
ICML 2014 AutoML Workshop

Preliminary Evaluation of Hyperopt Algorithms on HPOLib

James Bergstra james.bergstra@uwaterloo.ca

Brent Komer brent.komer@uwaterloo.ca

Chris Eliasmith celiasmith@uwaterloo.ca

Centre for Theoretical Neuroscience

University of Waterloo

David Warde-Farley wardefar@iro.umontreal.ca

Département d’Informatique et Recherche Opérationelle

Université de Montréal

Abstract

Model selection, also known as hyperparameter tuning, can be viewed as a blackbox opti-
mization problem. Recently the HPOlib benchmarking suite was advanced to facilitate al-
gorithm comparison between hyperparameter optimization algorithms. We compare seven
optimization algorithms implemented in the Hyperopt optimization package, including a
new annealing-type algorithm and a new family of Gaussian Process-based SMBO meth-
ods, on four screening problems from HPOLib. We find that methods based on Gaussian
Processes (GPs) are the most call-efficient. Vanilla GP-based methods using stationary
RBF kernels and maximum likelihood kernel parameter estimation provide a near-perfect
ability to optimize the benchmarks. Despite being slower than more heuristic baselines,
a Theano-based GP-SMBO implementation requires at most a few seconds to produce a
candidate evaluation point. We compare this vanilla approach to Hybrid Monte-Carlo in-
tegration of the kernel lengthscales and fail to find compelling advantages of this more
expensive procedure.

1. Introduction

Model selection, also known as hyperparameter tuning, can be viewed as a black box op-
timization problem. The search domain is all possible joint hyperparameter assignments
for a machine learning system (inputs to the black box); the output of the black box is a
reflection of model fit, such as validation set [in]accuracy. This view has been used to good
effect in recent work (Bergstra et al., 2011; Bergstra and Bengio, 2012; Snoek et al., 2012;
Thornton et al., 2012), which demonstrates (across a variety of optimization techniques
and machine learning systems) that black box optimization algorithms are not only useful,
but often better than the world’s best machine learning experts. Recently Eggensperger
et al. (2013) proposed a collection of benchmarks (HPOlib) to focus research in this area.
Hyperopt (Bergstra et al., 2013) is a Python software package that provides a language
for describing structured search domains (especially hyperparameter search domains), and
provides implementations of algorithms for searching those domains. This paper describes
several algorithms written for Hyperopt, and evaluates them on the fast-running screening
benchmarks in HPOlib.

c© 2014 J. Bergstra, B. Komer, C. Eliasmith & D. Warde-Farley.



Bergstra Komer Eliasmith Warde-Farley

2. Hyperopt Optimization Algorithms

We have written seven optimization algorithms for Hyperopt: rand, anneal, tpe, tree,
ucb, ei ml2, ei hmc.

Random search (rand) is included in Hyperopt. Search spaces in Hyperopt are de-
scribed in terms of directed graphical models, and random search is simply ancestral sam-
pling of the search space itself.

The annealing algorithm (anneal) is a new addition to Hyperopt. At first it draws
points identically to random search, but over time the distributions are heuristically con-
centrated around the best-performing points. Different kinds of original distributions are
concentrated in different ways. Uniform-based distributions are concentrated by moving
upper and lower bounds together as 1/t. Normal-based distributions are tightened by re-
ducing the standard deviation according to 1/t. Categorical distributions are tightened by
interpolating between the original distribution and a zero-entropy distribution that puts all
mass on the best-performing option. There are a number of constants governing the conver-
gence schedule of anneal, and it is susceptible to a number of failure modes. Nevertheless it
can be a very quick algorithm for optimizing a gradient-free function over a hyperopt-style
space, and it is typically better than random search in that role. The anneal algorithm
can be useful both for optimizing an original black box function, and optimizing an acqui-
sition function (e.g. Expected Improvement) in the course of Surrogate (aka Sequential)
Model-based Bayesian Optimization (SMBO).

The TPE algorithm (tpe, Tree of Parzen Estimators) is included in Hyperopt. The
algorithm is based on the idea that under certain modeling assumptions, the maximiza-
tion of Expected Improvement (EI) can be related to the maximization of ratio P (X|y<τ)

P (X|y≥τ)
(see Bergstra et al. (2011) for details). In a search space with N dimensions (and no con-
ditional parameters), the TPE algorithm models these densities over the search space with
two product-of-marginal [Parzen] estimators. They both have the same form, the model of
points from a data set D with y < τ is as follows:

Q(X|y < τ) =
∏
i

∑
(x,y)∈D|y<τ

1√
2πσij

e
−

(xij−Xi)
2

2σ2
ij (1)

TPE inherits SMBO and EI’s theoretical ability to escape local optima, and it is almost as
quick as anneal at suggesting new points in each SMBO iteration.

The tree algorithm is not yet in Hyperopt. Inspired by SMAC (Hutter et al., 2011),
it is a SMBO approach with a regression tree mixture surrogate. Trees naturally handle
conditional parameters (the screening benchmarks below have none, but real hyperparame-
ter optimization settings have many), are quick to train, and can be updated incrementally
from online data. We use a Bagging-style ensemble method. Candidates are drawn by
optimizing EI in the surrogate using the anneal algorithm.

