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Abstract. Cells in several areas of the hippocampal formation show place specific firing patterns, and are thought
to form a distributed representation of an animal’s current location in an environment. Experimental results suggest
that this representation is continually updated even in complete darkness, indicating the presence of a path integration
mechanism in the rat. Adopting the Neural Engineering Framework (NEF) presented by Eliasmith and Anderson
(2003) we derive a novel attractor network model of path integration, using heterogeneous spiking neurons. The
network we derive incorporates representation and updating of position into a single layer of neurons, eliminating
the need for a large external control population, and without making use of multiplicative synapses. An efficient
and biologically plausible control mechanism results directly from applying the principles of the NEF. We simulate
the network for a variety of inputs, analyze its performance, and give three testable predictions of our model.
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Introduction

Neurons which fire maximally at specific locations
in an environment (place cells) have been found in
several areas within the hippocampal region of freely
moving rats (O’Keefe and Dostrovsky, 1971; Taube,
1995; Sharp, 1997). These areas include the entorhinal
cortex, dentate gyrus, subiculum, parasubiculum, and
hippocampus proper. It has been suggested that place
cells contain a representation of the rat’s instantaneous
location on a two dimensional map of the environ-
ment, also known as a “place code” (McNaughton et al.,
1996; Redish and Touretzky, 1997). Place specific fir-
ing in hippocampal place cells has been found to persist
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during active locomotion, after the removal of visual
cues (Muller and Kubie, 1987; O’Keefe and Speakman,
1987), and even in complete darkness (Quirk et al.,
1990; Markus et al., 1994). This suggests that these
cells may be involved in a form of path integration,
reflected in the ability of a rat to return directly to its
initial location using only idiothetic cues. Sensitivity
to vestibular motion signals has also been observed in
place cell firing (Sharp et al., 1995), which could be
used by a path integration mechanism to update the
animal’s internal representation of position.

The ability to perform path integration has been
shown in a wide variety of animals (see Redish, 1999
or Etienne and Jeffery, 2004 for a review). Rats in par-
ticular have demonstrated path integration both while
walking (Tolman, 1948; Whishaw and Maaswinkel,
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1997; Alyan et al., 1997; Alyan and McNaughton,
1999) and swimming (Benhamou, 1997). However,
path integration is only one element of the rat naviga-
tion system. The system also requires a mechanism for
consolidating visual and external cues with path inte-
gration information (Redish and Touretzky, 1997), and
is theorized to contain mechanisms for planning tra-
jectories (Frank et al., 2000, 2001), and other various
functions. We focus specifically on path integration,
and provide a model that can be incorporated into more
comprehensive models of the rat navigation system.

To generate this model, we apply the Neural Engi-
neering Framework (NEF) developed by Eliasmith and
Anderson (2003). Our goals are to provide a better con-
trol mechanism than previous path integration models,
to increase the biological plausibility without sacrific-
ing model functionality, and to make predictions about
the behaviour of neurons involved in path integration.

To develop this model, we first describe the relevant
anatomy and physiology of path integration, including
which areas of the brain are involved, and the char-
acteristics of cells in these areas. We then review two
past attractor models of path integration, and state our
goals for improvement on these models. Next we apply
the NEF to formulate the mathematical statement of our
model. Following this derivation, we present the results
of our numerical simulations, covering a wide range of
input velocity signals. The resulting performance of the
model is judged against previous models, and against
observed biological phenomena. Finally, the predic-
tions and significance of the model are discussed.

Methods

Anatomy and Physiology of Path Integration

Single cell data collected from experiments on loco-
moting rats has lead to the conclusion that not all
place cells are created equal. Place cells in different
parts of the hippocampal formation have been found
to have different characteristic tuning curves, to vary
in their spatial sensitivity, and are thought to encode
space in fundamentally different ways. Place fields in
hippocampus are observed to be randomly reset upon
entering a novel environment (Thompson and Best,
1989), while subicular place cells have been observed
to stretch or scale their place fields so that their spa-
tial firing properties are similar across different envi-
ronments (Sharp, 1997). Spatial cells in the entorhinal
cortex (which has reciprocal connections to subiculum)

also show similar firing patterns in different environ-
ments (Quirk et al., 1992). These data support the idea
that the subicular and entorhinal cells have the ability to
transfer an abstract spatial representation from one en-
vironment to another, consistent with path integration.

There have been several hypotheses as to which areas
of the brain actually perform path integration in the rat.
One hypothesis is that the hippocampus itself contains
the path integration mechanism (McNaughton et al.,
1996). However this theory is weakened by experimen-
tal data showing that rats with hippocampal lesions can
still perform path integration effectively (Alyan et al.,
1997; Alyan and McNaughton, 1999). Further, record-
ings from medial entorhinal cortex (MEC) during ran-
dom exploration (Fyhn et al., 2004) have shown that
the activity of a small number of superficial MEC neu-
rons is sufficient to accurately reconstruct the trajec-
tory of the rat, and that bilateral hippocampal lesions
have no significant effect on the spatial information
rate of these neurons. These results are consistent with
the hypothesis that a path integration circuit external to
the hippocampus contains a coherent representation of
position.

Sharp (1997) alternatively proposed that path inte-
gration could be performed in the subiculum. Because
each environment is represented by the same set of
place cells, the same mechanism could be used to up-
date the place representation as the rat moves through
any environment. This single update mechanism could
be either learned at a young age, or genetically prewired
(Redish, 1999). This would not be possible in hip-
pocampus where there is no correlation between place
fields in different environments (Thompson and Best,
1989). However, the subiculum does not project di-
rectly to the hippocampus (Kohler, 1986, 1988; Witter
et al., 1989, 1990). Thus if the subiculum alone is per-
forming path integration, it is unclear how this path
integration signal could be used as input to the place
cells observed in hippocampus.

This has lead Redish (1999) to propose that path
integration is distributed across three structures, the
subiculum, the parasubiculum, and the superficial lay-
ers of the entorhinal cortex. These areas are connected
in a loop, and together they meet the five requirements
proposed by Redish for structures which could theoret-
ically perform path integration:

• they are collectively able to represent the position of
the animal;

• they receive input from the head direction system;
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• they receive information about self-motion from the
motor and vestibular systems;

• they update the representation as the animal moves
around the environment; and

• they send output to the area associated with the place
code.

Redish’s proposal addresses the shortcomings of the
subiculum hypothesis, as the superficial entorhinal cor-
tex projects directly to the hippocampus, so the path in-
tegrator would be able to update the hippocampal place
code. Also, the parasubiculum receives input from post-
subiculum, which contains head direction information,
and both parietal and cingulate cortex, which contain
motor and directional information. Thus the path in-
tegrator could receive the required velocity inputs to
update its internal representation of position.

