
Cognitive Science (2015) 1–40
Copyright © 2015 Cognitive Science Society, Inc. All rights reserved.
ISSN: 0364-0213 print / 1551-6709 online
DOI: 10.1111/cogs.12261

Biologically Plausible, Human-Scale Knowledge
Representation

Eric Crawford,a Matthew Gingerich,b Chris Eliasmitha

aComputational Neuroscience Research Group, University of Waterloo
bUniversity of British Columbia

Received 23 August 2013; received in revised form 17 February 2015; accepted 3 March 2015

Abstract

Several approaches to implementing symbol-like representations in neurally plausible models have

been proposed. These approaches include binding through synchrony (Shastri & Ajjanagadde, 1993),

“mesh” binding (van der Velde & de Kamps, 2006), and conjunctive binding (Smolensky, 1990).

Recent theoretical work has suggested that most of these methods will not scale well, that is, that

they cannot encode structured representations using any of the tens of thousands of terms in the adult

lexicon without making implausible resource assumptions. Here, we empirically demonstrate that the

biologically plausible structured representations employed in the Semantic Pointer Architecture

(SPA) approach to modeling cognition (Eliasmith, 2013) do scale appropriately. Specifically, we con-

struct a spiking neural network of about 2.5 million neurons that employs semantic pointers to suc-

cessfully encode and decode the main lexical relations in WordNet, which has over 100,000 terms.

In addition, we show that the same representations can be employed to construct recursively struc-

tured sentences consisting of arbitrary WordNet concepts, while preserving the original lexical struc-

ture. We argue that these results suggest that semantic pointers are uniquely well-suited to providing

a biologically plausible account of the structured representations that underwrite human cognition.

Keywords: Knowledge representation; Connectionism; Neural network; Biologically plausible;

Vector symbolic architecture; WordNet; Scaling

1. Introduction

One of the central challenges for contemporary cognitive modeling is scaling. As

Geoff Hinton recently remarked in his address to the Cognitive Science Society, “In the

Hitchhiker’s Guide to the Galaxy, a fearsome intergalactic battle fleet is accidentally

eaten by a small dog due to a terrible miscalculation of scale. I think that a similar fate

Correspondence should be sent to Eric Crawford, Computational Neuroscience Research Group, University

of Waterloo, 200 University Ave West, Waterloo, Ontario, Canada, N2L 3G1. E-mail: e2crawfo@uwaterloo.ca

awaits most of the models proposed by Cognitive Scientists” (Hinton, 2010, p. 7).

Whether or not we agree, this observation can at least be taken as a challenge for cogni-

tive modelers: Will the principles demonstrated in small-scale cognitive models scale up

to the complexity of a human-sized cognitive system?

This scaling problem has often been thought to be a special challenge for biologically

inspired approaches to cognitive modeling (Hadley, 2009; Jackendoff, 2002). This is

because the basic principles employed in such models do not provide a straightforward

characterization of structured representations. Consequently, it is reasonable to wonder

how such principles will ultimately be able to account for human-scale structured repre-

sentations, which they clearly must do if they hope to provide convincing explanations of

cognitive behavior. This same concern is not as immediate for symbolic approaches,

which typically take structured representations to be primitive (Anderson, 2007; Pylyshyn,

1984).

In this paper, we present a novel method for representing structured knowledge in bio-

logically plausible neural networks and show that it alone is capable of scaling up to a

human-sized lexicon. This approach combines a method for encoding structured knowl-

edge in vectors with a framework for building biologically realistic neural models capable

of representing and transforming those vectors. In previous work, we have demonstrated

that this approach meets many of the challenges that have been posed for connectionist

accounts of structured representation, including the ability to account for the systematicity,

compositionality, and productivity of natural languages, as well as the massive binding

problem and the rapid variable creation problem (Eliasmith, 2013). That work has also

given theoretical reasons to think that this approach will scale better than others; here our

focus is on empirically demonstrating that claim. We achieve this by using our method to

encode the human-scale knowledge base known as WordNet in a spiking neural network,

and we show that, unlike past approaches, this network places plausible neural resource

demands given what is known about the size of relevant brain areas.

The remainder of the paper is organized as follows. In Section 2, we review past con-

nectionist approaches to the problem of representing structure, and we discuss recent crit-

icisms of those approaches which suggest that they will not scale. In Section 3 we

introduce the concept of a semantic pointer, the main type of representation employed by

our approach. In Section 4, we present holographic reduced representations (HRRs), a

vector algebra capable of encoding structured representations in vectors, which we use to

create semantic pointers. In Section 5, we show how to use these semantic pointers to

encode WordNet and outline an algorithm for extracting the relational information stored

in the resulting encoding. In Section 6, we show how to build a biologically plausible

neural network based on this extraction algorithm. In Section 7, we present the details of

this neural network and show that it uses far fewer neural resources than the previously

discussed approaches.

In Section 8, we demonstrate the capabilities of both the abstract extraction algorithm

and its neural implementation by subjecting them to a number of experiments designed to

confirm that WordNet is accurately encoded. In particular, these experiments show (a)

that structural information can be extracted from arbitrary WordNet concepts, (b) that

2 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

hierarchies of arbitrary depth within WordNet are correctly represented, and (c) that the

network can be used to extract the constituents of sentences involving arbitrary WordNet

concepts. In Section 9, we conclude with an investigation of how our approach is able to

achieve its superior scaling, as well as an exploration of how this work relates to theoreti-

cal debates in the cognitive science literature.

2. Past approaches

There have been many approaches to representing structure in connectionist networks.

We consider three of the most successful: binding through synchrony, “mesh” binding,

and tensor product binding.

2.1. Binding through synchrony

The suggestion that structured cognitive representations could be constructed using

binding through synchrony (Shastri & Ajjanagadde, 1993) was imported into cognitive

modeling from the earlier hypothesis that feature binding in vision can be accounted

for by the synchronization of spiking neurons in visual cortex (von der Malsburg,

1981).

In their SHRUTI architecture, Shastri and Ajjanagadde (1993) demonstrated that

exploiting synchrony can provide a solution to the variable binding problem in several

simple examples. More recently, binding through synchrony has seen a revival in the

LISA (Hummel & Holyoak, 2003) and DORA (Doumas et al., 2008) architectures, which

focus on representing structures for analogical reasoning.

In all of these models, the temporal relationships between connectionist nodes are

employed to represent structured relations. In DORA and LISA specifically, a structured

representation such as bigger (Max, Eve) is constructed out of four levels of representa-

tion. The first level consists of nodes representing “sub-symbols” (e.g., furry, female,

etc.). The second level consists of units connected to a set of sub-symbols relevant to

defining the meaning of the second-level term (e.g., Max is connected to furry, Eve to

female, etc.). The third level consists of “sub-proposition” nodes that bind roles to objects

(e.g., Max+larger, or Eve+smaller, etc.). The fourth level consists of proposition nodes

that bind sub-propositions to form whole propositions.

As has been argued in more detail elsewhere, this kind of representational scheme will

not scale well (Eliasmith, 2013; Stewart & Eliasmith, 2012), because the number of nodes

needed to support arbitrary structured representations over even small vocabularies (e.g.,

2,000 lexical items) is larger than the number of neurons in the brain.1

Notably, this criticism is not problematic because of the use of synchrony per se, but

rather because of the way binding has been mapped to network nodes. However, it has

also been suggested that synchrony itself will not scale well to binding complex struc-

tures (O’Reilly & Munakata, 2000; Stewart & Eliasmith, 2012).

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 3

2.2. Mesh binding

A different approach to structure representation has been taken by van der Velde and

de Kamps (2006) in their work on the neural blackboard architecture (NBA). To avoid

the exponential growth in resources needed for structure representation in a DORA-like

scheme, the NBA employs “neural assemblies.” These assemblies are temporarily bound

to particular symbols using a “mesh grid” of neural circuits (e.g., bind(noun1, Max)). Lar-

ger structures are then built by binding these assemblies to roles using a gating circuit

(e.g., gate(agent1, bind(noun1, Max))). Neural assemblies that bind roles (and hence their

gated word assemblies) are used to define higher level “structure assemblies.” Such struc-

ture assemblies can be used to represent sentential structures.

The use of temporary binding in this manner significantly reduces the resource

demands of this approach compared to the synchrony-based approaches. However, it does

not reduce the demands sufficiently to make the NBA neurally plausible. As argued in

Stewart and Eliasmith (2012), and demonstrated in more detail in Eliasmith (2013), in

order to represent simple sentences of the form relation(agent, theme) from a vocabulary

of 60,000 terms, this approach requires roughly 480 cm2 of cortex, approximately one-

fifth of total cortical area.2 This is much larger than the combined sizes of “naming” cor-

tex (about 7 cm2; [1,000]), Wernicke’s and Broca’s areas (about 20 cm2 each; Ojemann

et al., 1989), and the remaining parts of the language “implementation system” (supra-

marginal gyrus, angular gyrus, auditory cortex, motor cortex, and somatosensory cortex,

about 200 cm2; Dronkers et al., 2000). Critically, these areas do far more than represent

structure; they account for phonological processing, oral motor control, grammatical pro-

cessing, sentence parsing and production, etc. Consequently, while the NBA has

improved scalability compared to DORA, it remains implausible.

2.3. Tensor product binding

The final approach we consider, first proposed by Smolensky (1990), is the earliest and

best-known member of the class of proposals broadly called vector symbolic architectures

(VSAs; Gayler, 2003). In general, these approaches represent symbols with vectors, and

propose some kind of non-linear vector operation to bind two vectors together. Later, the

constituents of the binding can be extracted using an unbinding operation. Smolensky’s

architecture employs the tensor product as the binding operation, which has the advantage

that it allows the constituents of a binding to be perfectly extracted.

In terms of scaling, this approach has the benefit that symbols and propositions can be

represented by patterns of neural activity, alleviating the need for devoted neural

resources for each proposition (as in the case of synchrony based approaches) and com-

plex gating mechanisms (as in the case of the mesh binding approaches). However, the

use of the tensor product as a binding operator creates a separate scaling issue. Because

the tensor product of two n-dimensional vectors is an n2-dimensional vector, this frame-

work scales exponentially poorly as the depth of the encoded structure increases. For

example, Eliasmith (2013) shows that encoding a two-level sentence such as “Bill

4 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

believes that Max is larger than Eve,” where lexical items may have hierarchical relations

of depth two or more, will require approximately 625 cm2 of cortex.3

We now present the details of our approach for connectionist structured representation,

with the aim of showing that, unlike the approaches explored here, it can encode a

human-scale lexicon using a plausible number of neurons.

3. Semantic pointers

Semantic pointers are neurally realized vector representations generated through a

compression method, and are typically of a high dimensionality (Eliasmith, 2013). In gen-

eral, semantic pointers are constructed by compressing information from one or more

high-dimensional vector representations, which can be semantic pointers themselves. The

newly generated semantic pointer has a dimensionality that is less than or equal to the

dimensionality of its constituents. Semantic pointers can be subsequently decompressed

(or “dereferenced”) to recover (much of) the original information.

