
Spike-based learning of transfer functions with the
SpiNNaker neuromimetic simulator

Sergio Davies∗†, Terry Stewart‡, Chris Eliasmith‡ and Steve Furber†
∗Corresponding author: daviess@cs.man.ac.uk

†Advanced Processor Technologies Group, School of Computer Science, The University of Manchester, United Kingdom
‡Centre for Theoretical Neuroscience, University of Waterloo, Ontario, Canada

Abstract—Recent papers have shown the possibility to imple-
ment large scale neural network models that perform complex
algorithms in a biologically realistic way. However such models
have been simulated on architectures not able to perform real-
time simulations. In previous work we presented the possibility
to simulate simple models in real-time on the SpiNNaker neu-
romimetic architecture. However such models were “static”: the
algorithm performed was defined at design-time. In this paper
we present a novel learning rule, implemented on the SpiNNaker
system, that enables models designed with the Neural Engineering
Framework (NEF) to learn the function to perform using a
supervised framework. We show that the proposed learning rule,
belonging to the Prescribed Error Sensitivity (PES) class, is able
to learn effectively both linear and non-linear functions.

I. INTRODUCTION

In recent papers (e.g. [1]) some large scale neural network
models have been proposed, which focus on the functional
connection between computational neural blocks. Each of
these blocks comprises multiple populations of neurons, each
performing a simpler function, or algorithm.

The functions and algorithms performed by these popu-
lations and their interconnections are designed on the basis
of a mathematical framework, called the Neural Engineering
Framework (NEF) [2]. These algorithms are grouped in large
scale architectures to perform complex tasks (e.g. [1]) that
resemble biological behaviour.

Simulations of such systems may be performed on general-
purpose computational substrates, such as a standard personal
computer [3], or on dedicated neuromorphic or neuromimetic
hardware [4]. The computation may, or may not, be performed
within a real-time constraint, depending on the type of hard-
ware in use for the simulation [5].

A spiking neural network simulator for the NEF has been
implemented using a software (named “Nengo”) running on a
standard computer desktop. This simulator has the limitation
that is able to run slower than real-time, and the bigger the
network, the slower the simulation runs, therefore with long
waiting before results are presented. The idea of performing
real time simulations has been introduced with the use of the
SpiNNaker architeture, which is presented in the next section.

Earlier work [6] presented the possibility to perform real-
time simulation of “static” functional connections on the
SpiNNaker system [7]: such connections perform a single,
immutable function defined at system-design time.

However, synaptic plasticity is known to happen in biology:
the human brain is subject to continuous evolution in the
properties of the interconnection pattern. Various learning rules
have been proposed [8] [9], implemented [10] and tested
[11] [12] on simulators; some of these were extracted from
biological observations [13] [14].

Currently, the majority of the learning algorithms [15] for
the third generation of neural networks [16] are based on the
STDP algorithm [17], or modified version of it (e.g.[18], [19]).
In fact, although this algorithm (extracted from biological
observations) intrinsically requires an unsupervised learning
framework, it has been adapted also for use with supervised
frameworks (e.g. [20] and [21]) and reinforcement learning
frameworks (e.g. [22] and [23]).

This work focuses on the implementation of a novel learn-
ing rule on the SpiNNaker neuromimetic architecture. This
rule is based on synaptic weight modification applied in a
supervised learning paradigm using a modulatory signal. The
set of trainee synapses benefits from the presence of the
learning (modulatory) signal to represent the desired transfer
appropriately function between populations of neurons. We
show that there is no limit on the type of function that may be
taught using this learning rule: in fact the network is shown
to be able to learn linear as well as non-linear functions.