Our model is intended to be consistent with this
characterization of the path integrator. However, as
with past models (e.g. Samsonovich and McNaughton,
1997), the functionality of our model is likely consis-
tent with other anatomical implementations.

Past Models

Many types of path integration models have been pro-
posed. For a review and summary of the major mod-
els, see Redish (1999). Here, we review only attractor
network models, as they have a high degree of neural
plausibility, and have been the most successful to date
(Redish and Touretzky, 1997).

Attractor models of path integration can be viewed
as a generalization of ring attractor networks, which
have been used to model head direction in rats (Zhang,
1996; Redish et al., 1996; Goodridge and Touretzky,
2000). The ring attractor model consists of a gaussian
bump of neural activity on a cyclic ring of neurons,
which represent the current direction of the animal’s
head. This form of activity is the only dynamically
stable state of the network, and from random initial
conditions the network rapidly converges to a bump at
a random location on the ring. Generalizing to two di-
mensions yields a plane attractor network, consisting of
a gaussian hill of activation (sometimes called an activ-
ity packet) on a sheet of neurons, which represents the
animal’s current location in the environment. Various
strategies have been adopted to control updating of the
location of the activity packet based on motion signals.

Zhang (1996) has presented, but not simulated,
such a generalization of his one-dimensional attrac-

tor model. However, there are a number of problems
with his approach. His model uses homogeneous, non-
spiking neurons. In addition, his dynamic mechanism
for updating the activity packet requires multiplicative
synapses to produce an asymmetry in the neuron con-
nection weights, and is thus not generally thought to be
biologically plausible (c.f. Mel, 1994).

Samsonovich and McNaughton (1997) present and
simulate an improved model which divides the system
into two stages: a P-stage, which is a two-dimensional
sheet of neurons representing the current position of
the animal, and an I-stage which controls updating of
the position. The I-stage consists of a stack of two di-
mensional sheets, each having asymmetric connections
to the P-stage, with displacement corresponding to a
particular direction of motion. The model implements
translation of the activity packet by using the head di-
rection to select a particular layer of the I-stage as ac-
tive, while other layers remain silent. The activity in
the P-stage is projected directly to the active I-layer,
which in turn excites a section of the P-stage which is
slightly offset from the current position, in the direction
corresponding to the selected I-layer. This causes the
activity packet to move in the selected direction, due
to the attractor dynamics of the P-stage.

While this model reproduced several observations
about hippocampal place fields, the translation mech-
anism seems cumbersome, requiring many times more
neurons for the translation mechanism (the I-stage)
than for the representation itself (the P-stage). Pre-
sented simulations range from 6 to 200 I layers, with
each layer containing from 30,000 to 300,000 neurons.
This model also uses homogeneous units (i.e., identi-
cal biophysical parameters), which is inconsistent with
the heterogeneity observed in real neurons (i.e., widely
varying biophysical parameters that result in, for ex-
ample, a variety of peak and background firing rates).

Goals of Our Path Integration Model

Redish and Touretzky (1997) present a conceptual
framework for the rodent navigation system. In this
framework they explain the functions and interactions
of several subsystems, including a subsystem for pro-
cessing sensory queues, a place code subsystem, and a
path integration subsystem. We take this to be a good
analysis and have designed our model so that it can
function as a subsystem in this more comprehensive
model of rodent navigation, meeting only the specific
functional requirements of path integration. Redish and
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Touretzky (1998) simulate a larger network model to
explain the role played by the hippocampus in solving
a hidden platform water maze. However, their empha-
sis is on the simulation of the entire navigation system
and the interactions between subsystems, so they do
not explicitly simulate the path integration mechanism.
Instead they refer to the above mentioned published
models (Zhang, 1996; Samsonovich and McNaughton,
1997) for examples of mechanisms that can be used to
simulate path integration. As discussed above, we feel
that both of these models have shortcomings which can
be improved upon.

So, our chief goal is to provide a biologically plau-
sible path integration system which could be useful
in modeling of the rodent navigation system. We aim
to improve upon past efforts by avoiding use of mul-
tiplicative synapses, using realistically diverse neu-
rons, and using a translation mechanism that is less
costly from a biological perspective (i.e. one that can
use fewer neurons to control movement of the activ-
ity packet), while maintaining or improving upon the
functionality of past models.

Physiological and behavioral data lead to several
constraints on our model. Our network must be able
to maintain a stable representation of position, while
exhibiting experimentally observed properties of place
cells. Specifically, the neurons in the model must have
diverse tuning properties, distributed over space and
with a variety of background firing rates and sensitiv-
ities to change in position. Further, drift error in our
model must be low enough to provide an explanation
for experiments in which rats have been observed to
successfully perform path integration (e.g. Alyan and
McNaughton, 1999). Finally, the model must be able
to integrate movements in any direction.

One common characteristic of the attractor networks
discussed above is that the construction of each network
is somewhat ad hoc. There is no systematic process
that has been followed to generate the required network
behavior. Rather, deriving control mechanisms has re-
quired significant insight by the authors into the struc-
ture and dynamics of their networks, learning from the
behaviour and shortcomings of previously constructed
networks.

Eliasmith and Anderson (2003) have presented a the-
oretical framework for the construction of large-scale
biologically plausible networks, the NEF. This frame-
work gives a systematic procedure for implementing
control of these networks, and has been applied to the
control of spiking attractor networks including line at-

tractors, ring attractors, cyclic attractors, and chaotic
attractors (Eliasmith, in press). By adopting this frame-
work, we eliminate much of the guess work involved in
getting our network to behave in the required manner.
This gives our model a secondary purpose. Not only
do we provide a biologically plausible path integration
system, but we also demonstrate the usefulness of the
NEF.

Theoretical Framework

The NEF describes how to create a population of neu-
rons that can represent some value or function (in our
case a two-dimensional gaussian bump), perform trans-
formations on that representation (in our case a transla-
tion of the function), and incorporate the dynamics of
the neural network over time (in our case stable control
of translation on a two-dimensional map). The NEF
can be summarized by the following three principles:

1. Representation. Neural representations are defined
by a combination of non-linear encoding and opti-
mal linear decoding

2. Transformation. Transformations of neural repre-
sentations are functions of the variables that are rep-
resented by a population

3. Dynamics. Neural dynamics are characterized by
considering neural representations as control theo-
retic state variables

We recall and elaborate on each principle where appro-
priate in the following derivation.

