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Abstract—Brain-inspired, spike-based computation in elec-
tronic systems is being investigated for developing alternative,
non-conventional computing technologies. The Neural Engineer-
ing Framework provides a method for programming these devices
to implement computation. In this paper we apply this approach
to perform arbitrary mathematical computation using a mixed
signal analog/digital neuromorphic multi-neuron VLSI chip. This
is achieved by means of a network of spiking neurons with
multiple weighted connections. The synaptic weights are stored
in a 4-bit on-chip programmable SRAM block. We propose a
parallel event-based method for calibrating appropriately the
synaptic weights and demonstrate the method by encoding and
decoding arbitrary mathematical functions, and by implementing
dynamical systems via recurrent connections.

I. INTRODUCTION

Threatened by the approaching limits of Moore’s law [1],
semiconductor industries and research labs started investigat-
ing alternative signal processing and computational approaches
for developing new generations of computing technologies
that can go beyond standard Complementary Metal–Oxide–
Semiconductor (CMOS) solutions [2]. One promising ap-
proach is that of implementing brain-inspired models of neural
computation, based on massively parallel networks of low-
power silicon neuron circuits [3]. Within this context, several
promising devices have recently proposed, using both digital
and analog design techniques [4]–[9]. However, in order to
implement full-fledged computing systems, starting from these
types of devices, it is necessary to adopt a formalism that can
best exploit the properties of such computing elements. The
Neural Engineering Framework (NEF) [10] represents a syn-
thesis of multiple approaches in computational neuroscience,
computer science, communications and control theory, that can
provide such formalism. This computational framework has
been previously introduced in [10] and it has been used to sim-
ulate in Software (SW) large spiking neural networks capable
of reproducing many aspects of neural systems ranging from
the neurophysiological level all the way up to the behavioural
one [11].

In this paper we validate the NEF by applying its princi-
ples to a population of compact low-power silicon neurons,

designed using neuromorphic analog circuits and fabricated
using a standard 0.18 µm CMOS process. We provide ex-
perimental results showing the outcome of the calibration
procedures required to implement NEF, and of a successful
real-time computation of mathematical functions. In addition,
using this framework, we construct a dynamical system with
two distributed memory states that represent the neural corre-
late of working memory, and demonstrate its correct real-time
performance in Hardware (HW).

II. MATERIALS AND METHODS

The Very Large Scale Integration (VLSI) device used in
this work is a prototype chip that comprises a network of 58
adaptive exponential Integrate-and-Fire (I&F) neurons, imple-
mented using analog subthreshold circuits. Each neuron has
32 programmable synaptic inputs, with synapse circuits that
express biologically plausible neural dynamics. In addition,
each neuron has 8 bi-stable synapses, with on-chip plasticity
mechanisms. The VLSI chip can receive and transmit pulses
representing spikes via asynchronous digital circuits, and
following an Address Event Representation (AER) protocol.
The chip is connected to a workstation via a USB interface;
signals transmitted to the USB bus from the chip encode the
address of the source neuron, while signals received by the
chip encode the address of the destination synapse. Once off-
chip, the spikes produced by the silicon neurons are routed
by a “mapper” board, built using a commercial FPGA (Xilinx
Spartan-6). The mapper is hosted in a standard workstation and
uses the workstation memory to implement a programmable
connectivity look-up table with source-destination entries. This
setup allows us to construct arbitrary network topologies of
spiking neural networks.

A. Principles of the framework

The neural engineering framework (NEF) [10] is based on
control theory and integrates three basic principles:

1) Representation: a stimulus x(t) is encoded as spiking
activity ai(x(t)) by a pool of neurons with different transfer
characteristics: ai(x(t)) = Gi(αieix(t) + Jbias

i ) where Gi is a



spiking neural nonlinearity, α is a gain, e is an encoder, and
Jbias

i is a background current. This activity ai(x(t)) is linearly
decoded to retrieve the stimulus x(t), x̂(t) = ∑i ai(x(t))dx

i
in which dx

i represents the decoding weights, and ai(t) =
∑n hPSC(t) ∗ δ (t − tin) is the linearly filtered spiking activity.
The hPSC(t) is a filter capturing the effects of postsynaptic
currents.

2) Transformation: a stimulus x(t) is transformed into y(t)
by a mapping of ai(x(t)) into b j(y(t)). The transformation is
a weighted connection between neural pools of neurons that
compute a function on the represented value. For example,
in the linear case y(t) = Ax(t) is represented by the activity
b j(Ax̂(t)). In this representation neuron i feeds its output to
the input of neuron j by using a weight matrix ωi j = α je jAdi.

3) Dynamics: recurrent connections can be computed using
the same approach to implement nonlinear and linear dy-
namical models including attractor networks, Kalman filters,
controllable harmonic oscillators, etc. In such a mapping, the
standard dynamics matrix A becomes A′ = τPSCA+ I, and the
input matrix B becomes B′ = τPSCB where τPSC is the time
constant of the postsynaptic current filter.

