but is rather
skewed in a manner similar to the human profile. Past models
have often matched a Gaussian velocity profile explicitly, as
this is often reported to be the shape of the human reaching
velocity profile [62]. However, a Gaussian profile only
captures the typical curve fit to the true reaching profile, which
typically has a slight leftward skew, as shown in figure 3.

Figure 4. Huntington’s patient and model trajectories. Patient
trajectories on the left, and model trajectories on the right.
Difficulties with ending point accuracy and additional unwanted
movements at low velocities are shared between the patients and the
model. The model effectively reproduces the movement termination
error observed in Huntington’s. Two trials are shown in each graph.
Data from [76], with permission.

Given these good matches to human experimental data,
this model of normal reaching provides a good basis for
examining the effects of various lesions on the model’s
performance.

5.2. Arm trajectories in Huntington’s disease

Huntington’s is a neural disease present in roughly 5–10/
100 000 people [36]. It is characterized by a heavy
degeneration of the basal ganglia’s neural structure, in
particular the striatum. The symptoms usually manifest
themselves during the fourth or fifth decade of a patient’s
lifetime, followed by steady degradation of motor function
over the next 10–20 years [76]. The traditional identifying
motor symptom is chorea, which is the presence of rapid,
involuntary, irregular and arrhythmic complex motor actions.
However, recent work has shown a stronger correlation of the
progression of the disease with movement termination error in
volitional movements requiring attention [52].

Here, Huntington’s model was developed by impairing
the performance of the basal ganglia component selection
process of the working arm model described in
section 4.1. Specifically, the threshold for component
selection was reduced, resulting in the basal ganglia choosing
additional relevant movement components. These competing
components were weighted by their similarity to the ideal
chosen component and summed to generate the final control
signal. Similarity was computed using the dot product of
the corresponding desirability maps after the application of
dynamic scaling. As a result, the direction of the target,
but not the distance, affects the level of ‘noise’ introduced
by a particular component. The incorporation of additional
components as noise into the chosen movement’s control
signal is consistent with the observed reduction of basal
ganglia inhibition seen in Huntington’s patients [76].

Figure 4 displays a comparison of Huntington’s patient
and the model’s reaching trajectories. As can be seen,
the model effectively reproduces the kind of movement
termination errors observed in the human behavioral data.
Specifically, both the model and patient exhibit unwanted
and extraneous movements, especially near the target of the
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Figure 5. Cerebellar damaged patient and model trajectories.
Patient trajectories on the left, and model trajectories on the right.
Patients with cerebellar lesions tend to overshoot target locations,
resulting in significant amounts of backtracking in the movement
trajectory. The model displays a similar pattern of reaching error
with perturbed cerebellar function. Data from [76], with permission.

movements. This results in a noisy, dense set of points near the
targets of each reach. Using the same methods of quantifying
movement described in [76], we measured the TSJ of the
damaged model reaches. The HD damaged reaches display a
higher than normal TSJ of 3.13 and 3.58 for the two reaches
shown in figure figure 4. These TSJ values fall in the middle
of the HD human data range [1.5–4.6] reported in [76]. As
reported in the previous section, the range of TSJ for normal
movements is [0.7–1.1].

5.3. Arm trajectories with cerebellar damage

In [76], the authors identify patients as having had lesions
localized to the cerebellum using MRI. The cause of the
lesions was not specified, though it was narrowed down to
generalized cerebellar atrophy or strokes of the right posterior
inferior cerebellar artery. To capture the effects of damage
to the cerebellum, we add noise to the corrective signal
generation process from a product of Gaussian white noise
and the magnitude of difference between the two previous
and new high-level control signals. The noise is taken to
account for damage to synergy adaptation and error correction
function attributed to the cerebellum in the NOCH. The results
of the patient and model reach trajectories are displayed in
figure 5.

As shown in the figure, the overshoot typical of cerebellar
patients is reproduced by the model. This is a consequence
of the online, fine-tuning provided by the cerebellum being
largely disrupted by large random perturbations. Population
level statistics were not available for a quantitative comparison
of the model movements to cerebellar patients. Nevertheless,
the qualitative match of the model’s overshoots and slow
corrections is strikingly similar to those displayed by cerebellar
patients performing the same movements.