II. INTRODUCTION TO SPINNAKER

SpiNNaker (acronym of Spiking Neural Network Architec-
ture, see fig. 1) is a hardware-based real-time universal neural
network simulator following an event-driven computational
approach [24]. This project involved the design of a chip
and the development of dedicated software to simulate neural
networks [25]. This system tries to mimic the features of
biological neural networks in various ways:

• Native parallelism: each neuron is a primitive com-
putational element within a massively parallel system.
Likewise, SpiNNaker uses parallel computation;

• Spiking communications: in biology, neurons commu-
nicate through spikes. The SpiNNaker architecture uses
source-based AER (Address-Event Representation) pack-
ets to transmit the equivalent of neural signals [26];

• Event-driven behaviour: neurons are very power effi-
cient, and consume much less power than modern hard-
ware. To reduce power consumption we put the hardware
in “sleep” state waiting for an event [25];

Fig. 1. SpiNNaker chip layout with labels for functional blocks and pictures
of the chip before and after packaging. Image taken from the GDS2 plot sent
to the manufacturer. The chip was fabricated at UMC using their 130e-llsp
low-power process. Die size is ≈ 10× 10 mm.

• Distributed memory: in biology, neurons use only local
information to process incoming stimuli. In the SpiN-
Naker architecture we use memory local to each of the
cores and an SDRAM local to each chip;

• Reconfigurability: in biology, synapses are plastic. This
means that the neural connectivity changes in both shape
and strength. The SpiNNaker architecture allows on-the-
fly reconfiguration.

Here we introduced the main features of the SpiNNaker
system. Complete details of the system and of its performance
can be found in [7], [24], [27] and [28]. This architecture has
been used for the experiments described in this paper with the
purpose of speeding up the simulation.

III. THE NEURAL ENGINEERING FRAMEWORK

The Neural Engineering Framework (NEF) is a theoretical
framework to convert high-level mathematical functions into
realistic spiking neural networks [2]. This framework repre-
sents vectors in a distributed fashion, using neural activity
to encode vector values. The algorithm to be implemented is
encoded in the connections between populations of neuron.
The mathematical foundations of this framework is in the
definition of the set of encoders and decoders: an input vector
x is encoded by neural activity using an encoding vector
particular to each neuron. On the decoder side, to decode the
spike train in an estimated value x̂, a set of decoders needs to
be defined.

This section introduces the mathematical background of the
NEF using models and formulas from [2]. The next section
presents the actual authors’ contribution: a learning rule that
may be applied to the NEF and that adapts to the peculiarities
of the SpiNNaker architecture.

If we define ai(x) as the neural activity of the i-th neuron
in correspondence of the input vector x, the activity can be
computed as:

ai(x) = G(αieix+ bi) (1)

where G is a non-linear function that represents the link
between the current injected in a neuron and its firing rate

Fig. 2. Example of tuning curves: the horizontal axis represents the input
value, the vertical axis represents the neural firing rate in spikes per second.
Each curve represents a neuron of the population.

(this function is typical for each mathematical model); αi is a
gain factor; ei is the randomly chosen encoder value, which
represents the value for the maximum spiking rate; and b is
the background current flowing into the neuron. Such values
are specific for each neuron, and in a population of neurons
encoding unidimensional vectors (x and e are unidimensional
vectors), the plot of neural activity shows the “tuning curves”
of the population. An example of tuning curves is presented in
fig. 2. On the horizontal axis is the input value, x in eq. (1). On
the vertical axis is the firing rate of the neuron corresponding
to each input value. The function between the two dimensions
is expressed by eq. (1), and each curve in fig. 2 represents the
activity of each neuron in a population.

While eq. (1) represents the neural activity following an
input value, the inverse pass is computed using eq. (2): the
output vector x̂ is estimated so that the value decoded has the
minimum square error from the input vector x.

x̂ =
∑
i

(diai(x)) (2)

E =
1

2

∫
(x− x̂)2dx =

1

2

∫
(x−

∑
i

(diai(x)))
2dx (3)

δE

δdi
= −(x−

∑
j

(djaj(x)))ai(x) = 0 (4)

di = Γ−1
ij Υj (5)

Γij =

∫
ai(x)aj(x)dx (6)

Υj =

∫
aj(x)xdx (7)

The set of decoder values is therefore computed using the
mean square error function (eq. 3), and setting its derivative
to 0 (eq. 4).