B. The VLSI realization

We applied the NEF to the multi-neuron chip, exploiting
its analog silicon neuron properties, and its programmable
synaptic weight features.

1) The silicon neuron: The silicon neurons on this chip
implement models of adaptive exponential I&F neuron [3].
Figure 1 shows the membrane potential of one of these
neurons, excited by constant current in the order of few pA.
The three traces in the plot represent the membrane potential
for three different bias threshold voltages Vthr and integration
time constants Vtau. The neuron circuit is shown in Fig. 2. The
synaptic input current Isyn is low-pass filtered by a Differential
Pair Integrator (DPI) filter [12] (see Fig.2A), which includes
an adjustable threshold voltage transistor Vthr and a leak con-
ductance bias Vtau. The membrane capacitance integrates the
input current and generates the membrane potential Vmem. A
positive-feedback inverting amplifier is used to generate spike
events with very low-power consumption [3] (see Fig. 2C).
Spike frequency adaptation is implemented by an additional
DPI circuit in negative feedback configuration (Fig. 2B). The
magnitude of the adaptation current can be controlled via the
bias voltage Vadw, while the time constant is controlled by the
voltage bias Vadtau. Fig. 1D contains the spike communication
inverter (MD4,MD3), the refractory period bias Vre f r transistor
and the bias that regulates the reset voltage Vreset of the neuron
after a spike event.

2) The asynchronous programmable Static Random Access
Memory (SRAM) synapses: Synaptic weights are stored with
4-bit resolution in a standard 10T SRAM block [13] inte-
grated on the same chip with an asynchronous interface as
described in [4]. The digital weight values are converted into
an analog current by a Digital to Analog Converter (DAC)
circuit integrated in the DPI synapse circuits (see Fig. 3).
The bias voltages W0,W1,W2, and W3 are used to weight the
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Fig. 1: (a). Membrate potential for different bias voltage
parameters. (b). Photo of the neuromorphic chip.
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Fig. 2: Adaptive exponential I&F neuron circuit schematic.
(a) Current input block. (b) Adaptation circuit. (c) Positive-
feedback inverting amplifier. (d) Digital communication and
reset block.

single bit values. The PU-biased p-Field Effect Transistor
(FET) is necessary to eliminate charge-pump effects. The DAC
output current IsynSRAM determines the gain of the excitatory
or inhibitory DPI synapse. The excitatory (inhibitory) synapse
produces an exponential Excitatory Post Synaptic Current
(EPSC) (Inhibitory Post-Synaptic Current (IPSC)) which em-
ulates the exponential ligand-gated postsynaptic current gen-
eration mechanism [12].

III. RESULTS

A. Weight calibration using SRAM synapses

The asynchronous SRAM synapses have been used to com-
pensate for device mismatch caused by the process variations.
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Fig. 3: Programmable synapse circuit. (a) SRAM digital
to analog converter block. (b) Excitatory DPI synapse. (c)
Inhibitory DPI synapse.
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Fig. 4: SRAM calibration. (a) Synaptic efficacy (Je f f ) for
different sram weight values. Every line represents a neuron
in the array. The synaptic efficacy J is expressed in terms
of number of excitation spikes over spike emitted by the
neuron under exam. (b) Calibrated SRAM weight to match
three different synaptic efficacies.

One of the main problems, when using analog neuromorphic
systems, is the inability to obtain precise synaptic weights.
We overcome this problem by applying a fast calibration
procedure that considers the response function of single neuron
by adjusting the digital weight stored in SRAM cells to
match for a chosen synaptic efficacy value. The calibration
procedure consists of measuring effective synaptic efficacies
for all neurons in the array and for all possible digital weights.
This procedure can be executed in parallel for all neurons
in the chip and it only requires to send (receive) spikes
to (from) the chip using the Address-Event Representation.
Fig. 4 shows the result of this measure when all neurons
are stimulated at 100Hz for 200ms. The stimulation is done
via synthetic regular spike trains produced by the computer.
The complete calibration only takes 200ms ∗ 15(bits) = 3s.
Once we measured all calibration curves, we use the least
squares estimates method to estimate a digital value for a
given synaptic efficacy. With this method, we are capable of
obtaining synaptic efficacies as shown in Fig. 7.