Examples of compression that lowers dimensionality and loses information abound in

the digital world. Jpegs, mp3s, and H.264 videos are all examples of “lossy” compres-

sion. These methods are lossy because, from an information theoretic perspective, the

decompression of the compressed vector contains less information than the original

uncompressed vector. However, from a psychophysical perspective, the pre-compressed

and reconstructed vectors can be nearly indistinguishable. The reason such compression

methods are ubiquitous is because they can massively decrease the amount of data that

must be manipulated or transmitted, while preserving the essential features of that data.

Semantic pointers are proposed to play an analogous role in our mental lives.

Because semantic pointers are compact ways of referencing large amounts of data, they

function similarly to “pointers” as understood in computer science. Typically, in com-

puter science a pointer is the address of a large amount of data stored in memory. Unlike

the data in memory, pointers are easy to transmit, manipulate and store, because they

occupy a small number of bytes. Hence, pointers can act as an efficient proxy for the data

they point to. Semantic pointers are proposed to provide the same kind of efficiency ben-

efits in a neural setting.

Unlike pointers in computer science, however, semantic pointers are semantic. That is,
they are systematically related to the information that they reference, because they were

generated from that information via compression. This means that semantic pointers carry

similarity information that is derived from their source (unlike computer science point-

ers). If two uncompressed structures are similar along some dimension, then their com-

pressed semantic pointers will also be similar, given an appropriate compression method

and similarity measure.

The similarity relations between semantic pointers are best thought of as capturing “shal-

low” semantics. That is, semantics that can be read off of the surface features of the seman-

tic pointers themselves. To get at “deep” semantics—for example, semantics dependent on

subtle structural relations of the uncompressed data—it can be crucial to more directly

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 5

compare the uncompressed states. In many ways, this distinction between shallow and deep

semantics is reminiscent of shallow and deep processing proposed in dual-coding theory

(Paivio, 1986). Typically, this older distinction is taken to map onto the distinction between

verbal and perceptual processing (Glaser, 1992). Recent fMRI and behavioral experiments

are supportive of this view (Simmons et al., 2008; Solomon & Barsalou, 2004). Semantic

pointers can be thought of as a computational specification of this distinction.

In sum, semantic pointers are neurally realized, compressed (and hence efficient) repre-

sentations of higher dimensional data. They carry surface semantics, for which similarity

can be cheaply computed, and they can be decompressed to access deeper semantics with

additional computation. We note that we are not alone in finding it useful to understand

efficient neural processing in terms of pointer-like structures. For example, both Kriete

et al. (2013) and Schr€oder et al. (2014) have also found merit in the idea.

In this paper, we primarily use semantic pointers for their deep semantics and make lit-

tle use of the shallow semantics. However, the shallow semantics are nonetheless present,

which has important theoretical consequences and leaves open a number of interesting

extensions that we discuss in Section 9.

Use of semantic pointers requires the specification of both a compression algorithm

and a corresponding decompression algorithm. For example, in the vision system of the

Spaun model, both compression and decompression take the form of a generative, hierar-

chical vision model (Eliasmith et al., 2012). A semantic pointer for a visual scene is cre-

ated by running the model “forward,” extracting a relatively low-dimensional

representation that captures the scene’s important features. The full visual scene can later

be approximately reconstructed by running the model “backward,” with the top of the

hierarchy clamped to the desired semantic pointer. In the current study, we use compres-

sion algorithms that are better suited to structured representations. In particular, we use

the operations provided by HRRs, a VSA.

In Section 6, we show how to use the neural engineering framework (NEF) to build

spiking neural networks that represent and transform high-dimensional vectors, providing

a neural implementation of this form of semantic pointer.

4. Holographic reduced representations

Holographic reduced representations are a type of VSA, and, as such, constitute a

means of representing structured knowledge in a vector format. They have seen signifi-

cant use in cognitive modeling; for instance, Murdock (1993) uses HRRs to provide an

account of human working memory, and Jones and Mewhort (2007) use them to construct

vector-space representations of English words from text, which are able to account for a

number of classic empirical results.

HRRs have some similarities to Smolensky’s tensor product technique, but they use a

compressive binding operator which allows the dimensionality of the representations to

remain constant as the depth of the encoded structure increases. This is an important dif-

ference which lends HRRs superior scaling properties. We should note that there are

6 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

other VSAs that share this feature of non-expanding dimensionality (e.g., Binary Spatter

Codes; Kanerva [1994]). HRRs are used in the current work primarily because it is well-

understood how to neurally implement the vector operations they require (Stewart, Beko-

lay, & Eliasmith, 2011).

Here, we briefly sketch the components of the HRR vector algebra. See Plate (1995)

for a more complete introduction to HRRs, and Plate (2003) for an in-depth treatment of

the mathematics involved as well as a number of applications. To begin, the basic ele-

ments of the structure that we want to represent are each assigned a random D-dimen-

sional vector, where D is fixed ahead of time. We can then use the operations specified

by the HRR formalism to create vectors encoding structured combinations involving those

basic elements. Other operations can later be applied to the structured vectors to extract

the constituent vectors. In this section, we discuss the necessary vector operations and

their properties, before going on to explicitly show how they can be used together to

encode structured information. The three vector operations specified by the HRR algebra

are circular convolution, vector addition, and involution.

4.1. Circular convolution

Circular convolution, represented by the ~, plays the role of a binding operator. For

two vectors x ¼ ½xð0Þ; . . .; xðD�1Þ� and y ¼ ½yð0Þ; . . .; yðD�1Þ�, and j 2 {0,. . .,D�1}, the jth
element of x~y is:

ðx~yÞðjÞ ¼
XD�1
k¼0

xðkÞyðj�kÞ;

where the indices are taken modulo D. The circular convolution of two vectors is dissimi-

lar to both of them, using the dot product as a measure of similarity.

4.2. Vector addition

Vector addition plays the role of a superposition operator. In particular, it allows mul-

tiple bindings to be stored in a single vector. The jth element of x + y is:

ðxþ yÞðjÞ ¼ xðjÞ þ yðjÞ:

Vector addition returns a vector that is similar to both of its inputs, again using the dot

product as a measure of similarity.

4.3. Involution

The third HRR operation, involution, is represented by an overbar (e.g., �x). The jth
element of �x is given by:

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 7

xðjÞ ¼ xð�jÞ;

where the indices are again taken modulo D. Put simply, the first element of the vector stays

in place, and the remaining elements are reversed. For example, if x = [1,2,3,4,5], then
�x = [1,5,4,3,2]. Involution is the approximate inverse of a vector with respect to circular

convolution. Specifically, for two vectors x and y, we have x~y~ �y�x. It can thus be

thought of as an unbinding operator, since it facilitates the extraction of the constituents of

bindings. Circular convolution does have an exact inverse but, for reasons outlined in detail

in Plate (2003), it performs poorly when x is noisy. Because we will later be concerned with

neural representations of these vectors, which are inherently noisy, throughout this work we

employ involution rather than the exact inverse.

The circular convolution, vector addition, and involution operations can be thought of

as vector analogs of the familiar algebraic operations of multiplication, addition, and tak-

ing the reciprocal, respectively. Indeed, they have many of the same algebraic properties.

For example, circular convolution is commutative, associative, and distributes over vector

addition, similar to multiplication. The mathematical details of these operations, and, in

particular, why involution is the approximate inverse of convolution, can be found in

either of the above references on HRRs.

4.4. Semantic pointers for structured representations

Together, these operations permit the construction of vectors that represent complex

structure. Most usefully for the current work, we can construct a vector which stores mul-

tiple pairs of other vectors. Later, given some query vector, we can determine which vec-

tor it is paired with in the structured vector. For example, suppose we have six elements

in our vocabulary, each of which has been assigned a vector, a, b, c, d, e, f and we want

to store the pairs ha, bi,hc, di and he, fi. We can use circular convolution and vector

addition to do this as follows:

t ¼ a~bþ c~dþ e~f: ð1Þ

An important note is that t has dimensionality D, the same as that of each of the vectors on the

right-hand side of this equation. This is because both circular convolution and vector addition

return vectors with the same dimensionality as their inputs. This feature is what sets HRRs apart

from Smolensky’s tensor product technique. In particular, it prevents the size of the vectors from

undergoing a combinatorial explosion as the depth of the encoded knowledge structure

increases, permitting the efficient representation of hierarchical structures. For instance, t itself
could be included in another structured vector, which would also have dimensionality D.

Given a query vector, we can then use circular convolution and involution to retrieve

an approximation of the vector it is paired with in t. For example, to extract the vector

that a is paired with, we compute:

8 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

t~a

¼ ða~bþ c~dþ e~fÞ~a

¼ a~b~aþ c~d~aþ e~f~a

¼ b~a~aþ d~c~aþ e~f~a

� bþ d~c~aþ e~f~a:

ð2Þ

¼ bþ noise; ð3Þ

Here we have used both the commutative and distributive properties of circular convolu-

tion. The extra terms in Eq. (2) can be treated as noise because a, c, d, e and f are ran-

domly chosen vectors.

We can now see that these structured vectors can be treated as a special kind of com-

pressed representation. We can think of the original, uncompressed vector as the concate-

nation of a, b, c, d, e and f, which has a dimensionality of 6D. t, which has only D
dimensions, thus represents a significantly compressed version of the original vector. We

can then look at the process of circularly convolving t with the involution of a query vec-

tor as lossy decompression, since we extract a vector that is similar but not identical to

part of the original, uncompressed vector. But notice that this is a type of decompression

that is especially well-suited to structured representation, because we do not have to

reconstruct the entire original vector at once. Instead, we can choose which bit of it to

decompress by changing the query vector. Throughout this paper we refer to the neural

implementation of these structured vectors as semantic pointers.

5. Encoding structured knowledge in semantic pointers

Thus, far we have seen how to vectorially encode structured representations at a small

scale. In this section we significantly scale up this technique. We first introduce WordNet,

a human-scale semantic network, and then show how to create a vector encoding of

WordNet using semantic pointers.

5.1. Wordnet

To empirically demonstrate that our technique can scale up to the size of a human

vocabulary, we require a structured knowledge base of sufficient magnitude. One

approach would be to construct an arbitrary structured representation, perhaps using ran-

dom graph techniques; however, there is no reason that such a representation would sta-

tistically resemble the structure of human knowledge. A better approach is to choose a

sufficiently large structured representation constructed with human knowledge specifically

in mind. Fortunately, there are projects that have taken up the monumental task of encod-

ing human knowledge in machine readable form. Two of the most well-known such pro-

jects are Cyc and WordNet.

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 9

Cyc’s aim is ostensibly to codify the entirety of common-sense knowledge in a

machine-usable format, with potential applications ranging from medicine to machine

learning. Cyc is truly a marvel of perseverance; according to Lenat (1995), more than a

person-century of work has gone into the manual construction of at least a million “com-

mon sense axioms.”