Fig. 3. Encoding and decoding values from one population.

Encoders and decoders are used to transform a vector into
spikes, and from spikes back to the vector (see fig. 3). If a
connection between two population of neurons is desired, to
transfer the value from the first to the second population is
possible to specify adequately the interconnections weights to
perform the operation. In first instance, we can assume that
between the two population of neurons there are as many units
as there are dimensions of the input vector (see fig. 4(a)). If
we suppose that such units are perfectly linear, the output is
a reproduction of the input value. The input value is decoded
from the spikes received from the first population, and the
output of such units is then encoded for the second population.

Since the linear units are just idealized neurons, not present
in biology, we can eliminate them (see fig. 4(b)) computing
directly the interconnecting weights as a matrix product be-
tween decoders of the first population and the encoders of the
second population: wij = di· ej

If an algorithm (or equivalently a function) is desired, then
the f(x) may be computed using the appropriate decoders:

d
f(x)=Γ−1

ij Υ
f(x)
j

i (8)

Υ
f(x)
j =

∫
aj(x)f(x)dx (9)

The transfer function may be defined at network description

time, or learned, modifying appropriately the synaptic weights
interconnecting the input and output populations. A method to
implement the latter case is presented in the next section

IV. THE PES LEARNING RULE

Previous work described the implementation of networks
with known and fixed transfer functions. In this section we
present a learning rule which modifies the synaptic weight
using a teaching signal. This learning rule has been extracted
by the authors from the NEF and forms the main contribution
of this paper.

Starting with random initial synaptic weights, if we want
the network to learn a new transfer function y = f(x) using
a supervised paradigm [21], the synaptic weighs wij need to
be modified so that, keeping ej constants, the decoders di are
modified to implement a function y = f(x).

To determine the amount of change in the synaptic weights,
we need to minimize the mean square error between the
desired output y and the current output ŷ. In this case, mean
square error is computed as:

E =
1

2

∫
(y − ŷ)2dx =

1

2

∫
(f(x)− f̂(x))2dx) =

=
1

2

∫
(f(x)−

∑
i

(d
f(x)
i ai(x)))

2dx (10)

Minimizing this error we obtain:

δE

δdi
= −(f(x)−

∑
j

(d
f(x)
j aj(x)))ai(x) = 0 (11)

Converting this function into a standard delta rule, and
including the learning rate parameter k, we obtain:

∆di = k·m· ai(x) (12)

where:
• ∆di is the variation of the decoder;
• k is the learning rate parameter;

(a) Encoding and deconding values from two interconnected population with
perfectly linear elements in between. The input units provide a value that,
multipled by the encoders is transformed by the input neural population in
spikes. The tuning curves in fig. 2 provides an example of the relation between
neural input and output. Spikes are then decoded and transferred to the second
population.

(b) Encoding and deconding values from two interconnected
population. The input units provide a value that, multipled by
the encoders is transformed by the neurons in spikes. These are
then transferred to the second population through synapses whose
weight is function of decoders and encoders, and finally decoded.

Fig. 4. Network structures considering encoders and decoders.

• m is a modulatory signal which is related to the error
between the desired function and the implemented func-
tion;

• ai(x) represents the activity of the i-th neuron for the
value x.

Multiplying both sides of (12) by ej we obtain:

ej ·∆di = k(ej ·m)ai(x) =
k

αj
(αj · ej ·m)ai(x) (13)

If we include the term αj into the learning rate parameter
k and set Iej = αj · ej ·m, the equation (13) represents the
weight variation:

∆wij = ej ·∆di = k· Iej · ai(x) (14)

where:
• ∆wij: is the additive weight variation of the synapse

between neuron i in the input population and neuron j
in the output population;

• k: is the learning rate;
• Iej : is the modulatory error current for neuron j received

from the error population;
• ai(x): this function represents the activity for the i-th

neuron in the input population. It takes value 1 when this
neuron emits an action potential.