Function Representation

To meet the requirements of the model, we take the pop-
ulation to be able to represent two-dimensional gaus-
sians, i.e. functions of the form:

x(µ, ν, t) = exp{(−[µ − µ0(t)]2

− [ν − ν0(t)]2)/(2σ 2)} (1)

where t is time, µ and ν are Cartesian coordinates on
a plane normalized in both directions to the interval
[−1, 1), (µ0(t), ν0(t)) is the mean of the gaussian, and
σ quantifies the width.

When defining the representation, it is important
to determine what happens when the moving animal
reaches the edge of the defined map. Three methods
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of dealing with this problem are discussed by Redish
(1999). We have chosen to make our two-dimensional
plane toroidal (i.e. both axes are cyclical), as there is
currently no strong biological evidence supporting one
solution over another (although recent recordings from
entorhinal cortex may suggest a toroidal representation,
see Results).

To apply the NEF, it is useful to project the function
representation onto an orthonormal basis and deal di-
rectly with the resulting vectors of coefficients, rather
than the continuous functions of µ and ν. Because
our spatial dimensions are cyclic, we have chosen
the standard two-dimensional Fourier basis of bivari-
ate sines and cosines. We can now identify the func-
tion x(µ, ν, t) by its vector of Fourier coefficients x(t)
where

x(µ, ν, t) =
∑
m,n

x1,m,n(t) cos(πmµ + πnν)

+ x2,m,n(t) sin(πmµ + πnν). (2)

The summations over m and n evenly tile the fre-
quency space in a square grid about the origin. We
use a finite number of basis functions, which will be
the dimensionality D of the vector x(t). The number
of basis functions needed is determined by the min-
imum variance of the set of gaussians we must rep-
resent. To represent gaussians with smaller variances,
we require higher frequency components and thus a
greater number of basis functions. To define our repre-
sentations neurally, we refer to the first principle of the
NEF:

Representation. Neural representations are defined by
a combination of non-linear encoding and optimal
linear decoding.

The following expression defines the encoding of x(t)
(the coefficient vector of the gaussian bump) by a net-
work of spiking neurons:

∑
n

δ(t − tin) = Gi
[
αi 〈φ̃i · x(t)〉 + J bias

i

]
, (3)

where Gi [·] is a spiking nonlinearity which we take to
be defined by the parameters of the i th leaky integrate-
and-fire (LIF) neuron. This function takes as its argu-
ment the soma input current on neuron i and produces
a spike train for that neuron, where t in is the time of the
nth spike from neuron i . The properties αi and J bias

i

represent the gain factor and constant background cur-
rent for neuron i . The vector φ̃i is the preferred di-
rection vector, or encoding vector, for neuron i , and
determines the direction of maximal firing in the vec-
tor space. The 〈·〉 operator denotes the Euclidean inner
product.

Because place cells in subiculum and entorhinal cor-
tex exhibit roughly gaussian tuning curves, we choose
the encoding vectors φ̃i to be Fourier coefficients of
gaussians evenly distributed on the µ, ν plane. Not-
ing that the inner product in (3) acts as a measure
of similarity between a neuron’s encoding vector φ̃i

(corresponding to a particular gaussian on the plane)
and the encoded vector x(t) (corresponding to a gaus-
sian at the rat’s current location), the neurons will have
roughly gaussian tuning curves, firing maximally when
the encoded gaussian is coincident with the neuron’s
preferred direction vector. The maximum firing rate of
each neuron is determined by randomly chosen LIF pa-
rameters, to match the observed heterogeneity of neu-
ron firing rates. As the encoded gaussian is translated
about the plane, a corresponding packet of roughly
gaussian neural activity will translate as well. A similar
idea has been used in the one-dimensional case to gen-
erate neurons with gaussian tuning curves in a model
of working memory in macaque monkeys (Eliasmith
and Anderson, 2001, 2003).

Having defined the encoding, we now define the de-
coded population estimate of x(t), recovered by optimal
linear decoding:

x̂ =
∑
i,n

h(t − tin)φx
i . (4)

Here, the output spike train of each neuron is con-
volved with a temporal filter h(t) defined by the post
synaptic current (PSC), and weighted by the optimal
linear decoders φx

i . Using the PSC as a temporal fil-
ter gives similar information transfer characteristics as
optimal filters, with vastly improved biological plau-
sibility (Eliasmith and Anderson, 2003). The optimal
linear decoders φx

i are the vectors which decode x(t)
with minimum mean square error (MSE) over the ex-
pected range of x(t), and are found by minimizing

E = 1

2
〈[x − x̂]2〉x (5)

where 〈·〉x denotes integration over the expected range
of the vector x (in our case, the coefficients of two-
dimensional gaussians on the plane).
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Translation

We must now identify what happens to the coefficient
vector x(t) when the gaussian bump undergoes a trans-
lation x(µ, ν, t + �t) = x(µ + a, ν + b, t). If we
substitute (µ + a) for µ and (ν + b) for ν in (2) and
let x(t + �t) be the translated vector of Fourier coeffi-
cients, we can solve for x(t+�t) in terms of x(t), which
shows us the effect of the translation in the frequency
space. Using trigonometric identities, we obtain:

[
x1,m,n(t + �t)

x2,m,n(t + �t)

]

=
[

cos(πma + πnb) sin(πma + πnb)

− sin(πma + πnb) cos(πma + πnb)

]

×
[

x1,m,n(t)

x2,m,n(t)

]
(6)

This is recognizable as a two dimensional rotation
of each Fourier coefficient pair. Interestingly then, any
translation on the plane is equivalent to a rotation of
each coefficient pair with coordinates (m, n) in the fre-
quency space. Furthermore this rotation can be sepa-
rated into two independent rotations, a rotation by πma
corresponding to translation by a in the µ direction and
a rotation by πnb corresponding to translation by b in
the ν direction. We can thus rewrite (6) as

x(t + �t) = RmaRnbx(t). (7)

Here Rma and Rnb are D × D matrices with 2×2 ro-
tation sub-matrices along the diagonal for each Fourier
coefficient pair, such that left multiplication of x(t) by
Rma or Rnb results in rotations by angles πma or πnb
of each Fourier coefficient pair.

Dynamics of Translation

To determine how to control and stabilize translation
over time, consider the simplified case where the gaus-
sian translates in one direction, say µ. That is

x(t + �t) = Rmax(t). (8)

This describes a system where the gaussian x(t) trans-
lates a distance a in the µ direction at each time step.
We can think of a as an external linear velocity input
for the µ direction.

The dynamics of the system can be expressed as
follows:

ẋ(t) = lim
�t→0

x(t + �t) − x(t)

�t
(9)

= lim
�t→0

(Rma − I)

�t
x(t) (10)

This equation requires that the rotation matrix Rma be
recalculated every time the velocity input a changes,
which involves computation of many trigonometric
functions at each time step, a task that is not at all
straightforward in a neural network.