5.4. Single cell tuning in motor cortex during reach

The results from the spiking cell model of motor cortex are
displayed in figure 6. Notably, the salient features of the
data we discuss are identified in the original data paper [15].
As a result, while the classification of cells is qualitative, it
is not model driven, but rather independently determined by

the original data analysis. Consequently, to the extent the
model is able to generate cells that have the features noted
by this analysis (e.g. being bi-phasic, or switching preferred
directions), it can be considered to be a potential explanation
of those features.

Overall, the results of this model show that there is a
pre-movement convergence to a reasonably constant firing
rate, followed by highly nonlinear neural activity during the
execution of the movement, as is seen in the recorded neural
activity. There are clearly some features of the premovement
data not captured by the model (e.g. the pre-delay burst in A).

Nevertheless, the major movement-related features of the
data neurons are found in the model neurons. For example,
in A/a pre-movement relations and magnitude are preserved
during the movement (i.e. black is higher than grey before and
during movement), while in B/b and C/c there is a reversal of
pre-movement relations during the movement (i.e. black starts
higher than grey, but grey becomes higher during movement).
In addition, the bi-phasic relationships of the cells in B/b and
C/c are clear in both the data and the model. Finally, in D/d the
neurons with different preferred directions are clearly phase-
shifted with respect to one another. These properties are those
identified by the experimentalists in their examination of the
complete data set, so it is important that they are captured by
the model.

Overall, perhaps the most important feature of the neural
responses that is captured by the model is that single-cell
responses are highly nonlinear during the movement, despite
linear arm movements toward the target. It has been suggested
that these kinds of nonlinear responses can only be captured
in terms of non-plant-related parameters [15]. However,
this model maps the control signals generated in the plant
parameter space directly to neural responses, and finds many
of the major nonlinear responses observed in the experimental
setting.

6. Discussion

The simulations of a simple instantiation of the NOCH
framework provided above suggest that the integration of
control theoretic methods with specific anatomical mappings
and possible motor functions can help provide unified accounts
of a variety of motor system data.

For instance, movement termination error is successfully
captured by Huntington’s model. Indeed, more severe damage
of the same kind described in this model also generates
chorea (results not shown), as the reduced thresholding of
the basal ganglia circuit can cause the involuntary execution
of movements. This is caused by the unintentional selection
of a movement synergy and its resulting disinhibition in the
thalamo-cortical circuit that the basal ganglia projects to,
causing a false ‘go’ signal to be given to the motor cortices,
and the execution of a random movement. As a result,
the model suggests a reasonably direct relationship between
between the amount of striatal damage and the extent of motor
error. This prediction could be tested by a characterization
of the complexity of involuntary movements carried out by
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Figure 6. A comparison of spiking neuron activity from single-cell recordings in monkeys (uppercase letters) and the model (lowercase
letters). The activity in monkeys was recorded from dorsal pre-motor and primary motor cortex. It includes both pre-movement activity and
activity during the execution of an arm reach. Both sets of data stabilize during the pre-movement period, and then display highly nonlinear
activity during movement. The model contained cells that displayed many of the salient properties of recorded cells. Black movements are
in the preferred direction of the cell and grey are in the non-preferred direction. Each pair shows the model capturing a salient feature of
classes of cells identified by the experimentalists. For instance, A/a show cells that generally respond well for movement initiation regardless
of direction. B/b show cells whose preferred direction reverses during movement (i.e. black and grey lines cross). C/c show cells with a
reversal and a biphasic response (i.e. black cells are ‘on’, ‘off’, ‘on’). D/d show cells with a preservation of preferred direction but a strong
phase-shifted response related to the preferred direction (i.e. black cells fire first and grey cells second). Data from [15], with permission.

(This figure is in colour only in the electronic version)
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Huntington’s patients at different stages of disease on a similar
reaching task.

Also at the behavioral level, the utility of having the
NOCH framework is evident in our modeling of cerebellar
damage. Although the characterization of the patient damage
is quite general, we were able to introduce perturbations to the
model system that suggest specific functional consequences
of cerebellar damage in the motor system. Notably, it is the
same model that accounts for Huntington’s, normal movement
and the neural activity in primary motor cortex. Both this
kind of unification and the ability to test reasonably coarse
characterizations of cerebellar damage, for instance, are a
result of the broad perspective provided by the NOCH.