Following this learning rule, only synapses, through which
there is activity, are modified following the modulatory error
signal; in this environment the error signal provides a teaching
signal to the learning synapses, so that the output value
generated by the output population agrees with the training
value.

This learning rule belongs to the class PES (Prescribed Error
Sensitivity): the learning synapses have a more rapid efficacy
variation where the modulatory error current is greater. It may
be worth noting that this learning rule allows the learning of
both linear and non-linear transfer functions.

The work presented in this paper builds on the work
presented in [6] which presented the first implementation of
the NEF on the SpiNNaker platform. The NEF implementation
on SpiNNaker noes not implement learning rules, and this
work is intended to extend the learning capabilities of the
NEF implementation on SpiNNaker in a way that exploits the
unique features of the architecture, such as multicast packet
routing [26] and inter-neuron delay modelled as pure dendritic
delay.

Alternative, biologically plausible, learning rules such as
Spike Timing Dependent Plasticity (STDP), use a different
background, without such direct association and that follow
the Hebb’s postulate: “Cells that fire together wire together”.
The STDP learning rule has been used in unsupervised and
supervised frameworks [20], together with a modulatory signal
to reinforce correct behaviour and depress incorrect ones. Even
though the PES and STDP learning rules present similarities,
their application field is different and a direct comparison
between the two approaches is not immediate.

Another comparison may be done with a Multi-Layer
Perceptron (MLP), a second generation neural network [16]

Fig. 5. Structure of the network used to test the learning feature.

which resembles the structure in fig. 4(b). However, a direct
comparison between networks of different generation is not an
easy task that we leave, together with a comparison with the
STDP learning rule, to future publication(s).

In this paper we intend to show the validity of the presented
PES learning rule, and therefore limit the experiments to
simple trials. More complex, real world interactions are left to
future applications of the NEF framework.

V. NEURAL NETWORK STRUCTURE

To test the PES learning rule we used a spiking neural
network to generate the input and the correct output required
from the synapses under test, and then to visualize the result
of the algorithm.

The network used (see fig. 5) comprises three stages: the
first, simulated on a host computer (the computer attached
to the SpiNNaker board), computes the input and the desired
output of the network. The second is simulated on the SpiN-
Naker system and involves the two sets of trainer and trainee
synapses. The output of the learning stage is then sent back
to the host computer for visualization (third part of the test
network). The dashed box in the image identifies the part of
the network which is simulated on the SpiNNaker system. The
set of trainee synapses is initially set to random weights, so
that it does not represent any particular transfer function.

A schematic model of the network in use is presented
in fig. 5. In this image the circles represent populations
of neurons, black solid arrows represent static connections
between populations; the red dotted line represents the set of
trainee synapses; the blue dashed line represents the set of
modulatory synapses.

The filled populations simulated on the SpiNNaker sys-
tem represent a set of “interface” neural populations. The
horizontally-shaded populations represent the encoders of the
value received from the host: on the basis of the value to
be represented, a neural activity is generated (see eq. 1). The
vertically-shaded population performs the decoding operation:
from the neural activity received by the “learning population”,
the set of decoders (see eq. 2) extract the value to be sent to
the host computer for visualization.

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5

Fig. 6. Output of the network without training: no particular pattern is visible.
The blue line represents the input and the desired output. The red line shows
the network response.

The input value, generated by the population “Input Value”,
(x in eq. 1) is propagated both to the input population
on the SpiNNaker system, to provide the input for the set
of trainee synapses, and to the population named “Output
Generator”, which computes the desired output for each input.
The “Function Selector” population is used to select which
function to apply to the input value. The possible functions to
apply are:

• y = x: a communication channel;
• y = −x: an inverse communication channel.
• y = sin(x): a sine evaluator;

As this set includes both linear and non-linear functions, we
show that the set of trainee synapses is able to learn both kinds
of transfer functions.