WordNet is another manually constructed database (Fellbaum, 1998; Miller, Beckwith,

Fellbaum, Gross, & Miller, 1990), but with slightly more modest goals. It aims to be a

lexical database of the English language instead of a database of the entirety of human

knowledge. Due to its reduced scope and its much smaller set of basic relationships,

WordNet tends to have applied structural features more consistently than Cyc. As well,

Cyc organizes concepts abstractly with logical assertions and microtheories, whereas

WordNet’s design is intended to reflect the organization of concepts in a psychologically

plausible way using a handful of common relationships. In total, WordNet contains

117,659 concepts and a high degree of hierarchical structure (e.g., entity can be reached

from dog in 13 steps), suggesting it will be an adequate test of the scalability of our tech-

nique. For these reasons, we have chosen WordNet as the structured knowledge base that

we will encode.

The basic unit in WordNet is a synset, a set of words that have the same meaning.

Words that have multiple meanings are listed in multiple synsets. Each synset possesses a

number of relations, each of which represents a semantic link between that synset and

another synset. Relations are unidirectional; each has a source and a target. Each relation

also has a type, the most prominent being hypernymy (roughly “isA”) and holonymy

(roughly “partOf”). These relation types can be further subdivided: hypernymy into

instance and class, and partOf into part,member, and substance. As a concrete example,

we show a subset of the relational structure of the dog synset:

dog ¼ classðcanineÞ and member ðpackÞ: ð4Þ

Here dog is the source of a class relation and a member relation. canine is the target of

the class relation, and pack is the target of the member relation. Only the five relation-

types we have mentioned are encoded in our model. The inverses of these relations are

also implicitly included, although we do not test their extraction as this requires more

complex control of signal flow that is beyond our present scope. The depiction of lexical

relations found in WordNet is somewhat simplified, though it is sufficient for our pur-

poses; a complete description of the simplifications made can be found in Fellbaum

(1998).

5.2. Semantic pointers and WordNet

It is relatively straightforward to use semantic pointers to encode the relational struc-

ture of a WordNet synset as represented in Eq. (4). The first step is to fix a dimension D
for our vectors. Previous investigations have shown that using 512 dimensions provides

sufficient representational capacity to accommodate human-scale knowledge bases

10 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

(Eliasmith, 2013), so D = 512 in all the work presented here. We then assign each

WordNet synset a D-dimensional vector called an ID-vector, chosen uniformly at random

from the D-dimensional unit hypersphere, which acts as a unique identifier for that

synset. Each relation-type (class, member, etc.) is also assigned a vector in the same

way.

The next step is to encode the information about how synsets are related to one

another. Each synset is thus assigned a second D-dimensional vector storing the relational

information about the synset. In particular, this vector is a semantic pointer constructed

using the technique from Section 4, where each pair stored in the vector corresponds to a

relation belonging to the synset and consists of the vector for the relation-type and the

ID-vector for the target of the relation. The following equation demonstrates this process

for the dog synset:

dogsp ¼ class~canineid þmember~packid: ð5Þ

where all variables are D-dimensional vectors. We have disambiguated the two vectors

assigned to a synset by denoting ID-vectors with the id subscript, and semantic pointers

with the sp subscript.

We can now use the combination of circular convolution and involution to access the

relations that belong to dog. As an example, imagine we want to extract the synset that

dog is related to via the class relation-type. We could achieve this by circularly convolv-

ing dogsp with class:

dogsp~class

¼ ðclass~canineid þmember~packidÞ~class

¼ class~canineid~classþmember~packid~class

¼ canineid~class~classþmember~packid~class

� canineid þmember~packid~class

¼ canineid þ noise

ð6Þ

yielding a vector that is similar to canineid.
One might wonder why we need ID-vectors at all; it might seem more straightforward

to define the semantic pointers for a synset directly in terms of semantic pointers for

related synsets. For example:

dogsp ¼ class~caninesp þmember~packsp: ð7Þ

This is problematic for a number of reasons. The most prominent is that WordNet (and

semantic networks in general) have directed cycles, and thus some of the semantic point-

ers would have to be defined in terms of one another, which has no obvious solution.

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 11

5.3. Sentences

We can also use this technique to create semantic pointers encoding sentences involv-

ing any of the terms in WordNet. In this case, we pair up sentence roles and synsets fill-

ing those roles, and store the corresponding vectors in a semantic pointer. This requires

assigning random vectors to the roles, just as we have done for relation-types. If we have

the roles subject, verb, and object with assigned vectors subject, verb, and object,
respectively, then the semantic pointer for the sentence “dogs chase cats” would be:

sentencesp ¼ subject~dogid þ verb~chaseid þ object~catid;

Circular convolution and involution can later be used to extract the synset filling a given role in

a sentence, similar to Eq. (6). For example, sentencesp~object will be a vector similar to catid.
We can also encode sentences with multiple levels of recursive depth. To demonstrate,

the recursively structured sentence “mice believe that dogs chase cats” will have the

semantic pointer:

deep�sentencesp ¼ subject~mouseid þ verb~believeidþ
object~ðsubject~dogid þ verb~chaseid þ object~catidÞ:

Top-level constituents (e.g., mouseid;believeid) can be extracted in the usual way, while

constituents of the embedded clause can be extracted by using a compound query vector.

For example, deep�sentencesp~ðobject~verbÞ will be a vector similar to chaseid. Impor-

tantly, because we are using circular convolution for binding, deep�sentencesp still has

the same dimensionality as all its constituents.

5.4. Associative memory

The result of computing dogsp~class as in Eq. (6) is insufficient in two ways. First,

because involution is only an approximate inverse, and because of the other term present,

dogsp~class is only similar to canineid; in other words, there is noise that must be

removed. Second, canineid is not particularly useful on its own; it would be more useful

to have caninesp, from which we could recursively extract further structural information.

These problems can be solved simultaneously by an associative memory.

Associative memories store ordered pairs of vectors 〈ξ,g〉. In an analogy with computer

memory, the first vector ξ can be thought of as an address, and the second vector g can

be thought of as the information stored at that address. When the memory receives an

input, if that input is sufficiently similar to some ξ, then the memory outputs the corre-

sponding g. It is easy to see how this solves our problems if we let the ξ’s be ID-vectors

and the g’s be semantic pointers: The associativity provides us with the semantic pointers

instead of the ID-vectors, and the fact that the input only has to be sufficiently similar to

some ξ solves the denoising problem.

12 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

Given N pairs of vectors to associate, hnk; gki for k 2 1. . .N, the following simple

algorithm implements this associative memory functionality:

Algorithm 5.1: Associate (input)

sum 0

for k 1 to N

similarity DOT PRODUCTðnk; inputÞ
scale 1 if similarity[threshold else 0
sum sumþ scale � gk

8<
:
return(sum)

If threshold is set correctly, scale will be non-zero for exactly one value of k, call it
k0, and the output of the function will be gk0 . For example, if we were using a vocabulary

that contained only the synsets dog, canine, and pack, then the pairs stored in the associa-

tive memory would be hdogid;dogspi; hcanineid; caninespi, and hpackid;packspi. Now

recall Eq. (6), where we showed that:

dogsp~class � canineid þmember~packid~class;

Since canineid is contained in dogsp~class through vector addition, canineid and

dogsp~class will be similar. On the other hand, dogid does not appear in this equation at

all, and because two random high-dimensional vectors have a low probability of being sim-

ilar, dogsp~class is unlikely to be similar to dogid. Finally, packid appears in dogsp~class
through circular convolution, which, as mentioned above, returns a vector that is dissimilar

to its inputs. In short, with high probability dogsp~class will be similar to canineid and dis-

similar to the other ID-vectors. Thus, when dogsp~class is given as input to the associative

memory, scale will only be non-zero for the canine pair, and the output will be caninesp.

5.5. Extraction algorithm

To summarize, we encode WordNet by assigning every synset two vectors: a randomly

chosen ID-vector and a semantic pointer encoding the synset’s structural relations. Later,

given a semantic pointer corresponding to a synset and some query vector corresponding

to a relation-type, if the synset has a relation of the given type, then we can extract the

semantic pointer for the target of that relation with the following algorithm:

Algorithm 5.2: Extraction (sp, query)

inv query INVOLUTIONðqueryÞ
noisy id CIRCULAR-CONVOLUTIONðsp; inv queryÞ
target sp ASSOCIATEðnoisy idÞ
returnðtarget spÞ

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 13

This exact same algorithm can also be used to extract the constituents of semantic

pointers encoding sentences composed of WordNet synsets.

One potential issue with this algorithm is the way in which it handles synsets that have

multiple relations of the same type (which is not uncommon in WordNet). For example,

the synset lion is related to both pride and panthera via the member relation-type. When

the Extraction Algorithm is run with lionsp and member as input, the output will be

pridesp þ pantherasp. This vector still contains all the relational structure of both pride
and panthera, and can be used in further extractions without difficulty. Consequently,

returning the sum of these two vectors in response to a member query is considered cor-

rect in the experiments we run in Section 8. We also note that the fact that this is an

issue may be a quirk of WordNet; in human knowledge bases, concepts with multiple

relations of exactly the same type may be rare or non-existent. For example, these two

relations (lion ���!member
panthera and lion ���!member

pride) could be given two different relation

types, reflecting the two different domains of knowledge they are concerned with.

We now move on to neural implementation and show that given a list of pairs of ID-

vectors and semantic pointers encoding WordNet, we can construct a spiking neural net-

work that performs the Extraction Algorithm.

6. Neural implementation

Since our end goal is a scalable, biologically plausible system for representing and

manipulating structured knowledge, our next step is to show how the Extraction Algo-

rithm we have been discussing can be implemented in realistic spiking neurons. We begin

by presenting a framework that provides a principled approach to constructing networks

of spiking neurons that represent and transform high-dimensional vectors. We then show

how this technique can be applied to create a network implementing both involution and

circular convolution. Finally, we use a slightly more advanced application of this method

to construct a neural associative memory which is able to map a noisy version of any ID-

vector to the corresponding semantic pointer. These networks can be composed into a sin-

gle network implementing the Extraction Algorithm from the previous section, permitting

the representation and extraction of structured knowledge by biologically realistic neu-

rons.

6.1. Neural representation and transformation

For the purpose of neural representation and computation, we employ the NEF, a set

of methods for building biologically plausible neural models (Eliasmith & Anderson,

2003). These methods have been broadly employed to generate detailed spiking neural

models of a wide variety of neural systems and behaviors, including the barn owl audi-

tory system (Fischer, 2005; Fischer, Pe~na, & Konishi, 2007), parts of the rodent naviga-

tion system (Conklin & Eliasmith, 2005), escape and swimming control in zebrafish (Kuo

& Eliasmith, 2005), tactile working memory in monkeys (Singh & Eliasmith, 2006),

14 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

decision making in humans (Litt et al., 2008) and rats (Laubach et al., 2010; Liu et al.,

2011), and the basal ganglia system (Stewart et al., 2010, 2012). These methods also

underlie the recent Spaun model, currently the world’s largest functional brain model

(Eliasmith et al., 2012). Here, we present a brief discussion of the aspects of the NEF

that are required for neural structured representation using HRRs. In particular, we dis-

cuss the NEF’s principles of neural representation and transformation. The NEF also pro-

vides principles for dynamics, facilitating the implementation of arbitrary dynamical

systems in recurrent neural networks, though these are not required for the feedforward

networks used in the present model. All figures in this section were created using the

Nengo neural simulation software package, which is available online at http://nengo.ca/.