As an alternative method for controlling the speed of
rotation, we set a = δ in the above equation, where δ is
a very small constant. We now refer to the matrix as Rmδ

where multiplication by Rmδ results in rotation of the
Fourier coefficients in the state vector by πmδ, which
corresponds to a translation by δ in the µ direction. We
can now use an external linear velocity input a(t) to
essentially scale, or switch on and off, the translation:

ẋ(t) = a(t) (Rmδ − I)

�t
x(t) (11)

We have dropped the limit in the above equation
and now consider �t as the model time step, and a(t)
as a time-varying linear velocity input normalized on
[−1, 1]. The velocity of the bump varies directly with
a(t). For example, if a(t) = 0 then ẋ(t) = 0 and the
bump is static. If a(t) = 1 then we recover Eq. (10)
corresponding to maximum velocity translation in the
µ direction.

If we repeat this derivation for Eq. (7) in the case
where the bump is translating in both the directions µ

and ν, we arrive at a similar dynamic equation to (11):

ẋ(t) = (RmδRnδ − I)

�t
x(t) (12)

Here we face a problem because the product of the
two rotation matrices makes it impossible to indepen-
dently control movement in each direction by scaling.
We use the following approximation to independently
scale the two rotation matrices:

ẋ(t) = a(t)(Rmδ − I)

�t
x(t) + b(t)(Rnδ − I)

�t
x(t)

(13)

= 1

�t
[(Rmδ − I)a(t) + (Rnδ − I)b(t)]x(t)

(14)
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where b(t) is a linear velocity input in the ν direc-
tion, and Rnδ is a rotation matrix analogous to Rmδ .
For cases where the bump is translating in only one
direction (a(t) = 0 or b(t) = 0), this equation reduces
to Eq. (11) and the bump translates as required. For
inputs where both a(t) and b(t) are non-zero, we can
work backward from (14) to see that the approximation
is a good estimate of the correct translation.

As an example, consider the case where a(t) =
b(t) = 1, where we want to translate the bump pos-
itively in both directions. We can rewrite Eq. (14) as

ẋ(t) = lim
�t→0

(Rmδ + Rnδ − I) x(t) − x(t)

�t
. (15)

From the definition of the derivative, we can then infer

x(t + �t) = Rmδx(t) + Rnδx(t) − x(t). (16)

In the function space, this is a summation of three gaus-
sians, one displaced by δ in the µ direction, one dis-
placed by δ in the ν direction, and one scaled by −1
in the previous location of the encoded gaussian. For
small δ relative to the width of the gaussians, this sum-
mation is a good approximation of a single gaussian
displaced by δ in both the µ and ν directions. Specif-
ically our model uses gaussians of width 1/3 and a
value of δ = 1/5000, so the distortion of our encoded
gaussian is negligible. Furthermore, there is no cumu-
lative error, as any distortion is rapidly corrected by the
attractor dynamics.

Thus, the final dynamic equation for our model is:

ẋ(t) = 1

�t
[(Rmδ − I)a(t) + (Rnδ − I)b(t)]x(t) + u(t)

(17)

We normalize the velocity inputs a(t) and b(t) such
that a2(t)+b2(t) ≤ 1, so that the maximum velocity of
the bump is the same in all directions. The maximum
velocity of the model is determined by the value of
the small increment δ and model time step �t . The
vector u(t) is the frequency domain representation of
any external input to the population, such as feedback
from hippocampus (for error correction based on visual
cues).

Implementing Translation

Observe that Eq. (17) requires multiplication of the
state vector x(t) by the velocity inputs a(t) and b(t). To

avoid the use of multiplicative synapses we refer to the
second principle of the NEF:

Transformation. Transformations of neural represen-
tations are functions of the variables that are rep-
resented by a population. Any transformation can
be determined using an alternately weighted linear
decoding.

Accordingly, in order to compute the products a(t)x(t)
and b(t)x(t), we must include representations of the
variables a(t) and b(t) in the population. This is accom-
plished by increasing the dimensionality of the state
vector x(t) to include the signals a(t) and b(t).

In order for the population to represent these two
scalar control signals as well as the current position,
we must increase the dimensionality of our encoding
vectors φ̃i accordingly. In general, for scalar represen-
tation, the encoder for each neuron is chosen to be ei-
ther 1 or −1 (the only directions in a one-dimensional
space). Thus the final encoding vector φ̃i for a given
neuron in this model’s population consists of the D
Fourier coefficients of a gaussian at that neuron’s pre-
ferred location on the plane, and two elements which
are chosen randomly to be either 1 or −1. As a result,
our units are sensitive to both the position and velocity
of the animal.

The required products of the Fourier elements of x(t)
and a(t) or b(t) can be computed by linear decoding,
as suggested by the transformation principle. Specifi-
cally, we require two sets of alternate decoding weights,
one to decode the function a(t)x(t) (which is simply
xD+1x1...D), and one to decode the function b(t)x(t)
(which is xD+2x1...D). The decoding is analogous to
(4). For example, the decoded estimate of a(t)x(t) can
be expressed mathematically as:

f (x(t)) = a(t)x(t) (18)

f̂ (x(t)) =
∑
i,n

h(t − tin)φax
i , (19)

where the function decoders φax
i are found by mini-

mizing the MSE of the decoded function estimate over
the expected range of x(t) and a(t). The MSE is defined
by

E = 1

2
〈[ f (x(t)) − f̂ (x(t))]2〉x,a, (20)

where 〈·〉x,a denotes integration over the expected
ranges of x(t) (all gaussians on the plane) and a(t) (the
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interval [−1, 1]). The product b(t)x(t) is decoded in an
identical manner.

An advantage of this path integration model becomes
evident from this discussion. Our translation mecha-
nism is embedded directly in the population that repre-
sents the rat’s current location. Thus, we require only
a single layer of neurons to tile the spatial plane. This
layer of neurons can both represent the current loca-
tion of the animal with a packet of neural activity, and
at the same time control the movement of this activity
according to external velocity inputs. This is in stark
contrast to the model presented by Samsonovich and
McNaughton (1997), in which one layer of neurons
(the P layer) represents the position of the rat, and many
additional layers are required (the I layers) in order to
control the translation of the activity packet.

Neural Dynamics

Equation (17) defines the dynamics of our bump trans-
lation system. To derive a neural implementation of this
dynamic system we refer to principle three of the NEF:

Dynamics. Neural dynamics are characterized by con-
sidering neural representations as control theoretic
state variables. The dynamics of neurobiological
systems can thus be analyzed using control theory.