VI. RESULTS OF THE LEARNING PROCESS

The learning process described here is carried out using a
learning parameter k = 5· 10−5 in eq. (14). The PES learning
rule has been tested using the network described earlier
through a two-stage process: the first is a purely learning
stage: an input value is constantly provided to the network,
together with the required output value, for 20 seconds. The
input values provided in this training phase are in order: 0,
−0.25, −0.5, −0.75, −1, 0.25, 0.5, 0, 75, 1. The required
output is generated using one of the three functions described
above, and the simulation on the SpiNNaker board has been
run 10 times slower than biological time to allow the extraction
and storage of all data during the simulation.

Before training the network, synaptic weights are set to
random values. Fig. 6 shows the initial transfer function
between the input and the output values. Whilst there is a
correlation between the two, the range of the output values
does not cover the complete interval [−1; 1], and the noise is
more evident when compared with the output generated after
training (see figures 9, 11 and 12).

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 1 2 3 4 5

Fig. 7. Example of adaptation in the learning process. The horizontal axis
represents the simulation time in sec, the blue line represents the desired
output, and the red output shows the actual network output. The input and
the desired output value are changed in correspondance with the beginning
of the graph from 0 to −0.5. The network adapts to the new stimulus after
a transient period.

Using the PES algorithm, the set of trainee synapses adapt
their weight to reproduce the desired output value. An example
of this process is presented in fig. 7: here the horizontal
axis represents the simulation time (in seconds), the blue line
represents the desired output for which the network is being
trained, and the red line is the output of the network. In this
example the input and the desired value are being changed,
at time 0 of the graph, from 0 to −0.5. It is possible to see
that, after a transitory period, the network adapts to the new
desired value.

The second stage of the testing process is the testing phase:
the input provided to the network for 5 seconds is a sinusoidal
signal with period of 1 second. The output of the network is
compared with the desired output signal. In this phase the
learning algorithm is still active.

During this testing phase it is spossible to noice the inter-
polation made by the neural network: although the training
input provided does not include all the possible values, the
network provides a continuous output inpterpolating between
known values on which it has been initially trained.

This process, comprising the two stages described earlier,
is repeated three times, once for each of the transfer functions
described, which include both linear (the communication chan-
nel, and the inverse communication channel) and non-linear
(the sinusoid) functions.

An example of the input signal is presented by the blue
line in fig. 8. Figures 9, 11 and 12 present this input signal
(in green) together with the desired output signal, in blue, as
generated by the “output generator” population in fig. 5, and
the signal generated by the “output population” of the spiking
neural network simulated on the SpiNNaker system, in red,
after the training. As the output value is estimated (see eq.
(2)), some noise is present on the output signal. The output
value presented here is filtered using a sliding window filter

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 8. Input signal to test the transfer function. On the horizontal axis the
simulation time in sec. On the vertical axis the input value.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 9. Output of the communication channel (y = x) test. In blue the
desired output, in red the output of the neural network. On the horizontal axis
the simulation time in sec. On the vertical axis the output value.

that computes the average value over 10 samples: the current
value and the past 9 values received from the network.

Fig. 9 presents the output for a linear transfer function (y =
x). It is possible to see that the output consistently follows the
desired signal with a constant delay. However, even though the
learning phase is concluded, the learning algorithm is always
active, and the result is that the output value has the tendency
to increase, slightly, the value range during the testing phase.

Fig. 10 details the section of fig. 9 related to the simulation
between seconds 1 and 2. It is possible to note how the output
follows the input, even if there is a delay in the response.