The core idea behind the NEF’s approach to neural representation is that the activity

of a population of neurons at any given time can be interpreted as representing a vector.

Importantly, the dimensionality of the represented vector is, in general, not equal to the

size of the neural population. A typical case would have the activity of a population of

40 neurons representing a two-dimensional vector. We now outline the details of the rela-

tionship between the activities of a neural population and the vector those activities are

taken to represent.

Let E denote the dimensionality of the vectors that a given neural population is capa-

ble of representing. A basic assumption of the NEF is that each neuron in the population

has a “preferred direction vector” of dimensionality E, essentially a direction in the popu-

lation’s “represented space,” which the neuron responds to most strongly. For instance,

this is a useful way to characterize the behavior of motor neurons. Georgopoulos, Lurito,

Petrides, Schwartz, and Massey (1989) found that neurons in motor cortex of rhesus mon-

keys have a preferred arm movement direction, the direction being different for each neu-

ron. These neurons become more active as the monkey’s current arm movement direction

approaches their preferred direction. The activities of these neurons, taken together, can

be interpreted as representing the direction of arm movement in three-dimensional physi-

cal space. This idea is quite intuitive in motor cortex, as the represented vector is directly

observable; however, this notion is useful in general, and the NEF extends it to all neural

representation.

To formalize the notion of preferred direction vector, the NEF assumes that the activity

of the ith neuron in a neural population can be written:

aiðxÞ ¼ GiðeTi xÞ; ð8Þ

where ai is the activity of the neuron, Gi is the neuron’s activation function, ei is the neu-

ron’s preferred direction vector, and x is the E-dimensional input to the neural population.

eTi x is the dot product between the neuron’s preferred direction vector and the input vec-

tor, and acts as a measure of similarity.

The NEF works for arbitrary neural activation functions, so, in accordance with our

goal of biological realism, we choose Gi to be a spiking leaky integrate-and-fire (LIF)

activation function in all the work presented in this paper. The details of the LIF activa-

tion function can be found in the appendix. The LIF is used because it provides a conve-

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 15

http://nengo.ca/

nient balance between computational efficiency and biological realism, capturing the pri-

mary non-linearity in neural systems: the neural spike. Moreover, the Spaun model was

composed largely of LIF neurons, and there it was found that the statistics of neural firing

in many of the simulated brain areas matched well with observed statistics in their real

counterparts (Eliasmith et al., 2012).

Equation (8) is referred to as the encoding equation because it describes how an input

vector, in this case x, is encoded into the activities of a neural population. Preferred

direction vectors will henceforth be called encoding vectors because of their central role

in this process. When building networks using the NEF, the encoding vectors for a neural

population are typically chosen uniformly at random from the unit hypersphere in the

population’s represented space. The encoding process is depicted in Fig. 1 for a neural

population capable of representing two-dimensional vectors. Note that while only four

(a) (b)

(c) (d)

Fig. 1. NEF encoding. A population of four neurons encoding a two-dimensional vector. (a) Both dimensions

of the input to the neurons, plotted over a period of 1.2 seconds. The input vector is determined by

x1 ¼ sinð6tÞ and x2 ¼ cosð6tÞ. (b) Spikes generated by four neurons driven by the input in (a), according to

the encoding equation (Eq. (8)). (c) A different visualization of the input in (a). The input vector traces a

clockwise path around a unit circle. Older inputs are in lighter gray. The encoding vectors of all four neurons

are also shown. Comparing (b and c) shows that the neurons are most active when the input vector is closest

to their encoding vectors. (d) The firing rate tuning curves of all four neurons as a function of the angle

between the input vector and the encoding vector. Parameters for Gi, the neural activation function, are ran-

domly chosen for each neuron, which is why the tuning curves are different heights and widths. (Reproduced

from Eliasmith et al., 2012, with permission.)

16 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

neurons are used for ease of presentation, it typically requires more than four neurons to

accurately represent two-dimensional vectors.

So far, we have shown how a vector can be encoded into neural activities. However,

to fully characterize neural representation, we also need to say something about decoding
those neural activities. In other words, given the activities of a neural population, how do

we reconstruct the vector that the population is representing? The NEF assumes that a

linear decoding is sufficient for capturing information transfer between neural popula-

tions. Given aiðxÞ for i 2 1. . .N, the set activities of a neural population, the vector repre-

sented by that population can be approximately reconstructed as:

x̂ ¼
X
i

aiðxÞdi; ð9Þ

where x̂ is a reconstruction of x, and the di are a set of appropriately chosen column vec-

tors (one for each neuron) called decoding vectors. These decoding vectors all have

dimensionality E.
Decoding vectors that provide the best reconstruction can be found through a least-

squares optimization process, outlined in detail in the appendix. Essentially, we find the

di that minimize the equation:

Error ¼ 1

2

Z
ðx� x̂Þ2dx

¼ 1

2

Z
ðx�

X
i

aiðxÞdiÞ2dx:
ð10Þ

This optimization is typically performed offline, before the network is instantiated.

The decoding vectors found by minimizing Eq. (10) produce the optimal linear recon-

struction of x from the activities of the neurons. In principle, however, we can also find

decoding vectors that reconstruct f(x), an arbitrary vector-valued function of x. We denote

these decoding vectors dfi . The reconstruction of f(x) is then computed from the activity

of the neural population using the equation:

dfðxÞ ¼X
i

aiðxÞdfi: ð11Þ

These decoding vectors are found by minimizing:

Error ¼ 1

2

Z
ðf ðxÞ � dfðxÞÞ2dx

¼ 1

2

Z
ðf ðxÞ �

X
i

aiðxÞdfi Þ2dx;
ð12Þ

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 17

with respect to dfi . In this more general case, the dimensionality of each decoding

vector is equal to the dimensionality of the range of the function f. The accuracy

of the reconstruction depends on the type of function and the tuning curves of the

neurons. See Eliasmith and Anderson (2003) (section 7.3) for a discussion of this

topic.

Thus far, we have primarily concerned ourselves with the question of neural represen-

tation, that is, how can an input vector be encoded in the activities of a neural population,

and how can those activities be decoded to obtain a reconstruction of the encoded vector

or a function thereof. However, representation alone is not terribly useful; to perform

interesting information processing, we also need to be able to transform those representa-

tions. Fortunately, we’ve already defined the concepts required to understand the NEF’s

approach to neural transformation.

Suppose we have two neural populations A and B, and that there are all-to-all feedfor-

ward connections from the neurons in A to the neurons in B. Further suppose that we

want to set the connection weights between A and B such that if, at a given time, A is

representing some vector x, then B will represent f(x), where f is some arbitrary vector-

valued function. In other words, we want to derive connection weights between the neu-

rons in A and B such that dfðxÞ is first decoded from the activities in population A, and

then encoded into the activities of population B. Conveniently, the NEF tells us that we

can derive connection weights that achieve this in terms of the encoding vectors of B and

decoding vectors of A for function f. Formally, we substitute dfðxÞ into Eq. (8) (modified

for population B):

bjðxÞ ¼ GjðeTj dfðxÞÞ; ð13Þ

¼ GjðeTj ð
X
i

aiðxÞdfi ÞÞ; ð14Þ

¼ Gjð
X
i

ðeTj dfi ÞaiðxÞÞ; ð15Þ

where ai is the activity of the ith neuron in A, and bj is the activity of the jth neuron in

B. Thus, we have the activity of neuron j in B in terms of a weighted sum of the activi-

ties of the neurons in A. This indicates that weight on the connection from neuron i in
population A to neuron j in population B should be:

xij ¼ eTj d
f
i ; ð16Þ

which is simply the dot product, or similarity, between ej and dfi .
As a final note on transformation, if we additionally want to perform a linear transfor-

mation, represented by a matrix L, on f(x) (i.e., we want Lf(x) to be represented in popu-

lation B), then we can simply include L in the weight equation as follows:

18 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

xij ¼ eTj Ld
f
i : ð17Þ

This is the general weight equation for computing any combination of linear and non-lin-

ear functions between two neural populations.

To summarize, the process for creating two populations of neurons A and B, and

deriving connection weights from A to B such that Lf(x) is represented by population B

whenever x is represented by population A, is as follows:

1. Create the neurons in populations A and B. For each neuron in each population,

randomly choose parameters for the neural activation function and an encoding

vector from the unit hypersphere.

2. Calculate the decoding vectors for population A that minimize Eq. (12).

3. Calculate the weight matrix between A and B using Eq. (17).

Simulations of spiking neural networks with connection weights derived using this

technique are depicted in Fig. 2 for the identity function and the element-wise square

function, with L set to the identity matrix in both cases.

This brief discussion does not capture the generality of the NEF, although it is suffi-

cient for characterizing neural structured representation. As we are concerned with scal-

ing, an important final note is that as more neurons are added to a population, the quality

of its representation improves. Specifically, the mean-squared-error goes down as 1/N
(Eliasmith & Anderson, 2003). Consequently, representations and transformations can be

implemented to any desired precision, as long as there is a sufficient number of neurons.

One of the main concerns of this paper is to determine whether the transformations and

representations necessary for representing human-scale lexical structure can be done

with a reasonable number of neurons. We now show how the NEF can be applied to

create spiking neural networks that compute the operations required by the Extraction

Algorithm.

6.2. Circular convolution in spiking neurons

Like any kind of convolution, circular convolution can be formulated as an element-

wise multiplication in the Fourier space. As both the Fourier transform and its inverse are

linear operators, circular convolution can be written in terms of linear operators and an

element-wise multiplication:

x~y ¼ F�1ðFx � FyÞ

where x and y are two arbitrary input vectors, } indicates an element-wise multiplication,

and F and F�1 are matrices computing the Fourier transform and its inverse, respectively.

A neural network that computes circular convolution using this formulation is shown in

Fig. 3. Populations A and B represent the two input vectors and have feedforward con-

nections to population C. These connections are set up to compute the Fourier transform

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 19

(a)

(b)

Fig. 2. (a and b) Each depicts a 1.2 s simulation of a spiking neural network designed using the NEF. In each

case, the network consists of a neural population A with feedforward connections to a second neural population

B. A and B each contain 20 neurons and each represent a two-dimensional vector. Input to population A in each

network is given by x1 ¼ sinð6tÞ and x2 ¼ cosð6tÞ, where t is current simulation time. In (a) the connection

weights between A and B compute the identity function, and in (b) the weights compute the element-wise square

function. To create each network, we first initialized the neurons in each population with random encoding vec-

tors and parameters for the neural non-linearity G. We then computed connection weights implementing the

desired functions by first minimizing Eq. (12) to find the appropriate decoding vectors, and subsequently using

Eq. (16) to find the weights explicitly. Spike rasters for each population are shown. Neural decodings obtained

by applying decoding vectors for the identity function to the spike rasters (using Eq. (9)) are shown above.

20 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

by multiplying by F, causing C to represent the concatenation of the two Fourier trans-

formed vectors. C is connected to population D, and these connections simultaneously

compute the element-wise product of the two Fourier transformed vectors (using the

appropriate decoding vectors), and take the inverse Fourier transform of the result by

multiplying by F�1. The result is that x~y is represented in population D.