This same perspective allows us to account for the highly
nonlinear responses of cells in motor cortex during simple
reaching movements. The traditional characterization of
motor cortex cells assumes that they have reasonably linear
relationships between movement and neural activity [29].
However, as emphasized in recent work, the activity of such
cells is better characterized as the movement into a preparatory
state space, and then a highly nonlinear response during reach
[15]. Given these highly nonlinear responses, it has been
suggested that neurons do not have a clear relationship to
movement parameters, such as joint angles, torques or muscle
force. Instead, it has been proposed that neurons encode an
abstract ‘movement-activity space’ [15]. Here, however, we
have shown that model neurons providing a largely linear map
between the space of control signals, which control movement
parameters, and neural activity are able to account for the
general kinds of neural responses observed in monkey cortex
(see section 4.2). The complexity of the neural response is
not a function of their having a complex mapping to control
space, but rather due to the complexity of the control signal
itself. Understanding how this control signal is generated for
movement is straightforward in the context of the broad system
perspective provided by the NOCH.

A better match between the model and data could likely
be achieved in a number of ways which we have not explored.
For instance, the single-cell model could include additional
dynamics of cortical cells, such as adaptation. In addition,
the arm model could be more sophisticated, resulting in a
higher dimensional, and hence more realistic control signal.
This would likely help capture additional subtleties in the
data, such as the kinds of ramping responses seen during
the delay period. Nevertheless, even without these potential
improvements the spiking model demonstrates that a number
of surprising features of the neural response—such as the
degree of nonlinearity during linear movement, the kinds
of reversals in sensitivity observed and the kinds of phasic
responses seen—are effectively captured by this model.

Taken together, these results suggest that the NOCH can
be used to help generate models that can account for both
high-level behavioral data and low-level neural data, in a
framework based on optimal control theory. Such a unified
account should prove helpful in improving our understanding
of animal motor behavior from both a computational and
mechanistic perspective. There is, of course, much additional
work that needs to be done. For instance, the complexity of

the plant model, the depth of the hierarchy and the integration
of sensory information can all be improved. In addition,
the implementation of such aspects in a biologically realistic
spiking simulation is crucial for detailed neurophysiological
comparisons. As described above, methods for accomplishing
this are available, but we have used them only to a small
degree in this work. More generally, adapting currently
available biologically detailed models of basal ganglia [78],
cerebellum [48], and so on to the NOCH will be important
for improving the biological plausibility of NOCH-based
models, and for testing past models that have been proposed
in isolation from the rest of the motor system. Despite
these many possible improvements, we believe that even at
this early stage, the NOCH has demonstrated its usefulness
for integrating behavioral and neural data, and for selecting
appropriate control theoretical structures to map to biological
control.

It is also interesting to consider the possible ramifications
of the NOCH for more applied problems in neural engineering,
such as brain–computer interfaces (BCIs). Neural BCIs record
the activity of a group of neurons in the cortex, and use
these signals to control devices ranging from computer cursors
to robotic limbs. The goal of BCIs is to allow subjects
with neural implants to fluidly interact with such artificial
effectors by harnessing the motor control system. The NOCH
framework may prove useful in translating such signals to
intended movements in two respects.

First, in the NOCH, motor cortex is proposed to be a
hierarchical control structure where control can be effected on
any level of the hierarchy, representing different abstractions
of the end-effector space. The movement synergies that are
available at these levels are used to generate the descending
control signal through composition of movements, which
results in descending control signals in terms of muscle
activation. The interactions with artificial effectors, however,
typically deal only in two- or three-dimensional space, and
the recorded neural signals are typically mapped directly to
target position or velocity commands [75, 73, 91]. To identify
a decoder more analogous to the motor control system, the
NOCH suggests that such decoding may more naturally be
made into an intermediate space, rather than directly to the
space used to control the effector. For example, in systems
with robotic or simulated limbs, in addition to allowing control
in 3D space, the system could be set up to interpret commands
in joint space first or simultaneously. Instead of allowing
control over position or velocity, it may be more effective to
decode the recorded cortical signals in terms of force or torque
applied to the end-effector or joints.