The same set of comments can apply also to the inverse
communication channel transfer function (y = −x): as it is
possible to see in fig. 11, the output signal follows the desired
output signal with a constant delay, its values cover the whole
interval [−1; 1], and has the tendency to increase slightly, as
described before.

The next transfer function presented is non-linear; a sinu-

-1

-0.5

 0

 0.5

 1

 1 1.2 1.4 1.6 1.8 2

Fig. 10. Output of the communication channel (y = x) test. In blue the
desired output, in red the output of the neural network. On the horizontal axis
the simulation time in sec. On the vertical axis the output value. Ths image
is a portion of fig. 9 representing the values between the seconds 1 and 2 of
the simulation time

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 11. Output of the inverse communication channel (y = −x) test. In
green the input signal, in blue the desired output and in red the output of
the neural network. On the horizontal axis the simulation time in sec. On the
vertical axis the output value.

soidal function. Fig. 12 presents the outcome of this train-
ing experiment; it is possible to see the desired output, in
this case, covers the interval between sin(1) ≈ 0.841 and
sin(−1) ≈ −0.841 (where the argument of the sin() function
is expressed in radiant).

Here it is possible to see how the output signal adapts to
the desired transfer function: even though the learning process
was not completed in the given time frame, the neural network
still learns during this testing phase. In particular, the negative
peak value progressively approaches the desired output value,
reaching it in the last sinusoid.

VII. CONCLUSIONS

We presented a novel learning rule of the Prescribed Error
Sensitivity (PES) class, that we applied in a supervised learn-

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 12. Output of the sinusoidal transfer function (y = sin(x)). In green
the input signal, in blue the desired output and in red the output of the neural
network. On the horizontal axis the simulation time in sec. On the vertical
axis the output value.

ing framework. This rule, in fact, requires a set of modulatory
synapses that identify the size of the synaptic weight change
for each synapse. The learning rule has been initially charac-
terized on theoretical basis, providing mathematical support.

In a second step, the rule has been applied to the SpiNNaker
neuromimetic simulator for practical evaluation. The rule has
been used to train a set of learning synapses to represent three
transfer functions (linear and non-linear), showing that through
this learning rule they can adapt to the function required.

From the graph of the outgoing signal it is possible to note
a delay in the neural response. There are two main reasons:
firstly synapses are not instantaneous, but have an intrinsic
delay of 1msec. Secondly, each of the neural populations
requires some time to decode the new incoming spike rate and
produce the required outgoing spikes according to the newly
decoded value. This happens because some time is needed for
the neurons to change their state, from “active” to “quiescent”
and even longer for the inverse change.

The learning rate is a parameter that influences how quickly
the network adapts to the new transfer function. The higher,
the better, from a theoretical point of view, because it implies
shorter learning times. However the higher the learning rate,
the greater are the synaptic weight variations, which may lead
to an unstable system that starts oscillating.

This problem is strictly connected with the response delay
described earlier: since there is a delay between the application
of the input and the generation of the response by the neural
population, the feedback loop in the neural network (composed
by the two populations “Error evaluator” and “Learning pop-
ulation” of fig. 5) is influenced by this. As a consequence,
if sudden variation of the output signal occurs, the “error
evaluator” population requires some time before sensing and
correcting it. In the meanwhile the variation increases even
more and the training loop results in a positive feedback with
the consequent oscillations.

Therefore, the learning rate needs to be tuned according to
the activity of the pre-synaptic population and the error eval-
uator population (according to eq. 14), so that such behaviour
does not occur.

The PES learning rule has been discussed with regard
to some particular, elementary, transfer functions. In fact,
communication channels and sinusoidal functions can be
implemented easily using “static” network structures. The
novelty presented in this paper is the learning rule, that allows
a single set of synapses to learn different transfer functions in
subsequent training phases.