The weights for this network are found using Eq. (17). Here and throughout the paper,

when showing connection weights, we will use i to index the neurons in the upstream

(a)

(b) (c)

Fig. 3. Simulation of a neural circuit for computing circular convolution of two 10-dimensional vectors. A,

B, C, and D are populations of spiking neurons. Connection weights between populations are derived using

the techniques from Section 2 such that D represents the circular convolution of the two input vectors. Input

vectors u, v, x, and y were randomly chosen from the 10-dimensional unit hypersphere. (a) Graphs showing

input vectors and vectors represented by populations A, B, and D over a 1.2 s simulation, where the inputs

change after 600 ms. In each graph, only 5 of the 10 dimensions are shown to reduce clutter. First column:

the input vectors. Second column: vectors represented by the populations A and B, neural representations of

the input vectors. Third column: vector represented by population D, which should be the circular convolu-

tion of the two input vectors. (b) Architecture of the neural circuit. The letters are populations of neurons and

the arrows are all-to-all neural connections. (c) Similarity between the vector represented by population D

and the vectors u~v and x~y over the 1.2 s simulation. If the circuit is correctly computing circular convolu-

tion, we would expect the similarity to u~v to be near 1 before 600 ms, and the similarity to x~y to be near

1 after 600 ms, which is clearly the case.

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 21

(pre-synaptic) population, and j to index neurons in the downstream (post-synaptic) popu-

lation. The weights for the convolution network are:

xA!C
ij ¼ eTj F1di

xB!C
ij ¼ eTj F2di

xC!D
ij ¼ eTj F

�1d�i

where d�i are decoding vectors for the element-wise multiplication function for population

C. Note that F1 ¼ FT 0
� �T

and F2 ¼ 0 FT
� �T

. This zero-padding is required because

the default behavior for two neural populations converging on a single downstream popu-

lation is for the vectors to be added. However, we want Fx and Fy to be concatenated in

C, so that the network can subsequently perform element-wise multiplication. Zero-pad-

ding the Fourier transform matrices implements this concatenation.

Although this operation may seem complicated, it is surprisingly natural for neural

computation in several important respects. First, it has been shown to be learnable in a

spiking network (Stewart et al., 2011). Second, for 512-dimensional vectors it has been

shown to result in connection matrices that respect known neural connectivity constraints

(Eliasmith, 2013).

6.3. Involution in spiking neurons

As we saw in our initial discussion of the HRR algebra, the involution of a vector is

an approximate inverse with respect to circular convolution. It can be computed by

reversing all but the first element of the vector, which stays in place. Since this is a per-

mutation, it is a linear operation, and therefore, there exists a matrix V which computes

it. Consequently, there is a straightforward modification we can apply to our convolution

network such that the second input is involuted before the Fourier transform is applied,

resulting in a network that computes x~y rather than x~y. Specifically, we change the

connection weights between populations B and C to:

xB!C
ij ¼ eTj F2Vdi; ð18Þ

We now have a neural network computing two of the three operations required by the

Extraction Algorithm. The last component is a neural associative memory, which requires

a slightly more nuanced application of the NEF.

6.4. Neural associative memory

Recall that the aim of the associative memory is to associate pairs of vectors 〈ξ,g〉,
and for our purposes the ξ’s are the ID-vectors and the g’s are the semantic pointers. We

now show how the NEF can be applied to create a spiking neural network capable of

22 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

efficiently implementing the associative memory functionality. The approach we employ

here was first demonstrated by Stewart, Tang, and Eliasmith (2011) to build an auto-asso-
ciative memory (where for each stored pair hξ,gi, we have ξ = g), though it can be trivi-

ally extended to implement a general hetero-associative memory. That paper

demonstrated that networks built using this approach significantly outperform linear asso-

ciators, direct function approximators, and standard multi-layer perceptrons in terms of

both accuracy and scalability. Such networks also have an advantage in terms of biologi-

cal plausibility, since they are implemented in spiking neurons.

This neural associative memory is essentially a neural implementation of the association

algorithm presented in Section 4. Each pair to be associated is assigned a small (� 20) neu-

ron population. The encoding vectors of this population are set equal to ξ, and the neurons

are given a high threshold so that they only spike when the input is sufficiently similar to ξ.
The decoding vectors of the population are chosen to approximate a thresholding function,

and g is used as a linear operator. The overall effect is that when a population is active, it

outputs its assigned g, and a population is active if and only if the input is sufficiently simi-

lar to its assigned ξ. All these populations converge on a single output population, where

the inputs are summed by the dendrites. In essence, each neural population computes, in

parallel, one iteration of the loop in Algorithm 5.1. To be explicit, for sub-population k
assigned the vector pair hnk; gki, the input and output weights are:

xin
ij ¼ nTk di xout

ij ¼ eTj gkd
thresh
i ; ð19Þ

where dthresh are decoding vectors for the thresholding function f(x) = 1.0 if (x > 0.3) else 0.

We have described all of the techniques required to create a spiking neural network

for extracting the constituents of semantic pointers. We claim that the network obtained

by composing these two networks, such that the output of the involution/convolution net-

work is fed into a neural associative memory, constitutes a neural implementation of the

abstract Extraction Algorithm. In what remains, we present the details of the neural

model and run experiments on it to determine how it performs at scale.

7. The neural model

The model consists of a network of 2,506,980 spiking neurons constructed using the

techniques outlined above. Given a semantic pointer corresponding to a WordNet synset

and a query vector corresponding to a relation-type, the network returns the semantic

pointer corresponding to the target of the relation, implementing the Extraction Algo-

rithm. The network can be used to traverse the WordNet hierarchy by running it recur-

sively, with the output of one run used as input on the next run. Low-level details about

the model and its parameters can be found in the Appendix.

A schematic diagram of the model is depicted in Fig. 4. The rectangles correspond to

populations of spiking neurons, which represent and manipulate high-dimensional vectors.

The dark gray population, which represents the concatenation of the Fourier transforms

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 23

of the two input vectors, contains 51,400 neurons, and the four light gray populations

contain 25,600 neurons each. The associative memory contains a separate 20-neuron pop-

ulation for each of the 117,659 synsets in WordNet. The grand total is thus 2,506,980

neurons, equivalent to approximately 14.7 mm2 or 0.147 cm2 of cortex (as there are

about 170,000 neurons per mm2; Eliasmith, 2013). This is much smaller than any of the

approaches discussed in Section 2, all of which require on the order of 500 cm2 of cortex

or more. More significantly, ours is the only approach whose neural resource require-

ments do not contradict our empirical knowledge about the size of relevant brain areas.

Consequently, if our experiments confirm that our network can accurately extract the rela-

tional structure from WordNet synsets, it will constitute a significant advance in the study

of biologically plausible representations of structured knowledge.

The tasks of moving the output into the input for hierarchical traversals, controlling

which vector is used as input to the query population, etc., are not neurally implemented

here as they are peripheral to our central concern of representing human-scale structured

knowledge in a biologically plausible manner. However, Spaun, a large scale, functional

brain model constructed using the NEF, is evidence that it is possible to achieve this kind

of control in a scalable spiking neural network (Eliasmith et al., 2012). Spaun also con-

tains roughly 2.5 million neurons, which means adding in this control would at worst

double our neuron counts, leaving the model well within the range of neural plausibility;

moreover, Spaun contains several modules (e.g., vision and motor control) which are

unrelated to the problem of representing structure, making this is an extremely conserva-

tive estimate.

Our model is a significant departure from the majority of connectionist work in that no

online learning occurs; the connection weights implementing the required transformations

are derived offline before the network is instantiated, using the NEF techniques. We believe

the problem of large-scale connectionist knowledge representation is difficult enough that it

Fig. 4. The network of spiking neurons designed to implement the Extraction Algorithm from Section 5.5.

Assume Hsp ¼ Q~Tid þ R~Uid. The rectangles correspond to populations of spiking neurons and are

labeled with the values we expect them to represent when the network is given Hsp and Q as input. Arrows

represent all-to-all feedforward connections between populations and are labeled with the elements of the

NEF-derived weight matrices mediating them. In these weight matrices, i always indexes neurons of the

upstream population, j always indexes neurons of the downstream population, and k indexes pairs of vectors

in our vector encoding of WordNet. Light gray populations represent 512-dimensional vectors. The dark gray

population represents the concatenation of two Fourier transformed 512-dimensional vectors, and thus repre-

sents a 1,028-dimensional vector.

24 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

is useful to focus on representation, and we leave the question of learning for future work.

We do note that it has been shown that circular convolution can be learned in spiking neu-

rons using a biologically plausible learning rule (Stewart et al., 2011), and work is under

way investigating how a neural associative memory of the kind used in our model could be

learned from training data (Voelker, Crawford, & Eliasmith, 2014).

8. Experiments

We performed three experiments on both the abstract Extraction Algorithm and its

neural implementation, to test whether WordNet is accurately encoded. For convenience,

we will refer to both implementations as “models.” A trial consists of using a model to

answer a single question about the WordNet graph (the question is different for each

experiment). A run consists of a group of trials. No information was added to or removed

from either model’s associative memory between experiments, demonstrating that both

models are capable of performing all three tasks unmodified.

For each experiment, we execute 20 runs, calculate the performance on each run as the

percentage of trials on which the model answered correctly, and report the mean perfor-

mance over all the runs. To obtain distributional information about these results, we

employ a bootstrapping method to obtain 95% confidence intervals.

Each trial consists of using a model for one or more extraction operations, where a

semantic pointer and a query vector are presented as input and the algorithm outputs a

vector (which may or may not be a semantic pointer). In the neural case, for each

extraction operation the model was simulated for 100 ms with a simulation timestep of

1 ms, after which the vector represented by the rightmost population in Fig. 4 was

taken to be the output of the model. Code for constructing the models and running the

experiments is hosted online in a github repository at https://github.com/e2crawfo/

hrr-scaling.

8.1. Experiment 1: Simple extraction

This experiment investigates the ability of a model to traverse a single edge in the

WordNet graph. We present the model with a semantic pointer corresponding to a ran-

domly chosen synset and the vector corresponding to a relation-type that the synset is

known to possess, and see if the model outputs the semantic pointer corresponding to

the target of that relation. For example, we might present the model with dogsp as the

semantic pointer and class as the query vector, and expect the model to return

caninesp.
To be considered correct, the vector returned by the model must have a larger dot

product with the correct semantic pointer than with any incorrect semantic pointer in the

vocabulary, and this similarity must exceed a threshold of 0.7. The value of 0.7 is some-

what arbitrary, though it does ensure that the output vectors have sufficient fidelity to be

put to further use. In this experiment, each run consists of 100 trials.

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 25

8.2. Experiment 2: Hierarchical extraction

The simple extraction experiment assesses the general accuracy of a model of knowl-

edge representation, but it only tests individual relationship links. The hierarchy traversal

experiment is designed to test a model’s ability to traverse hierarchies of arbitrary depth

in the WordNet graph.