Second, in the NOCH, synergies are critical in the efficient
functioning of the motor system, from cortex to spinal circuits.
In fact, the spaces into which it is natural to decode neural
signals are presumed to be defined over sets of synergies.
Consequently, identifying a set of synergies that recorded
cortical signals are likely to modulate should allow more
natural motor command decoding, by taking advantage of the
ability of the motor system to exploit synergies to efficiently
generate movements. To identify appropriate synergies, it is
imperative to characterize them in a natural biological system
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before attempting to perform decoding. This would allow the
identification of motor synergies for constructing BCIs that
are similar to the synergies used for controlling regular limbs.
Ideally, this would allow for some transference of learned
synergies between the regular and artificial effectors, aiding in
their effective control by drawing upon the already established
set of efficient control signals.

Although many challenges lay ahead in the construction
of BCIs, attempting to match the properties of the decoder well
to the kinds of representations, dynamics and computational
structure we expect in the biological system should help
improve current performance. In short, we suspect that the
NOCH can be used to guide the implementation of such
suggestions to aid in the creation of efficient, robust BCI
systems. Thus, even though our focus has been on relating
optimal control models to behavioral and single-cell data,
successfully doing so has practical implications for addressing
BCI problems.

Appendix. Simplifying Bellman’s equation

The Bellman equation expresses the optimal cost-to-go
function, v(x), as the minimum over actions u, of the
immediate cost, �(x, u) plus the expected cost-to-go E[v(x′)]
at the next state x′. After [85], this can be written as

v(x) = min
u

{ �(x, u) + Ex ′∼p(·|x,u)[ v(x′) ] }. (A.1)

In this notation, x′ ∼ p(·|x, u) indicates that the random
variable x′ is distributed as the probability distribution defined
by p, and the · indicates that the random variable takes on all
its possible values.

Often the set of actions considered in optimal control
problems are taken to be from a discrete state space (e.g ‘move
forward’ or ‘move backward’). Although such seemingly
symbolic actions are typically thought of as discrete, in the
LBC formulation, the action being selected is not a specific
next state, but rather the transition probability to the next
state. As a result, what is being selected (i.e. probabilities)
are continuous. In short, what the controller is doing in
choosing an action is adjusting the transition probabilities of
the underlying system dynamics. This perspective on optimal
control has several important consequences.

Instead of having the controller specify an action, which
is then translated into an effect on the system’s transition
probabilities, the controller is allowed to directly specify the
system’s transition probabilities. The probability of the next
state x′, given the current state x under passive dynamics, is
denoted p(x′|x). This distribution determines how the system
would move through the state space (possibly stochastically)
without any input from the controller. The probability of the
next state, given the state and the control signal u, is denoted
p(x′|x, u) = u(x′|x). Notably, the probability distribution
u(x′|x) is different than the chosen action u. The former
specifies a transition probability distribution and the latter is
an action that was selected based on that distribution. The LBC
controls only the former explicitly. However, the controller
can only move the system to points reachable under passive
dynamics.

So defined, the controller is very powerful, in that it can
arbitrarily specify transition probabilities. However, different
distributions come with different costs. Specifically, the
control cost of an action is determined by the KL divergence
between the controlled distribution and the passive dynamics
distribution. KL divergence is a standard measurement of
difference between two probability distributions. In this
case, it is a measure of the difference between the state
distribution under passive dynamics p(·|x′) and under control
u(·|x′). Specifically, the KL divergence measures the expected
logarithmic ratio between two distributions, and is denoted
KL(a(·|x)||b(·|x)) = Ex ′∼a(·|x)

[
log

(
a(x′|x)

b(x′ |x)

)]
.

To keep the KL divergence well defined, u(x|x′) will be
set to zero whenever p(x′|x) = 0, which enforces that the
controller can only move to points reachable under passive
dynamics. Thus, the immediate cost of the Bellman equation,
�(x, u), can be specified as

�(x, u) = q(x) + KL(u(·|x)||p(·|x))

= Ex′∼u(·|x)

[
log

(
u(x′|x)

p(x′|x)

)]
, (A.2)

where q(x) is a state cost function specifying the penalty for
being in a state. For example, the state cost might increase
with increasing Euclidean distance from the target.