The Neural Engineering Framework has been designed to
provide an engineering approach to the design of neural
networks using attractor networks. Such a framework allows
the realization of large scale neural network models that are
able to simulate, to some extent, the behaviour of a human
brain. This learning rule adds another facility to the simulation
of biological neural networks, in particular, with regard to the
simulation of the ability of biological neural networks to adapt
to the environemnt in which the neural network lives.

Big neural network models, like SPAUN [1], may benefit
from this learning rule and it introduces a new functionality
that is simple to implement in the SpiNNaker simulation sub-
strate, allowing behaviour similar to what happens in biology
and taking advantage of the computational power provided by
the SpiNNaker neuromimetic architecture.

ACKNOWLEDGMENTS

The research presented here was initiated during the Tel-
luride Neuromorphic Engineering Workshop 2012, and ex-
tended beyond this workshop. The authors would like to thank
all the organizers.

The SpiNNaker project is supported by the Engineer-
ing and Physical Science Research Council (EPSRC), grant
EP/4015740/1, and also by ARM and Silistix. We appreciate
the support of these sponsors and industrial partners.

The authors would like to thank Dr. Simon Davidson and
Dr. John Viv Woods for the time dedicated to discussions and
reviews of this paper.

REFERENCES

[1] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang,
and D. Rasmussen, “A Large-Scale Model of the Functioning Brain,”
Science, vol. 338, no. 6111, pp. 1202–1205, Nov. 2012.

[2] C. Eliasmith and C. H. Anderson, Neural Engineering: Computation,
Representation, and Dynamics in Neurobiological Systems (Computa-
tional Neuroscience), new ed ed. A Bradford Book, Aug. 2004.

[3] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. Bower,
M. Diesmann, A. Morrison, P. Goodman, F. Harris, M. Zirpe,
T. Natschläger, D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner,
O. Rochel, T. Vieville, E. Muller, A. Davison, S. E. Boustani, and
A. Destexhe, “Simulation of networks of spiking neurons: a review of
tools and strategies.” Journal of computational neuroscience, vol. 23,
no. 3, pp. 349–398, Dec. 2007.

[4] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey
of two decades of progress,” Neurocomputing, vol. 74, no. 1-3, pp. 239–
255, Dec. 2010.

[5] S. Davies, “Learning in Spiking Neural Networks,” Ph.D. dissertation,
School of Computer Science, The University of Manchester, Kilburn
Building, Oxford Road, M13 9PL, Manchester, UK, Feb 2013.

[6] F. Galluppi, S. Davies, T. Stewart, C. Eliasmith, and S. Furber, “Real
Time On-Chip Implementation of Dynamical Systems with Spiking Neu-
rons,” in WCCI 2012, The 2012 IEEE World Congress on Computational
Intelligence. IEEE, Jun. 2012, pp. 2455–2462.

[7] S. B. Furber, S. Temple, and A. D. Brown, “High-Performance Com-
puting for Systems of Spiking Neurons,” in Proc. AISB’06 workshop on
GC5: Architecture of Brain and Mind, Apr. 2006.

[8] E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the
development of neuron selectivity: orientation specificity and binocular
interaction in visual cortex,” J. Neurosci., vol. 2, no. 1, pp. 32–48, Jan.
1982.

[9] H. Markram and M. Tsodyks, “Redistribution of synaptic efficacy
between neocortical pyramidal neurons.” Nature, vol. 382, no. 6594,
pp. 807–810, Aug. 1996.

[10] C. Clopath, L. Busing, E. Vasilaki, and W. Gerstner, “Connectivity
reflects coding: a model of voltage-based STDP with homeostasis,”
Nature Neuroscience, vol. 13, no. 3, pp. 344–352, Mar. 2010.

[11] S. Davies, A. Rast, F. Galluppi, and S. Furber, “A forecast-based
biologically-plausible STDP learning rule,” in IJCNN 2011, Aug. 2011,
pp. 1810–1817.

[12] S. Davies, F. Galluppi, A. D. Rast, and S. B. Furber, “A forecast-based
STDP rule suitable for neuromorphic implementation,” Neural Networks,
vol. 32, no. 0, pp. 3–14, 2012.