To that end, we use the model to answer the following question: Given a starting syn-

set, a goal synset, and a relation-type, can the goal synset be reached from the starting

synset by following only links of the specified type? To have the model answer this ques-

tion, we present it with the semantic pointer corresponding to the starting synset as well

as the vector for the given relation-type. We then run the model and compare the output

vector to the semantic pointer for the goal synset. If they are the same (their dot product

is above a fixed threshold), then the model responds with a Yes. If not, we feed the out-

put vector back into the model as the new semantic pointer and run the model again

using the same query vector. This process is repeated until the model returns a vector

with a norm below a fixed threshold, in which case the model responds with a No.

As an example, if the starting synset is dog and we follow only relations whose type is

class, we first get canine, which in turn yields carnivore, followed by placental mammal, and
so on, until the synset entity is finally reached in 13 links. The correct answer is Yes if and

only if the goal synset is one of these synsets. Further concrete examples of possible queries

and correct responses are given in Table 1. Our tests were performed using only the class rela-
tion-type as it is the most prominent in WordNet and permits the deepest traversals. Each run

consists of 40 trials with an even split between positive and negative instances. A positive

instance is one in which the goal synset can be reached from the starting synset in the Word-

Net graph, and the correct response is Yes. Results of a simulation where we test the neural

model on an instance of the Hierarchical Extraction test are shown in Fig. 5.

8.3. Experiment 3: Extracting from sentences

The previous experiments have focused on relations included in WordNet. The current

experiment is designed to go further, and demonstrate that we can use semantic pointers to

encode arbitrary sentence-like objects possessing recursive structure, and that the model is

capable of extracting the constituents of such constructions without modification.

We take the approach suggested in Section 5.3, modeling sentences as collections of

roles paired with WordNet synsets as role-fillers. If each role is assigned a random vector,

Table 1

Examples of instances and correct responses in the Hierarchical Extraction test

Starting Synset Target Synset Relationship Type Is Related?

dog vertebrate class Yes

vertebrate dog class No

dog entity class Yes

dog cat class No

26 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

(a)

(b)

(c)

(D)

Fig. 5. Result of a simulation during which the network was used to perform the Hierarchical Extraction test.

The starting synset is gorilla, the relation type is class, and the target synset is ape. Every 100 ms we com-

pute the norm of the output vector and the dot product between the output vector and apesp. If the norm is

below a threshold, the network’s response is No. If the dot product is above a threshold, the network’s

response is Yes. Otherwise, the output vector is fed back in as input, and the simulation continues. (a) Dot

product between semantic pointers and the vector represented by the input population. (b) Dot product

between ID-vectors and the vector represented by the population that feeds into the associative memory. (c)

Spikes rasters for neurons in the association populations corresponding to the synsets listed in the legend.

Association populations for all other WordNet synsets were included in the simulation but had no spiking

activity. (d) Dot product between semantic pointers and the vector represented by the output population. The

network can be seen to traverse the WordNet graph, starting from gorilla and eventually reaching ape. At
300 ms, the dot product of the output vector with apesp is above the threshold and the network responds (cor-

rectly) with Yes.

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 27

then such sentences can be encoded as semantic pointers just as we have previously

encoded the relational structure of WordNet synsets as semantic pointers. For instance,

recall that in Section 5.3, we showed that the sentence “mice believe that dogs chase

cats” can be encoded as a semantic pointer in the following way:

sentencesp ¼ subject~mouseid þ verb~believeidþ
object~ðsubject~dogid þ verb~chaseid þ object~catidÞ:

ð20Þ

One difference here is that role vectors are chosen randomly from the set of so-called

“unitary” vectors instead of from the unit hypersphere as with relation-type vectors. Uni-

tary vectors have the special property that involution is their exact inverse (Plate, 2003),

which permits the sentence constituents to be extracted with higher accuracy.

We emphasize that our neural network does not need to be modified in any way to

extract the constituents of a semantic pointer encoding a sentence, even though the net-

work will not have encountered such a semantic pointer previously. This is possible

because the vectors that we want to extract from the sentence semantic pointers are, by

construction, ID-vectors corresponding to WordNet synsets, which are stored in the neural

network’s associative memory.

On each trial of this experiment, we randomly generate a semantic pointer encoding a

sentence according to the steps outlined in Fig. 6. Sentence-roles are included in sentences

according to the probabilities in Table 2. We then test the model’s ability to extract the con-

stituents of the sentence. For the surface-level constituents, we present the model with the

semantic pointer representing the sentence, and the appropriate role vector as the query vec-

tor. For example, if we present sentencesp and verb, we should expect the model to return

believesp. The process is similar for constituents of the embedded clauses, except we use

compound query vectors. If we present the model with sentencesp and object~subject, we
expect it to output dogsp. Each run consists of 30 trials, and on each trial the performance is

measured as the percentage of queries that the model responded to correctly, using the same

correctness criteria as in Experiment 1. Results for extracting surface and embedded constit-

uents are reported separately.

Fig. 6. Steps for creating semantic pointers for the sentence extraction experiment.

28 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

8.4. Results

Results of the experiments are presented numerically in Table 3 and graphically in

Fig. 7. Performance on all three tasks by both the abstract and neural implementations of

the Extraction Algorithm is near 100%. The success of the abstract algorithm shows that

WordNet is accurately stored in our vector encoding. The success of the neural imple-

mentation shows that no significant penalty is incurred by implementing the algorithm in

spiking neurons. More generally, it shows that a spiking neural network is capable of

extracting structure from any element of a human-scale vocabulary. Combined with the

fact that, unlike previous approaches, this network places neural resource demands that

are consistent with anatomical data, this constitutes the first biologically plausible neural

implementation of a human-scale structured knowledge base.

9. Discussion

9.1. Scaling

We have presented the details of our approach to encoding structured representation

and demonstrated empirically that it is capable of encoding a human-scale knowledge

Table 2

Roles for sentence generation and their properties

Role Name Probability of Occurrence Part of Speech

Subject 1.0 Noun

Object 0.8 Noun

Verb 1.0 Verb

Adverb 0.6 Adverb

Subject adjective 0.3 Adjective

Object adjective 0.3 Adjective

Table 3

Numerical values for extraction performance

Experiment Type % Correct

95% CI

Runs Trials (per Run)Lower Upper

Simple Abstract 99.0 98.6 99.4 20 100

Neural 99.2 98.9 99.3

Hierarchical Abstract 96.5 95.0 97.8 20 40

Neural 98.5 97.8 99.3

Sentence (surface) Abstract 94.3 93.3 95.3 20 30

Neural 97.2 96.3 97.9

Sentence (embedded) Abstract 95.1 94.2 95.9 20 30

Neural 96.2 95.3 97.0

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 29

base with much more modest resource requirements than its competitors. Specifically, our

model uses roughly 2.5 million neurons to encode a structured lexicon containing

117,659 words. Individual relations in the lexicon can be traversed with 99% accuracy,

hierarchies with up to 13 levels can be traversed with 98% accuracy, and the network

can be used to extract constituents of recursively structured sentences with 96% accuracy.

Unlike past approaches, which use a minimum of 480 cm2 of cortex to represent much

simpler structures, the method as demonstrated here requires less than 1 cm2 of cortex.

Like past work, there are many aspects of linguistic processing that are not captured by

our model. However, its modest use of cortical resources makes it plausible that it may

do so with further development.

We believe that this improved scaling largely results from capturing structured repre-

sentation using compressed, temporary signal processing states (i.e., semantic pointers

encoding sentences or synsets), rather than using fixed neural resources. In contrast, syn-

chrony-based approaches like DORA and LISA require a fixed neural node for every

proposition that we require the network to be able to represent. The NBA alleviates this

need by allowing bindings to be represented by the activation states of a neural “mesh.”

However, the substantial complexity required to implement this mesh results in scaling

that is still implausible. Moreover, both synchrony-based approaches and the NBA are

capable of representing only a few propositions at a time. This means that while they are

capable of representing short-term bindings (such as the sentences in our sentence experi-

ment), the long-term storage and retrieval of relations in a large, structured knowledge

base is well beyond their abilities. In particular, it is unclear how they would accomplish

the Hierarchical Extraction experiment.

Our approach bears some resemblance to Smolensky’s tensor product VSA. However,

we make a different set of tradeoffs which result in significantly improved scaling. In partic-

ular, we use a compressive binding operator, supported by an associative memory. This

avoids the explosion in neural resources required by Smolensky’s approach as the depth of

Fig. 7. Extraction performance. Error bars are 95% confidence intervals. On the Simple and Sentence experi-

ments, chance performance is roughly 1/117,000%, while on the Hierarchical experiment it is 50%.

30 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

encoded structures increases. In particular, it permits us to encode and extract the constitu-

ents of recursively structured sentences without making implausible neural resource

demands.

9.2. Theoretical considerations

Our model speaks to the long-standing debate regarding the relationship between clas-

sical, symbolic theories of mind and connectionist research. On one side of the debate are

the researchers who take an implementational view of connectionism. These researchers

hold that human behavior is best analyzed at a symbolic level, and that the role of con-

nectionist research is to show how neurons might implement classical symbolic represen-

tations (Fodor & Pylyshyn, 1988; Jackendoff, 2002). The past approaches we discussed

in Section 2 are all attempts to directly implement these classical symbols, where each

element (e.g., a word) in a composite symbol (e.g., a sentence) is explicitly represented.

On the other side of the debate are so-called eliminative connectionists who hold that

human behavior can be accounted for without implementing a classical symbol system

(Chalmers, 1990; Elman, 1991; Pollack, 1990). Upon first inspection, the approach we

have presented here may appear implementational, since our neural network is essentially

an implementation of the abstract Extraction Algorithm. However, semantic pointers,

while possessing compositional properties, are not truly classical symbols, and conse-

quently, we take our approach and its scalability as evidence in favor of non-classical

architectures.

One reason that our approach is non-classical is that it is not necessary to perform the

extraction operation on semantic pointers in order to do useful things with them, thanks

to the shallow semantics that we mentioned in Section 3. For instance, semantic pointers

that have similar relational structure will themselves be similar, which can be exploited

to perform useful computation without first extracting the elements in the representation

(Eliasmith, 2013). This is a hallmark of eliminative connectionism (Chalmers, 1990) and

is, by definition, impossible in a classical symbolic architecture.

Another reason that we consider semantic pointers to be non-classical is that they are

constructed through a lossy compression process. As a result, they do not contain com-

plete information about their constituents. In particular, the result of the decompression

operation (i.e., the involution/circular convolution combination) is only an approximation

of a constituent vector. In contrast, tensor product vectors representing complex structures

contain explicit representations of their constituents, and said constituents can be perfectly

extracted. Consequently, McLaughlin’s argument that tensor products are merely an

implementation of a classical symbolic system (McLaughlin, 1997) does not carry over to

semantic pointers.

We suspect that, in fact, the poor scaling of the past approaches is a direct result of

their use of classical representations. For instance, it is precisely because tensor products

include complete representations of every item in the structure being represented that they

scale poorly with the depth of the structure. On the other hand, because semantic pointers

are created from their constituent vectors through lossy compression, the dimensionality

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 31

of the representation remains constant as the depth of the encoded structure increases.