Eliasmith and Anderson (2003) have used modern con-
trol theory to show that a dynamic system defined by

ẋ(t) = Ax(t) + Bu(t) (21)

can be implemented by a neural population through the
encoding

∑
n

δ(t − tin) = Gi
[
αi 〈φ̃i · (h(t) ∗ [A′x(t)

+ B′u(t)])〉 + J bias
i

]
(22)

where

A′ = τA + I (23)

B′ = τB (24)

and τ is the synaptic time constant of the units in the
population.

Considering our dynamic Eq. (17) in the form of
Eq. (21), we have the A and B matrices required to

compute A′ and B′, giving:

A′ = τ

�t
[(Rmδ − I)a(t) + (Rnδ − I)b(t)] + I (25)

B′ = τ I (26)

Substituting these matrices into (22) gives:

∑
n

δ(t − tin) = Gi

[
αi

〈
φ̃i ·

(
h(t) ∗

[
τ

�t
[(Rmδ−I)a(t)

+ (Rnδ − I)b(t) + 1]x(t) + τu(t)

])〉
+ J bias

i

]
(27)

Substituting the right hand side of Eq. (4) for x(t), the
right hand side of Eq. (19) for a(t)x(t), and an analo-
gous expression for b(t)x(t) into Eq. (27) gives a com-
plete description of our model:

∑
n

δ(t − tin) = Gi

[
h(t) ∗

( ∑
j

wi j a j +
∑

k

wikak

+
∑

l

wilal + αi 〈φ̃i · τu(t)〉
)

+ J bias
i

]
(28)

where

wi j = αi

〈
φ̃i ·

(
τ

�t
(Rmδ − I)φax

j

)〉
(29)

wik = αi

〈
φ̃i ·

(
τ

�t
(Rnδ − I)φbx

k

)〉
(30)

wil = αi 〈φ̃i · φx
l 〉 (31)

ai =
∑

n

h(t − tin). (32)

These equations complete the model derivation.
Here u(t) is the vector representation of the input to the
population. The first D dimensions of u(t) comprise the
Fourier decomposition of input to the function space,
and can be used to control the initial location of neu-
ral activity, or to update or correct the position of the
encoded gaussian (e.g. through hippocampal feedback
of visual information). The last two dimensions of u(t)
are the linear velocity input components corresponding
to the µ and ν directions.

The connection weights implied by this derivation
have the form of two-dimensional center surround
connections, reminiscent of the weights in one-
dimensional ring attractor models (Redish et al.,
1996; Zhang, 1996; Goodridge and Touretzky, 2000).
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Figure 1. Connection weight matrix for a typical neuron in the derived model. Neurons are arranged in a square matrix by the locations of
their place fields on the plane.

Each neuron has strong local connections to neurons
with nearby place fields, and weak negative con-
nections to neurons with more distant place fields.
Figure 1 shows the connection weights for a typical
neuron in this model.

Biological Plausibility of the Vector Representation

It is important to note that the projection into the
Fourier space is merely a convenient mathematical
abstraction of the state of the network, which allows us
to apply control theory to the dynamics of the system.
This vector representation does not map directly onto
neural activity, which still has the form of a gaussian
activity packet. This is reflected in the connection
weights (Fig. 1), which have the structure we would
expect given past work with one-dimensional attractor
networks that did not use any kind of orthonormal
projection to define control. Further, the choice of the
Fourier basis is not required to derive these weights.
Choosing another orthonormal basis spanning the set
of gaussians on the toroid (e.g. products of trigonomet-
ric functions) results in the same connection weights,
given the same transformation in the function space.
Choosing a different orthonormal basis is analogous to
choosing a different vector space coordinate system,

which is irrelevant to the function space transformation.
Similarly, u(t) is an abstract representation of the

neuron level soma inputs from external populations.
That is, applying gaussian stimulation directly to the
grid of neurons in our model (the type of input we would
expect from hippocampal place cells) is equivalent to
applying an input vector u(t) which is the frequency
domain representation of that same gaussian.

We thus emphasize that the use of a vector repre-
sentation to define the control of the system does not
detract from the biological plausibility of the network.
This is most evident from the fact that the derived model
exhibits biologically plausible tuning curves, connec-
tions, and behaviors.

Results

For all model runs, the same population of 3969 spik-
ing LIF neurons was used. In order to reproduce the
broad tuning curves observed in subicular neurons by
Sharp (1997), we estimate the variance of the encoded
gaussian to be 1/3. To accurately encode such a gaus-
sian, a Fourier decomposition of 25 components is
required. Thus our neurons encode a 27 dimensional
space (D = 27), where the first 25 dimensions encode
the Fourier coefficients of a gaussian at the rat’s current
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Figure 2. Self-focusing of network activity. For these and all subsequent activity plots, neurons are arranged on the plane by location of their
place fields. Firing rates of spiking neurons have been smoothed on the plane using a 5 point moving average.

location on the plane, and the last two dimensions en-
code the rat’s instantaneous velocity.

The encoding vectors φ̃i are chosen as Fourier coeffi-
cients of gaussians with variance 1/3 evenly distributed
on the µ, ν plane in a 63 × 63 grid. The last two di-
mensions of each φ̃i are chosen to be either 1 or −1 in
order to encode the velocity signal. We use a decaying
exponential model of the PSC as our temporal filter:

h(t) = e
−t
τ , (33)

where τ is the synaptic time constant of our neurons.
For all runs we have used τ = 5 ms, and a model time
step of 0.1 ms.

Demonstration of a Controlled Attractor

When the network is initialized by being briefly stim-
ulated with gaussian white noise, a stable packet of
gaussian activity forms at a random location on the
map (Fig. 2). The activity packet is clearly wider than
that of the model by Samsonovich and McNaughton
(1997). This is a result of our tuning of the units to
match the broad place fields observed in subiculum

(e.g. Fig. 2 in Sharp, 1997). The activity packet also
appears noisy, because the parameters for gain and bias
current are chosen randomly (within a suitable range)
for each neuron, mimicking the observed heterogeneity
of neurons in this area.

We have tested the stability of the stationary bump af-
ter initial formation by simulating the network (with no
external input) for 180 seconds. The activity packet re-
tains its height (firing rates) and width (variance), with
a small amount of drift in the mean of the bump (drift
was equal to 8% of length of the plane over 180 sec-
onds).

In addition, the packet retains its height and width
when given a constant external velocity input. This re-
sults in a constant translation of the mean of the activity
packet (see Figs. 3 and 4). These observations indicate
the existence of a controlled stable attractor.