To simplify the notation, let z(x) = exp(−v(x)) be known
as the desirability function. It is equal to the exponentiation
of the negative cost-to-go of the state x. It is referred to as
the ‘desirability’ function to reflect the fact that the function
is large wherever the cost-to-go is small, and small wherever
the cost-to-go is large.

Rewriting the Bellman equation in terms of z and
substituting in equation (A.2) gives

−log(z(x)) = q(x) + min
u

{
Ex′∼u(·|x)

[
log

u(x′|x)

p(x′|x)z(x′)

]}
.

(A.3)

The term being minimized is almost a proper KL
divergence, except that the distribution p(·|x)z(·) does not
sum to 1. To correct this, a normalization term G[z](x) is
introduced. Let

G[z](x) =
∑

x′
p(x′|x)z(x′) = Ex′∼p(·|x)[z(x′)], (A.4)

and multiply and divide the denominator of equation (A.4) to
give

−log(z(x)) = q(x)

+ min
u

{
Ex′∼u(·|x)

[
log

(
u(x′|x)

p(x′|x)z(x′)G[z](x)/G[z](x)

)]}

(A.5)

= q(x) + min
u

{
Ex′∼u(·|x)

[−log(G[z](x))

+ log

(
u(x′|x)

p(x′|x)z(x′)/G[z](x)

)]}
(A.6)

= q(x) + min
u

{
Ex′∼u(·|x)

[−log(G[z](x))

+ KL

(
u(x′|x)

∣∣∣∣
∣∣∣∣ p(x′|x)z(x′)

G[z](x)

)]}
. (A.7)
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The global minimum of a KL divergence occurs when the
two distributions being compared are equal. This means that
the optimal control signal, u∗, will be reached when

u∗(x′|x) = p(x′|x)z(x′)
G[z](x)

. (A.8)

We can further simplify the Bellman equation. First we
must exponentiate and incorporate the normalization term,
giving

z(x) = exp
(
−q(x) − min

u

{
Ex′∼u(·|x)

[−log (G[z](x)

+ KL

(
u(x′|x)

∣∣∣∣
∣∣∣∣ p(x′|x)z(x′)

G[z](x)

))]})
. (A.9)

Because −log(G[z](x)) is not dependent on u it can be moved
outside the minimization, and assuming optimal control u∗,
we can set the KL divergence to zero giving

z(x) = exp(−q(x) + log(G[z](x)) + 0) (A.10)

z(x) = exp(−q(x))G[z](x). (A.11)

Since the expectation G[z](x) is a linear operator,
equation (A.11) is linear in terms of z. We can rewrite this
in vector notation by enumerating the set of possible states
1 to n and letting z(x) and q(x) be represented by the n-
dimensional column vectors z and q, respectively, p(x′|x) by
the n-by-n matrix P, where the row indices correspond to x
and the column indices correspond to x′. Using these terms,
equation (A.11) can be rewritten as

z = QPz, (A.12)

where Q = exp(−q(x)). In this form we see that z is an
eigenvector of the matrix QP, and z can be solved for once the
state cost matrix Q and passive dynamics matrix P have been
defined. Using z the controller can recover the optimal action
at each defined state in the environment.

Notably, as has been emphasized elsewhere [85], this
formulation effectively captures the stochastic nature of many
optimal control strategies. Optimal strategies are clearly
not always deterministic, as in the case of various escape
behavior. In general, it is important that ‘optimal’ does not
mean deterministic in the LBC framework. As a result, the
cost function can be altered to capture various constraints such
as time to target, reducing the accuracy costs, or removing
constraints on system parameters not relevant for the particular
problem. The LBC approach attempts to find a stochastic
policy that best satisfies the imposed constraints, and does so
with a relatively simple operation. However, the cost of having
this operation be simple is that the complexity of the passive
dynamics matrix itself may be quite high. Nevertheless, this
may be consistent with the highly parallel computations most
naturally performed by the brain.
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