B. Representations of functions with populations of neurons

In general, encoding is obtained by the spiking activity
δ (t − tin) of a single neuron i via the nonlinear neuron
response function Gi. In practice, encoding thus exploits
different tuning curves for neurons that project the stimulus
x(t) to a specific neuron space. In fact, tuning curves relates
the spiking response of a neuron to a particular stimulus.
We show in Fig. 5a tuning curves for all neurons in the
neuromorphic chip. We implemented different bias values Jbias

i
by stimulating every neuron i with a fixed Gaussian spike
train. The mean of the Gaussian spike train is picked from
a flat random distribution between 10Hz and 80Hz. Encoders
values are randomly picked between two alternatives (+1,−1),
this gives the different directions of the tuning curves in Fig.
5a. Example of encoded and decoded mathematical functions
are shown in Fig. 5b. The protocol of this experiment is the
stimulation of all neurons with a swept Poisson spike train
from 1Hz, to 200Hz in 25 steps of 200ms. The optimal linear
decoders, di, used in Fig. 5b, are estimated by minimizing the
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Fig. 5: (a) Tuning functions for all neurons. (b) Encoding
and decoding functions. f (x) = x RMSE = 0.0155, f (x) = x2

RMSE = 0.0287, f (x) = x3 RMSE = 0.0187 .
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Fig. 6: Schematic diagrams. (a) Encoding with neurons. (b)
Transformations. (c) Integrator.

expression < (x− x̂)2 >x with the least square method under
some expected mean zero, independent Gaussian noise.

C. Real-time computations of mathematical functions

Mathematical computation can be performed by pools of
neurons in which the encoded representations are defined
by ai = Gi[αi〈x · ei〉 + Jbias

i ],b j = G j[α j〈y · e j〉 + Jbias
j ], and

the respective representational decodings are: x̂ = ∑i aidi, ŷ =
∑i b jd j. Note that it is possible to find optimal decoders for
arbitrary nonlinear functions of x using this same technique.
We denote these as d f (x)

i . It is thus possible to compute the
desired mathematical computation, by substituting estimates
of the desired function into b such that y = f (x) ≈ f̂ (x) we
obtain b j = Gi

[
∑i ω jiai + Jbias

i
]
, in which the weights matrix

is ω ji = a je jd
f (x)
i . The schematic representations in terms of

pool of neurons is shown in Fig. 6b. We used 28 neurons
for each population (A, B). All to all connections are realized
using the mapper board. We achieved computation as shown
in Fig. 7. Neurons in population A are excited with a ramping
Poisson spike train from 1Hz to 200Hz in step of 200ms. This
is equivalent to the input range [−1,1]. Population A spiking
activity is in real-time directed to population B whose output
is the desired computed mathematical function.

1) Working memory as a dynamical system: We imple-
mented a stable dynamical system by introducing recurrent
connections in the network. We realized the neural correlates
of working memory, this means that the network dynamics is
capable of storing input values through self-sustained activity.
To achieve memory states, we implemented the dynamics of
an integrator, Fig.6c. The third principle of NEF describes
the relationship between standard control theory and neural
dynamics, in this mapping an integrator is described by
the transformation matrices in which A′ = 1 and B′ = τPSC.
Moreover, if we assume an exponential postsynaptic current
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Fig. 7: Computing mathematical functions with neurons. (a)
computed function f (x) = x2, RMSE = 0.097. (b) computed
function f (x) = x3, RMSE = 0.154.
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Fig. 8: Dynamical system: integrator. (a) Decoded activity
from the pool of neurons recurrently connected. The dotted
line represents input to the network, note that when input is
removed the network stores its integrated value in an attractor
state. The red stripe, t = 26s, defines an inhibitory input
stimulus sent via the computer. (b) Raster plot of network
activity, the two colors (blue, green) represent neurons with
different encoders (+1 or -1).

(hPSC(t) = 1
τ

e
−t
τ ) and a linear time-invariant system, recurrent

weights can be computed from the dynamical matrices of the
system. We used a pool of 22 neurons recurrently connected.
Encoder values where randomly picked between two alterna-
tives (+1,−1). In Fig.8 we show the activity over time of the
integrator. Fig.8a shows in dotted line the input generated by
the computer and in continuous line the decoded output value.
At first, we excite the neural pool with an input directed to
the neuron encoding for −1, and at the removal of the input,
the network successfully store −1 value in a reverberant state
of activity. At t = 10s, we excite the the network with a +1
stimulus and the network correctly stores it. After ad additional
storage of −1 (t = 16s), we kill the activity of the network
at t = 26s with an inhibitory input stimulus. Fig.8b shows the
raster plot of the run.

IV. CONCLUSIONS

This work addresses the challenge of obtaining distributed
and programmable computation with noisy and heterogeneous
analog circuits in a network of spiking neurons. We demon-
strated that arbitrary computation in a neuromorphic multi-
neuron VLSI chip can be achieved using the NEF’s principles.

The NEF framework represents a robust method for com-
puting connection weights that takes into account neurons

with a wide range of different transfer characteristic. This
requirement makes the framework appealing to analog compu-
tation, as the effect of device mismatch is compatible with the
diversity requirements, and allows for very compact neuron de-
signs. On the other hand, the method requires precise synaptic
weights. To compensate for the negative effects of mismatch in
the neuron and synapse circuits, we exploited the availability
of programmable SRAM cells, while keeping the synapse
and neuron circuits compact. As demonstration, we showed
reliable computation of functions across different pools of
neurons. Additionally, we constructed robust dynamic attractor
states by introducing recurrent connections in the network.
Such stable dynamical systems are fundamental for building
complex neural systems, and developing brain inspired spike-
based computing systems.
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