Performance of the Path Integration Model

In this section we characterize the dynamics of the con-
trol system and the accuracy of the path integration per-
formed by the model. If the model is to be a useful path
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Figure 3. Propagation of the activity packet at a constant velocity. Velocity input is constant and to the right, at one half maximum speed.

integrator, it must be able to change speed and direction
as the vestibular input to the system changes.

In Fig. 4 the model is given a constant velocity in-
put of 0.5 (one half maximum speed) in the negative µ

direction for two seconds, which is abruptly changed
to 1 (maximum speed) in the negative ν direction for a
duration of 1 second. The figure shows the model out-
put against the mathematically ideal path integration
for the changing input. Over the run, the average drift
is less than 5% of the total width of the plane (RMSE
= 2.73%). So, while there is some error throughout
the run, the estimated position is a good approxima-
tion to the actual position of the animal. The error is
small enough that it could easily be corrected by oc-
casional, weak input from visual cues (see the subse-
quent section for details). Both the directional change
and the velocity change are effectively captured by the
model.

To compare our model with that of Samsonovich and
McNaughton (1997), the model is given velocity input
corresponding to circular motion of an animal. In Fig. 5
the simulated rat starts at the top of the circle, and moves
clockwise around the circle at a constant speed. The
decoded trajectory is noisy, due to the spiking repre-
sentation of the encoded bump. Despite the noise, how-

ever, the model gives a good estimate of the simulated
position over one circuit of the circle. Being able to
integrate a circular path demonstrates that the model is
able to integrate velocity inputs in any direction. How-
ever, since the end point of the trajectory does not meet
the starting point, error due to drift may accumulate
over further circuits of the circle, and would need to
be corrected by visual input. Note that the drift in our
3969 neuron model after completing one circuit is dra-
matically less than that of the MPI model with 300,000
neurons per layer (see Fig. 10D in Samsonovich and
McNaughton, 1997). If we consider the location of the
ν coordinate (X in the MPI model) when the µ coor-
dinate (Y in the MPI model) has returned to its ini-
tial location as a measure of the drift after one cycle,
then the MPI model is off by approximately 100% of
the full diameter of the circle, while our model is off
by only 11% of the circle’s diameter. Further, because
the representational error of the model scales inversely
with the number of neurons, the amount of drift in
our model can be adjusted to match observed drift data
(not currently available) by increasing or decreasing the
number of units in the model. This could lead to predic-
tions of how many neurons are actually involved in path
integration.
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Figure 4. Path integration of velocity input with changing speed and direction. Ideal output (grey dots) is the actual position of the simulated
rat. Model output (black dots) is the decoded mean of the gaussian represented by the network. The rat starts in the upper right (marked by the
cross). Dots are separated in time by 100 ms.
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Figure 5. Path integration of circular motion. Ideal output (grey dots) is a perfectly circular trajectory. Model output (black dots) is the decoded
mean of the gaussian represented by the network. The rat starts at the top of the circle (marked by the cross) and moves in the clockwise direction.
Dots are separated in time by 50 ms.

To provide a summary of the error over the func-
tion space, we also plot the error surface obtained by
integrating the error gradient on the µ, ν plane. The gra-
dient is obtained via the encoding and decoding of a set

of gaussians evenly tiling the plane, and taking the dif-
ference of the encoded and decoded means. The local
minima of the error surface are the attractor points in
the function space. We can see from Fig. 6 that there is
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Figure 6. Error surface of the function representation. Local minima represent attractor points in the function space. Drift of the encoded
gaussian is proportional to the slope of the surface.

a relatively even distribution of attractor points across
the plane. This implies that the above simulations are
not idiosyncratic, and that the stability of the bump
for arbitrary velocity inputs will be similar for every
location on the plane.

Robustness to Noise in the Derived
Connection Weights

We next demonstrate that the model does not require
a precisely tuned connection weight matrix. This is
significant as integrator circuits are often characterized
as requiring particularly precise tuning of connection
strengths (Seung et al., 2000; Koulakov et al., 2002;
Goldman et al., 2003). To evaluate the robustness of
our model, we randomly vary the connection weights.
The noisy connection weight matrix is given by

w̃i j = wi j (1 + ηi j ) (34)

where wi j is the derived connection weight between
neurons i and j , and ηi j are random variables chosen
from a gaussian distribution of mean 0 and variance σ 2.

We examine the effect of this noise on the repre-
sentation by simulating the integration of a circular
path (as above) for increasing values of the noise vari-
ance σ 2 (Fig. 7). The root mean square error (RMSE)
monotonically increases with noise variance. How-

ever, the performance of the σ 2 = 0.1 and σ 2 = 0
simulations are roughly comparable. Both trajecto-
ries are good approximations to the ideal, and the
increase in RMSE due to the addition of noise is
less than 10%. As noise increased further, the drift
in the simulations becomes more evident, and the
RMSE increases more rapidly. However, even when
σ 2 = 0.5 (i.e. 50% noise) the decoded trajectory is
a reasonable approximation to the circle, especially
when compared to the performance of the MPI model
(Samsonovich and McNaughton, 1997).

The Role of Visual Input in Calibrating
the Path Integrator

Experiments by Gothard et al. (1996) have demon-
strated two ways in which visual cue information and
path integration interact competitively to update the
rat’s internal representation of its location. For small
mismatches between visual cues and path integra-
tion, the internal representation was observed to shift
smoothly through all intervening states (at an accel-
erated speed) until the internal representation ‘caught
up’ with the location indicated by the visual input. For
large mismatches, the internal representation jumped
abruptly from its present state to the state indicated by
visual input, and the intervening states were skipped.
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Figure 7. Integration of a circular path after addition of noise to the connection weights. Ideal output (dashed line) is a perfectly circular path.
For each simulation the variance of the connection weight noise is σ 2. The RMSE of the decoded trajectory for each simulation is calculated
over the complete length of the run (2 seconds).

We assume that visual input reaches our model in
the form of gaussian stimulation centred on the location
suggested by a visual cue (this input could be projected
to subiculum from hippocampus), and show that our
model supports both of these correction mechanisms.

First, when the visual stimulation is relatively weak,
we observe a smooth acceleration of the translating
activity packet toward the location of the stimulation
(Fig. 8). This can be compared to the case where the
packet is translating at the same velocity, but without
external stimulation (Fig. 3). The external stimulation
clearly accelerates the activity toward the location of
stimulation.

Second, when the stimulation is relatively strong, we
see the activity packet jump abruptly from its previous
position on the plane to the location of the stimulation
(Fig. 9). These effects demonstrate that sensory infor-
mation can be used appropriately to correct error in our
path integration model.