This permits deep structures to be efficiently encoded, as we saw in the sentence extrac-

tion experiment. We are able to correct for the information lost through compression in a

scalable manner using an associative memory.

One benefit of this kind of compressed representation is that models employing them

have natural limits on the depth of structure they can encode. Thus, there is no need to

appeal to a competence/performance distinction when theory and data differ. It is

expected, rather, that the performance of theoretical models will reflect the actual

observed performance of human subjects. For example, we have used these representa-

tions to capture human error rates as a function of list length in serial working memory

tasks (Eliasmith et al., 2012). However, much work remains to be done to demonstrate

that model and human performance will match across a wide variety of tasks.

9.3. Psychological plausibility

We do not believe that the model presented here is able to support significant claims

of psychological plausibility, other than the very general observation that our method

can be used to model lexical processing at a psychological scale. In short, this work is

best interpreted as a proof of principle, demonstrating that very large structured repre-

sentations can be efficiently encoded in a realistic neural network using our method. It

is tempting to make more specific psychological claims. However, our choice of Word-

Net as a lexical structure makes such claims implausible. WordNet was chosen because

it is a readily available human-scale, structured representation that is intended as a lexi-

cal database of the English language, bearing a resemblance to the human conceptual

system.

However, we remain uncommitted to WordNet from a psychological perspective

because of its significant limitations. For instance, human conceptual systems likely

employ relation-types that do not appear in WordNet, may contain concepts that WordNet

omits, and potentially has high-degree concepts in WordNet broken down into intermedi-

ate concepts. In addition, there are many concepts in WordNet that are unlikely to be in

an average person’s conceptual system, either because they are domain-specific (e.g.,

Gram’s Method, a staining technique used to classify bacteria) or culture-specific (e.g.,

eisteddfod, any of several annual Welsh festivals involving artistic competitions). These

limitations force the model to perform some of the tasks in ways that may not be psycho-

logically plausible. For instance, in performing a trial in the Hierarchical Extraction

experiment where the model has to decide whether dog has the type mammal (i.e.,

whether mammal can be reached from dog via the class relation-type), the model must

traverse canine, carnivore, and placental mammal along the way. It is unlikely that this

same traversal would occur for most human subjects.

In sum, we believe that the fact that our model is able to encode the WordNet seman-

tic network in a reasonable number of neurons lends support to our technique, but we are

not convinced that the specific lexical structure proposed by WordNet is psychologically

plausible.

32 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

9.4. Extensions and future work

We have already mentioned a number of possible extensions to the present work. For

instance, it is natural to embed our model within a control algorithm, such as that used in

the recent Spaun model (Eliasmith et al., 2012). We could then make use of our network

for cognitive tasks and bring it into better contact with behavioral data. Additionally, we

have acknowledged that it will be crucial to investigate how this neural representation

might be learned from training data while retaining its desirable scaling properties.

There are a number of avenues for improvement beyond these two. For instance, while

we have considered only lexical encoding here, semantic pointers are flexible enough to

allow many types of information to be encoded simultaneously (Eliasmith, 2013). To con-

struct a representation more reminiscent of a full-fledged concept, we could add percep-

tual, motor, or dynamics information to each semantic pointer. For the visual modality,

this could be accomplished by adding to each semantic pointer a term of the form

vision~visualData, where visualData is visual information about the concept, and vision
is a marker that is analogous to the relation-type vectors we have used throughout this

study. visualData could then be extracted from the semantic pointer by a modified ver-

sion of our model, with vision as the query vector. The model would have to be modified

to use an associative memory storing visual information instead of the lexical information

we have used in the present study. One could imagine a number of instances of our

model in different cortical areas, each with an associative memory storing the type of

information relevant for that brain area. Further modality-specific processing could then

be performed on the extracted information. A similar approach for a small-scale vocabu-

lary has been pursued in the Spaun model (Eliasmith et al., 2012).

10. Conclusion

We have provided empirical results demonstrating what we believe to be the first

implementation of a human-scale structured lexicon in a biologically plausible spiking

neural network. We have argued that this significant improvement in scaling over previ-

ously available approaches is a result of employing the representational resources pro-

vided by semantic pointers. We hope that by providing a specific, large-scale, functioning

model we will encourage theoretical disagreements about structured representation to be

replaced by implementations that can be quantitatively compared. In short, we believe

that it will advance the field to expect that proposals regarding neural implementation of

symbolic processing be implemented at scale.

Acknowledgments

Funding for this work was provided by the Air Force Office of Scientific Research

(FA8655-13-1-3084), National Science and Engineering Research Council of Canada,

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 33

Canada Research Chairs, the Office of Naval Research (N000141310419), the Canadian

Foundation for Innovation and the Ontario Innovation Trust.

Notes

1. Briefly, the calculation is as follows. Assume 1,500 nouns and 500 verbs. The num-

ber of nodes needed to represent arbitrary structures of the form relation(noun,

noun) is 5009 1,500 9 1,500 = 1.1 �109 nodes. Assuming 100 neurons per node,

which provides a signal-to-noise ratio of 10:1 (Eliasmith & Anderson, 2003), results

in 1:1� 1011 neurons. There are about 20� 106 neurons per cm2 (Pakkenberg &

Gundersen, 1997), and 2,500 cm2 of cortex (Peters & Jones, 1984) giving about

50� 109 neurons in cortex, less than that required for the assumed representation.

2. Following the values used in ff1, the calculation is as follows. van der Velde and

de Kamps (2006) note that each connection between symbol and word assemblies

requires 8 neural groups, and that 100 assemblies per role should be sufficient.

Assuming only two grammatical roles (to be conservative) results in

60,000920098 = 96�106 groups needed. This suggests 96�108 neurons are

needed, which works out to about 480 cm2 of cortex.

3. Briefly, the calculation is as follows. Conservatively assume that only eight dimen-

sions are needed to distinguish the lowest-level concepts (e.g., mammal). Then the

representation of Eve requires 89898 = 512-dimensional vectors (i.e., Eve =
isA⊗person+. . . = isA⊗isA⊗mammal+. . .). Assuming at least one concept at each

level of the sentence requires such a representation means that 512� 512� 512 ¼
12:5� 107 dimensions or 12:5� 109 neurons are required, which works out to

625 cm2 of cortex. Again, this is only for structure representation—not processing—
and is significantly larger than relevant language areas.

References

Anderson, J. R. (2007). How can the human mind occur in the physical universe? New York: Oxford University

Press.

Chalmers, D. J. (1990). Why Fodor and Pylyshyn were wrong: The simplest refutation. In Proceedings of the
12th Annual Conference of the Cognitive Science Society (pp. 340–347). Cambridge, MA: Erlbaum.

Conklin, J., & Eliasmith, C. (2005). An attractor network model of path integration in the rat. Journal of
Computational Neuroscience, 18, 183–203.

Doumas, L. A. A., Hummel, J. E., & Sandhofer, C. M. (2008). A theory of the discovery and predication of

relational concepts. Psychological Review, 115, 1–43.
Dronkers, N., Pinker, S., & Damasio, A. (2000). Language and the aphasias. In E. Kandel, J. Schwartz, & T.

Jessell (Eds.), Principles in neural science (4th ed., pp. 1169–1187). New York: McGraw-Hill.

Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition. New York:

Oxford University Press.

Eliasmith, C., & Anderson, C. H. (2003). Neural engineering: Computation, representation and dynamics in
neurobiological systems. Cambridge, MA: MIT Press.

34 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al. (2012). A large-scale

model of the functioning brain. Science, 338(6111), 1202–1205.
Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure.

Machine Learning, 7(2–3), 195–225.
Fellbaum, C. (1998). WordNet: An electronic lexical database. Cambridge, MA: MIT Press.

Fischer, B. J. (2005). A model of the computations leading to a representation of auditory space in the

midbrain of the barn owl. Phd, Washington University in St. Louis.

Fischer, B. J., Pe~na, J. L., & Konishi, M. (2007). Emergence of multiplicative auditory responses in the

midbrain of the barn owl. Journal of Neurophysiology, 98(3), 1181–93.
Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 3–71.
Gayler, R. W. (2003). Vector Symbolic Architectures answer Jackendoff’s challenges for cognitive

neuroscience. In P. Slezak (Ed.), ICCS/ASCS international conference on cognitive science (pp. 133–138).
Sydney, Australia: University of New South Wales.

Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A., & Massey, J. (1989). Mental rotation of the

neuronal population vector. Science, 243, 234–236.
Glaser, W. R. (1992). Picture naming. Cognition, 42, 61–105.
Hadley, R. F. (2009). The problem of rapid variable creation. Neural Computation, 21(2), 510–32.
Hinton, G. (2010). Where do features come from? In W. Bechtel (Ed.), Outstanding questions in cognitive

science: A symposium honoring 10 years of the David E. Rumelhart prize in cognitive science (pp. 7–8).
Portland, OR: Cognitive Science Society.

Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-connectionist theory of relational inference and

generalization. Psychological Review, 110(2), 220–264.
Jackendoff, R. (2002). Foundations of language: Brain, meaning, grammar, evolution. New York: Oxford

University Press.

Jonas, P., Major, G., & Sakmann, B. (1993). Quantal components of unitary EPSCs at the mossy fibre

synapse on CA3 pyramidal cells of rat hippocampus. The Journal of Physiology, 472, 615–663.
Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order information in a composite

holographic lexicon. Psychological Review, 114(1), 1–37.
Kanerva, P. (1994). The spatter code for encoding concepts at many levels. In M. Marinaro & P. G. Morasso

(Ed.), Proceedings of the International Conference on Artificial Neural Networks (pp. 226–229). Sorrento,
Italy: Springer-Verlag.

Kriete, T., Noelle, D. C., Cohen, J. D., & O’Reilly, R. C. (2013). Indirection and symbol-like processing in

the prefrontal cortex and basal ganglia. Proceedings of the National Academy of Sciences of the United
States of America, 110(41), 16390–16395.

Kuo, D., & Eliasmith, C. (2005). Integrating behavioral and neural data in a model of zebrafish network

interaction [article]. Biological Cybernetics, 93(3), 178–187.
Laubach, M., Caetano, M. S., Liu, B., Smith, N. J., Narayanan, N. S., & Eliasmith, C. (2010). Neural circuits

for persistent activity in medial prefrontal cortex. In Neuroscience 2010 Abstracts (p. 200.18). San Diego,

CA: Society for Neuroscience.

Lenat, D. B. (1995). CYC: A large-scale investment in knowledge infrastructure. Communications of the ACM, 38(11).
Litt, A., Eliasmith, C., & Thagard, P. (2008). Neural affective decision theory: Choices, brains, and emotions.

Cognitive Systems Research, 9, 252–273.
Liu, B., Caetano, M., Narayanan, N., Eliasmith, C., & Laubach, M. (2011). A neuronal mechanism for

linking actions to outcomes in the medial prefrontal cortex. Presented at Computational and Systems
Neuroscience 2011. Salt Lake City, UT: Nature Precedings.

von der Malsburg, C. (1981). The correlation theory of brain function. Internal Report 81-2. Department of

Neurobiology, Max Plank Institute for Biophysical Chemistry.