[13] G.-Q. Bi and M.-M. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: Dependence on spike timing, synaptic strength, and
postsynaptic cell type,” J. Neurosci., vol. 18, no. 24, pp. 10 464–10 472,
Dec. 1998.

[14] D. J. Bakkum, Z. C. Chao, and S. M. Potter, “Long-term activity-
dependent plasticity of action potential propagation delay and amplitude
in cortical networks,” PLoS ONE, vol. 3, no. 5, p. e2088, May 2008.

[15] L. F. Abbott and S. B. Nelson, “Synaptic plasticity: taming the beast.”
Nature neuroscience, vol. 3 Suppl, pp. 1178–1183, Nov. 2000.

[16] W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, Dec.
1997.

[17] J. Sjöström and W. Gerstner, “Spike-timing dependent plasticity,” Schol-
arpedia, vol. 5, no. 2, pp. 1362+, 2010.

[18] T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual
features through spike timing dependent plasticity,” PLoS Comput Biol,
vol. 3, no. 2, p. e31, 02 2007.

[19] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Competitive STDP-
Based Spike Pattern Learning.” Neural Computation, vol. 21, no. 5, pp.
1259–1276, Dec. 2008.

[20] T. J. Strain, L. J. McDaid, L. P. Maguire, and T. M. McGinnity, “A
Supervised STDP Based Training Algorithm with Dynamic Threshold
Neurons,” in Neural Networks, 2006. IJCNN 2006. International Joint
Conference on. IEEE, 2006, pp. 3409–3414.

[21] D. MacNeil and C. Eliasmith, “Fine-Tuning and the Stability of Recur-
rent Neural Networks,” PLoS ONE, vol. 6, no. 9, pp. e22 885+, Sep.
2011.

[22] M. A. Farries and A. L. Fairhall, “Reinforcement Learning With
Modulated Spike Timing–Dependent Synaptic Plasticity,” Journal of
Neurophysiology, vol. 98, no. 6, pp. 3648–3665, Dec. 2007.

[23] T. C. Stewart, T. Bekolay, and C. Eliasmith, “Learning to select actions
with spiking neurons in the basal ganglia,” Frontiers in Neuroscience,
vol. 6, no. 2, 2012.

[24] A. D. Rast, X. Jin, F. Galluppi, L. A. Plana, C. Patterson, and S. Furber,
“Scalable event-driven native parallel processing: the SpiNNaker neu-
romimetic system,” in Proceedings of the 7th ACM international con-
ference on Computing frontiers, ser. CF ’10. New York, NY, USA:
ACM, 2010, pp. 21–30.

[25] X. Jin, S. B. Furber, and J. V. Woods, “Efficient modelling of spiking
neural networks on a scalable chip multiprocessor,” Neural Networks,
2008. IJCNN 2008. (IEEE World Congress on Computational Intelli-
gence). IEEE International Joint Conference on, pp. 2812–2819, Sep.
2008.

[26] S. Davies, J. Navaridas, F. Galluppi, and S. Furber, “Population-Based
Routing in the SpiNNaker Neuromorphic Architecture,” in WCCI 2012,
The 2012 IEEE World Congress on Computational Intelligence. IEEE,
Jun. 2012, pp. 1932–1939.

[27] L. A. Plana, S. B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and
S. Yang, “A GALS infrastructure for a massively parallel multiproces-
sor,” Design & Test of Computers, IEEE, vol. 24, no. 5, pp. 454–463,
Oct. 2007.

[28] A. Rast, F. Galluppi, S. Davies, L. Plana, C. Patterson, T. Sharp,
D. Lester, and S. Furber, “Concurrent heterogeneous neural model
simulation on real-time neuromimetic hardware,” Neural Networks,
vol. 24, pp. 961–978, 2011.