Reproduction of the Effects of Theta Oscillations

As reported by O’Keefe and Recce (1993) (see also
Skaggs et al., 1996), hippocampal place cell firing is
modulated by the hippocampal theta rhythm, a back-

ground oscillation typically in the range of 7–12 Hz.
The observed effect of this modulation (stated in terms
of neural activity on a two dimensional map) is that
the activity packet moves moves ahead of the rat’s ac-
tual location on the map and increases in width over the
course of each theta cycle, before returning to the actual
location and initial width at the beginning of the next
cycle (Samsonovich and McNaughton, 1997). Theta
modulated place cells are also found in the subiculum
and superficial entorhinal cortex (Sharp, 1997; Frank
et al., 2001).

We qualitatively reproduce these effects by introduc-
ing a global excitatory oscillation to the soma input of
all neurons, at a frequency of 10 Hz. This theta current
oscillates from zero to 2 nA. The introduction of this
oscillation into the activity of all units causes the width
and speed of the activity packet to oscillate with the
theta rhythm (Fig. 10).

Directionality of Place Cells

Radial maze experiments (McNaughton et al., 1983;
Muller et al., 1994; Markus et al., 1995) demonstrate
that most hippocampal place cells show a clear direc-
tional selectivity when the rat travels a linear path in a
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Figure 8. Weak sensory input causes smooth acceleration of the activity packet. Velocity input is to the right at one half maximum speed. ‘+’
marks the horizontal position of the sensory stimulation. ‘◦’ marks the horizontal mean of the activity packet. ‘×’ marks the horizontal mean of
the activity packet from Fig. 3 without sensory stimulation at the same time index.

Figure 9. Strong sensory input causes an abrupt jump of the activity packet. The cross marks the location of sensory stimulation.
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Figure 10. (a) Width of the activity packet oscillates with the theta rhythm. A constant frequency contour is shown for four consecutive phases
of a theta cycle. The direction of motion is to the right. (b) The center of the activity packet oscillates ahead of the rat’s actual position in the
direction of motion over the course of each cycle. Here µ0 is the position of the center of the activity packet, and µrat is the simulated rat’s actual
position on the plane. The rat moves at a constant velocity in the positive µ direction.

radial maze. These cells fire at a high rate when the rat
passes through their place field in one direction, and
fire more slowly (or are silent) when the rat returns in
the opposite direction. The remaining cells show only
positional sensitivity. In the same experiments it was
found that most hippocampal place cells appear non-
directional when the rat randomly forages in an open
cylindrical environment.

To compare the directionality of our model place
cells to those observed in hippocampus, we perform
a simulation where the rat moves in a straight line at
maximum speed for one second, and then returns along
the same path in the opposite direction. We observe that
most of our units have higher firing rates in one direc-
tion, and have lower firing rates (or are silent) in the
other. We also find units which appear to fire indepen-
dently of the direction of travel. Figure 11 shows firing
for one neuron of each type in the simulation. Thus
neurons in our model have directional firing proper-
ties similar to those of hippocampal place cells during
linear movements.

This similarity may not extend to random forag-
ing, where hippocampal place cells appear largely non-
directional. Because our encoding of space is indepen-
dent of the geometry of the environment, we predict that
neurons involved in path integration will have similar
velocity sensitivity in both linear path and random for-
aging experiments. This does not mean, however, that
the observed directionality of these cells will be iden-
tical in these two environments. If the rat has different
velocity profiles within place fields in different environ-
ments, the observed directional sensitivity will differ
as well. For example, the rat’s average velocity when
passing through a place field in an arm of a radial maze
is likely to be high because the rat usually travels di-
rectly from the center of the maze to the food site at the
end of the arm (without stopping on the way) and back.
The average velocity of the rat while visiting a given
place field in the random foraging experiments is likely
to be lower, as the rat stops at random locations in the
environment to eat food pellets. Because our model en-
codes velocity, rather than independent representations
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Figure 11. Firing of three neurons in a linear path simulation. For the first second the rat travels in a straight line at maximum speed. For the
next second the rat travels back along the same line in the opposite direction at maximum speed. Neuron 1 fires independently of direction.
Neuron 2 fires at a higher rate in one direction than the other. Neuron 3 is active in one direction and silent in the other. Firing rates are found
by binning spikes and smoothing with a running average.

of speed and direction (in the latter case direction can
affect firing even when speed is zero, whereas in the
former case direction cannot affect firing when speed
is zero), the velocity profile of the rat must be taken
into account when analyzing directionality in the data.

Reproduction of Subicular Firing Rate Maps

We next demonstrate that the tuning curves of neurons
in our model are similar to those observed experimen-
tally of subicular place cells. Sharp (1997) has illus-
trated firing rate maps for subicular and hippocampal
place cells in both cylindrical and square environments.
These maps are generated by recording the location and
time of each spike from a given cell, while the rat ran-
domly forages for pellets during a 20 minute recording
session. The number of spikes was then averaged over
the length of the session to give the firing rate at each
location in the environment. We have simulated this
random foraging by using band-limited white noise as
our head direction input, and having our rat randomly
explore its environment until all sections of the map

have been visited. Firing rate maps were then calcu-
lated in the same manner as Sharp.

Figure 12 shows a comparison of the observed tuning
curves with those generated by our model. Notice that
the model tuning curves are not perfect gaussians, but
are distorted due to the random path of the rat (which
affects cell firing due to directional sensitivity), and
the noise introduced by neural spiking. These noisy
model tuning curves are qualitatively similar to those
observed experimentally, as we require.

Multiple Place Fields in Medial Entorhinal Cortex

Recent data from Fyhn et al. (2004) shows strong place
selectivity in neurons in the dorsolateral and intermedi-
ate MEC of rats exploring a rectangular environment.
Cells in dorsolateral MEC showed sharp coherent place
fields with multiple peaks (median number of 4). As
seen in Fig. 2B of that paper, the multiple place fields
for each cell form a relatively even tiling of the envi-
ronment.

This tiling is consistent with the toroidal representa-
tion of the environment implemented in our model. If
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Figure 12. Tuning curves of observed subicular neurons∗ (left) and simulated neurons (right). Darker shading indicates higher firing rate.
∗Reprinted with permission from Behavioural Brain Research, vol. 85, P.E. Sharp, Subicular cells generate similiar spatial firing patterns in
two geometrically and visually distinctive environments: Comparison with hippocampal place cells, pp. 71–99 (1997), with permission from
Elsevier Science.

the encoded spatial plane were normalized to one quar-
ter of the area of the rectangular chamber, we would
expect to see precisely the type of sharp multi-peaked
tuning curves observed in this experiment. Simulated
place fields would appear narrow as a result of normal-
izing our representation to cover a smaller area, and
multiple firing fields would result naturally as the rat
travels from one edge of the toroid to the other.