McLaughlin, B. (1997). Classical constituents in Smolensky’s ICS architecture. In M. Chiara, K. Doets, D.

Mundici, & J. Van Benthem (Eds.), Structures and norms in science (Vol. 2, pp. 331–343). Florence,
Italy: Springer.

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 35

Miller, G., Beckwith, R., Fellbaum, C., Gross, G., & Miller, K. (1990). Introduction to WordNet: An on-line

lexical database. International Journal of Lexicography, 3, 235–244.
Murdock, B. B. (1993). Todam2: A model for the storage and retrieval of item, associative and serial-order

information. Psychological Review, 100(2), 183–203.
O’Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive neuroscience:

Understanding the mind by simulating the brain (1st ed.). Cambridge, MA: MIT Press

Ojemann, G., Ojemann, J., Lettich, E., & Berger, M. (1989). Cortical language localization in left, dominant hemisphere.

An electrical stimulation mapping investigation in 117 patients. Journal of Neurosurgery, 71(3), 316–326.
Paivio, A. (1986). Mental representations: A dual coding approach. New York: Oxford University Press.

Pakkenberg, B., & Gundersen, H. J. R. G. (1997). Neocortical neuron number in humans: Effect of sex and

age. The Journal of Comparative Neurology, 384(2), 312–320.
Peters, A., & Jones, E. G. (1984). Cerebral cortex (Vol. 1). New York: Plenum Press.

Plate, T. A. (1995). Holographic reduced representations. Neural Networks, IEEE Transactions on, 6(3), 623–641.
Plate, T. A. (2003). Holographic reduced representations. Stanford, CA: CSLI Publication.
Pollack, J. (1990). Recursive distributed representations. Artificial Intelligence, 46(1-2), 77–105.
Pylyshyn, Z. (1984). Computation and cognition: Toward a foundation for cognitive science. Cambridge,

MA: MIT Press.

Schr€oder, T., Stewart, T. C., & Thagard, P. (2014). Intention, emotion, and action: A neural theory based on

semantic pointers. Cognitive Science, 38(5), 851–880.
Shastri, L., & Ajjanagadde, V. (1993). From simple associations to systematic reasoning: A connectionist

representation of rules, variables, and dynamic bindings. Behavioral and Brain Sciences, 16, 417–494.
Simmons, W. K., Hamann, S. B., Harenski, C. L., Hu, X. P., & Barsalou, L. W. (2008). fMRI evidence for word

association and situated simulation in conceptual processing. Journal of Physiology, 102, 106–119.
Singh, R., & Eliasmith, C. (2006). Higher-dimensional neurons explain the tuning and dynamics of working

memory cells. Journal of Neuroscience, 26, 3667–3678.
Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures in

connectionist systems. Artificial Intelligence, 46, 159–217.
Solomon, K. O., & Barsalou, L. W. (2004). Perceptual simulation in property verification. Memory and

Cognition, 32, 244–259.
Stewart, T. C., & Eliasmith, C. (2012). Compositionality and biologically plausible models. In W. Hinzen,

M. Werning, & E. Machery (Eds.), Oxford handbook of compositionality (pp. 596–615). New York:

Oxford University Press.

Stewart, T. C., Choo, X., & Eliasmith, C. (2010). Dynamic behaviour of a spiking model of action selection

in the basal ganglia. In D. D. Salvucci & G. Gunzelmann (Eds.), 10th International Conference on
Cognitive Modeling (pp. 235–240). Philadelphia, PA: Drexel University.

Stewart, T. C., Tang, Y., & Eliasmith, C. (2011). A biologically realistic cleanup memory: Autoassociation in

spiking neurons. Cognitive Systems Research, 12, 84–92.
Stewart, T. C., Bekolay, T., & Eliasmith, C. (2011). Neural representations of compositional structures:

Representing and manipulating vector spaces with spiking neurons. Connection Science, 3(2), 145–153.
Stewart, T. C., Bekolay, T., & Eliasmith, C. (2012). Learning to select actions with spiking neurons in the

basal ganglia. Frontiers in Decision Neuroscience, 6.
van der Velde, F., & de Kamps, M. (2006). Neural blackboard architectures of combinatorial structures in

cognition. Behavioral and Brain Sciences, 29(29), 37–108.
Voelker, A., Crawford, E., & Eliasmith, C. (2014). Learning large-scale heteroassociative memories in

spiking neurons. Poster presented at 13th International Conference on Unconventional Computation and
Natural Computation, London, Canada. Retrieved from http://compneuro.uwaterloo.ca/files/publications/

voelker.2014b.pdf.

36 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

http://compneuro.uwaterloo.ca/files/publications/voelker.2014b.pdf
http://compneuro.uwaterloo.ca/files/publications/voelker.2014b.pdf

Appendix

Model Details

Finding decoding vectors

To find decoding vectors that decode a function f from the activity of neural popula-

tion (denoted dfi where i indexes the neurons in the population), we said we had to mini-

mize the expression:

1

2

Z
ðf ðxÞ �

X
i

aiðxÞdfi Þ2dx: ð21Þ

We minimize this numerically, using a finite number of evaluation points (values of x) in
some region of the represented space that we want our decoding vectors to perform well

on. Let L denote the number of evaluation points, let M denote the dimensionality of the

range of the function f, and let N denote the number of neurons in our population. We

now define matrices that will aid us in the optimization. Let D denote the N9M matrix

whose rows are the decoding vectors. Let A denote the L9N matrix whose rows are the

activities of the neurons at a given evaluation point. Let f(X) denote the L9M matrix

whose rows are the values of the function f at different evaluation points. The jth row of

AD is equal to the transpose of dfðxjÞ ¼P
i aiðxjÞdfi where xj is the jth evaluation point.

Minimizing Eq. (21) is then equivalent to solving for D in the following equation:

f ðXÞ ¼AD

ATf ðXÞ ¼ATAD

ðATAÞ�1ATf ðXÞ ¼D

: ð22Þ

Since some neurons in the population are likely to have similar tuning curves, the matrix

ATA is unlikely to be invertible. Thus, we typically take the Moore-Penrose pseudoin-
verse of ATA using Singular Value Decomposition (SVD), which is guaranteed to provide

the least-squares optimal solution to Eq. (22).

Sub-populations

This procedure for solving for the decoding vectors can be computationally intractable.

Consider that in our neural model, one of the populations contains 51,400 neurons. The

matrix ATA for that population would have dimensions 51,400 9 51,400. Taking the

SVD of a matrix this large is not feasible.

Instead, we can consider these populations to be made up of many sub-populations,

each of which represents a small subset of the dimensions of the overall population’s rep-

resented space. The representational properties of the collection of sub-populations is very

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 37

similar to that of a single large population. However, the computational properties are dif-

ferent (Eliasmith & Anderson, 2003). The light gray populations from the Fig. 4 are split

into one-dimensional populations, whereas the dark gray population is split into two-

dimensional populations, each representing one dimension from each of the two Fourier

transformed input vectors and computing their product (i.e., the ability to performed the

required element-wise multiplication is preserved).

This implementation allows for much more efficient computation of decoding vectors.

For example, each of the light gray populations, which represent 512-dimensional vectors,

is taken to be composed of 512 one-dimensional sub-populations of 50 neurons each

instead of a single population of 25,600 neurons. As a result, SVD on a 25,600 9 25,600

matrix is replaced by 512 SVD’s on 50 9 50 matrices, which is computationally tracta-

ble. The only consequence of this is sparsification of the connection weight matrices; the

same number of neurons are used in both cases.

Single neuron model and parameters

All neurons are modeled as point-processes and employ the LIF neuron model. The

sub-threshold behavior of a LIF neuron is governed by the differential equation:

dV

dt
¼ �1

sRC
ðV � JðeTxÞÞ: ð23Þ

The parameter sRC is a time constant governing the sub-threshold dynamics of the neuron.

When the voltage V exceeds a threshold of 1.0, a spike is emitted from the neuron, and a

refractory period begins during which the voltage is fixed at 0. The length of the refractory

period is given by a constant sref . JðeTxÞ is the input current of the neuron and is given by

JðeTxÞ ¼ aeTxþ Jbias. The quantity eTx is the dot product between the neuron’s encoding

vector e and the input vector x. The parameters a and Jbias are uniquely determined by the

neuron’s radius, maximum firing rate, firing threshold, sref and sRC. The radius specifies a

value of eTx for which the neuron fires at its maximum firing rate. Past this, the neuron is

largely saturated, and changes to the input will not be reflected in the firing rate. Finally, the

firing threshold specifies a lower bound on values of eTx for which the neuron fires. Maxi-

mum firing rates and firing thresholds are chosen randomly for each neuron. Numerical val-

ues for the parameters used in the neural model, as well as distributions for the values that

are chosen randomly, are presented in Table A1.

For the synapse model, we take each spike from a pre-synaptic neuron to evoke a

post-synaptic current in the dendrites of all downstream neurons. The equation governing

this current is:

hPSCðtÞ ¼ e�t=sPSC : ð24Þ

These post-synaptic currents build up additively over time. The post-synaptic time con-

stant, sPSC, controls the decay time of the waveform; smaller values cause it to decay

38 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

faster. All connections between neurons are assumed to be mediated by AMPA neuro-

transmitters, so all post-synaptic time constants are set at 5 ms (Jonas, Major, & Sak-

mann, 1993). We can now write an explicit expression for the neural activity of the LIF

neuron. Let t1; t2; . . .tn be the times that spikes are generated by the sub-threshold dynam-

ics of Eq. (23). Then, since a post-synaptic current is generated each time a spike is emit-

ted, the activity of the neuron at time t, as seen by its downstream neurons, is:

aðtÞ ¼
Xn
i¼1

hPSCðt � tiÞ ¼
Xn
i¼1

e�ðt�tiÞ=sPSC

Examples of population tuning curves for both associative and standard (i.e., not in the

associative memory) neural sub-populations are shown in Fig. A1. The effects of several

of the parameters can be observed. In particular, the association neurons have firing

thresholds above 0, in contrast to the standard neurons. This helps the associative popula-

tions implement their thresholding behavior. Also visible is the larger radius for the asso-

ciative neurons. This is a consequence of the fact that inputs to the associative

Table A1.

Parameters used in the neural model

Parameter Association Neurons Standard Neurons

sRC 34 ms 20 ms

sref 2.6 ms 2 ms

sPSC 5 ms 5 ms

Radius 1.0 5=
ffiffiffiffiffiffiffiffi
512
p

Max Firing Rate Uniform(200, 350) spike/s Uniform(200, 400) spike/s

Firing Threshold 0.3 Uniform(�5ffiffiffiffiffiffi
512
p ; 5ffiffiffiffiffiffi

512
p)

Fig. A1. Firing-rate tuning curves from different sub-population types.

E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015) 39

populations are dot products which fall roughly within (–1.0, 1.0). On the other hand, the

radius for the standard neurons does not have to be as large, because the inputs to the

standard sub-populations are generally single elements of 512-dimensional vectors with

norm around 1, which are highly unlikely to be far from 0.

40 E. Crawford, M. Gingerich, C. Eliasmith / Cognitive Science (2015)