Fyhn et al. (2004) also report that most cells in the
intermediate MEC have broader, less coherent place
fields, and are less likely to have multiple peaks. These
cells seem to be tuned similarly to the subicular place
cells discussed above. This raises the interesting pos-
sibility that there could be multiple attractor maps at
different spatial resolutions (high resolution in dor-
solateral MEC, low resolution in intermediate MEC,
subiculum, and other areas), simultaneously encoding
position of the rat. While we do not explore this idea
here, the decoding of position from multiple attractor
maps using the NEF would be a straightforward gen-
eralization of our model.

Discussion

The analysis of our model has led to three testable pre-
dictions. Firstly, we predict that neurons involved in
path integration must be sensitive to the instantaneous
velocity of the animal. Secondly, we predict that the rel-
ative spatial relationship between place fields of cells
involved in path integration will be the same or simi-
lar in different environments. Thirdly, we predict that
the head direction signal cannot be used as a direct in-
put signal to the path integrator, and is used instead to
modulate an allocentric velocity input.

Velocity Sensitive Neurons

The control mechanism of our model requires that the
population performing path integration not only en-
code a representation of the rat’s position on the plane,
but also a two-dimensional in-plane velocity vector.
Thus our model predicts the existence of place cells in
the subiculum, parasubiculum, superficial entorhinal
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cortex loop that will show sensitivity to the instanta-
neous velocity of the animal. Further we predict that
this sensitivity will persist regardless of the rat’s envi-
ronment and trajectory, in contrast to the observed be-
havior of hippocampal place cells. As discussed above,
it is important to consider that this is a prediction of ve-
locity sensitivity (not just direction sensitivity), i.e. we
predict that the directional sensitivity of neurons will
not be evident when the rat is moving slowly relative
to its maximum speed.

Spatial Relationship Between Place Fields in
Differing Environments

The model we have derived requires that the relative
spatial location of the place fields of cells performing
path integration must be constant, independent of the
environment. That is, place fields of path integration
cells will always have the same position relative to each
other, although the plane of place fields may undergo
translation, rotation, or scaling.

As discussed above, it is observed experimentally
that hippocampal place fields are randomly reset upon
entering a novel environment, while the place fields
of cells in subiculum and entorhinal cortex are simi-
lar across different visually similar environments. As
a result, this prediction is consistent with the hypoth-
esis that subiculum and entorhinal cortex are involved
in path integration. Note however that the data is from
experiments where the differing environments were vi-
sually similar (Sharp, 1997; Quirk et al., 1992). Experi-
ments showing similar relative spatial location of place
fields in visually different environments would further
support this hypothesis.

Role of the Head Direction System and Availability
of Velocity Input

Previous schemes for modelling path integration in the
rat have used as their directional input a combination of
a head direction signal, and a self motion signal which is
proportional to the speed of the animal in the direction
it is currently facing (Samsonovich and McNaughton,
1997; Redish, 1999; Redish and Touretzky, 1997).

Our derivation has led to a different requirement for
velocity input. Our model requires the input of an al-
locentric velocity vector ( dµ

dt , dν
dt ). There is evidence

to suggest that the monkey vestibular system has the
ability to determine an unambiguous translational ac-
celeration relative to the current direction of the head

based on inputs from the otoliths and semi-circular
canals (Angelaki et al., 1999). Experiments by Hess
and Dieringer (1991) suggest that rats have the same
ability. Given the presence of a translational accelera-
tion signal in the vestibular system, a similar velocity
signal relative to current head direction could easily
be computed by integration, which is thought to be a
common computation across brain areas (Seung et al.,
2000; Seung, 1996; Askay et al., 2001; Askay et al.,
2000; Douglas et al., 1995). Neurons sensitive to direc-
tion of motion, speed, and turning angle are known to
exist in posterior parietal cortex, which is reciprocally
connected to posterior cingulate cortex (Chen et al.,
1994). Further, Page and Duffy (2003) have found that
neurons in the dorsal segment of the medial superior
temporal sulcus (MSTd) of Rhesus monkeys are sensi-
tive to rotational and translational self-motion even in
darkness, and have theorized these cells to be involved
in a path integration mechanism. We hypothesize that
posterior parietal cortex contains a representation of
the animal’s velocity relative to current head direction
(likely in MSTd), and that this signal is projected to pos-
terior cingulate cortex, where the global head direction
signal from postsubiculum is used to resolve the veloc-
ity vector into allocentric map components. Posterior
cingulate cortex is also connected to motor cortex (Cho
and Sharp, 2001) which supports the idea that it may be
involved in path integration or navigational motor plan-
ning. We thus propose that our required velocity input
reaches parasubiculum via posterior cingulate cortex.

This proposal does not discount the important role of
the head direction system. Specifically we consider the
purpose of the head direction system to be the align-
ment of head direction relative velocities to global map
coordinates µ and ν. It is thus essential for modulating
the velocity input to our path integration system, rather
than providing direct input.

It should be possible to test which form of veloc-
ity input the path integration system receives. Ac-
cording to the schemes proposed in Samsonovich and
McNaughton (1997) and Redish and Touretzky (1997)
the path integration system can only function correctly
if the animal moves in the direction its head is currently
facing. However, our model predicts that path integra-
tion should function correctly regardless of correlation
between the rat’s head direction and its direction of mo-
tion. Recordings from a rat which moves in darkness in
a direction other than the one it is currently facing (e.g.
the rat could move forward while its head was angled
to one side) would provide evidence to support one
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theory or the other. If the place code in hippocampus
was destroyed or distorted, this would support head di-
rection as a direct input to the path integration system.
If the place code was maintained, this would suggest
that the path integration system may receive a global
map relative velocity input such as the one proposed
here.

Conclusions

Our numerical simulations confirm that an attractor
map implementation of path integration is possible
without the use of a large external control population or
multiplicative synapses. We have demonstrated that the
control mechanism for translating the activity packet of
neural activity can in fact be incorporated into the same
population which stores the activity packet. This results
in a single population which can act as a path integra-
tion subsystem in a larger model of rat navigation, such
as Redish and Touretzky (1997).

We have also demonstrated how the Neural Engi-
neering Framework can provide a systematic and in-
sightful solution to a significant problem in attractor dy-
namics and the rat navigation system. As discussed, this
particular application has generated three testable pre-
dictions regarding path integration. Because the frame-
work is general, and provides a useful method for deal-
ing with complex control problems involving attractor
networks, it should prove useful for analyzing other
neural systems as well.
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