The ucb, ei ml2 and ei hmc algorithms are not yet in Hyperopt. These are based
on “vanilla” Gaussian Process (GP) SMBO using stationary RBF kernels (in contrast with
Matérn kernels advocated in Snoek et al. (2012), and the input-warping technique advanced
in Snoek et al. (2014)). The ucb and ei ml2 algorithms use a single setting of kernel pa-
rameters that maximizes marginal likelihood. The ucb algorithm generates candidates that
maximize the Upper Confidence Bound (UCB) criterion. The ei ml2 algorithm generates

2



Preliminary Evaluation of Hyperopt Algorithms on HPOLib

rand tpe anneal tree ucb ei_ml2 ei_hmc
1265

1270

1275

1280

1285

1290

1295
B

e
st

 a
ft

e
r 

5
0
 c

a
lls

LDA-on-grid (HPOLib)

rand tpe anneal tree ucb ei_ml2 ei_hmc
0.240

0.245

0.250

0.255

B
e
st

 a
ft

e
r 

1
0
0
 c

a
lls

SVM-on-grid (HPOLib)

rand tpe anneal tree ucb ei_ml2 ei_hmc
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

B
e
st

 a
ft

e
r 

5
0
 c

a
lls

Global optimum

Branin-Hoo

rand tpe anneal tree ucb ei_ml2 ei_hmc
3.5

3.0

2.5

2.0

1.5

B
e
st

 a
ft

e
r 

1
0
0
 c

a
lls

Global optimum

Har6

Figure 1: Each boxplot shows the distribution of minimum values found by each algorithm
on 10 randomized runs. (Lower is better)

candidates that maximize the EI criterion. The (ei hmc) algorithm averages over multiple
kernel parameter settings generated by Hybrid Monte-Carlo sampling (HMC, Neal (1993),
as implemented in Desjardins et al. (2010)). Optimization of the surrogate was handled in
all cases by gradient descent (L-BFGS-B Zhu et al. (1997) via SciPy (Jones et al., 2001–))
with random restarts. Our implementation was in Theano (Bergstra et al., 2010), which
helped with gradient-based optimization and sampling algorithms and provided good eval-
uation speed.

3. Experiments

We compare Hyperopt’s algorithms in terms of overall search efficiency (how much computa-
tion they can save), and the computational overhead they impose on the search process (how
much computation they cost). The four fast-running benchmarks we used from HPOlib
were: LDA-on-grid (LDA), SVM-on-grid (SVM), Branin-Hoo (Branin) and Hartmann-6
(Har6). LDA and SVM are pre-computed 3-D grid searches from hyperparameter tuning
experiments (grids of 6 × 6 × 8 = 288 and 25 × 14 × 4 = 1400 respectively). Branin is a
simple 2-D surface over a 15-unit square with 3 global minima (.398) on a broad valley floor
between two steep cliffs. Har6 is a challenging 6-D function over the unit hypercube with
at least two local optima (our best optimizers converged reliably to either -3.2 or -3.32).

3



Bergstra Komer Eliasmith Warde-Farley

Table 1: Best values (mean and standard error) based on 10 random repetitions. The
top rows correspond to algorithms described in this work and computed by the
authors. SMAC, Spearmint, and TPE (*) are reproduced for from Eggensperger
et al. (2013). Bold scores are within a 95% confidence interval of the best average
score.

Algorithm LDA SVM Branin Hartmann-6
ei hmc 1266.7± 0.2 0.241± 0.000 0.398± 0.000 −3.2665± 0.0196
ei ml2 1266.3± 0.1 0.241± 0.000 0.398± 0.000 −3.2667± 0.0196

ucb 1266.4± 0.1 0.241± 0.000 0.398± 0.000 −3.2667± 0.0196
tree 1275.8± 2.6 0.242± 0.000 1.417± 0.241 −2.6508± 0.0858

anneal 1269.6± 1.2 0.243± 0.002 0.861± 0.093 −3.1725± 0.0333
tpe 1268.3± 0.6 0.241± 0.000 1.244± 0.326 −2.7654± 0.0335

rand 1271.0± 0.9 0.242± 0.000 1.613± 0.362 −2.1121± 0.1167
SMAC 1269.6± 1.0 0.241± 0.000 0.655± 0.090 −2.9770± 0.0367

Spearmint 1272.6± 3.4 0.246± 0.003 0.398± 0.000 −3.1330± 0.1367
TPE (*) 1271.5± 1.2 0.242± 0.000 0.526± 0.043 −2.8230± 0.0600

The most important quality in a hyperparameter optimization algorithm is that it can
find interesting configurations after a very small number of [expensive] function evaluations.
Figure 1 shows typical accuracies observed for each combination of algorithm and benchark
function after the number of function evaluations recommended by HPOlib. Figure 2 shows
a more temporal picture of how each algorithm tends to approach the best results shown in
Figure 1. Table 1 lists the range of minima obtained for each algorithm and problem, and
reproduces some results from Eggensperger et al. (2013) for comparison.

It is also important that the optimization itself not require too much time. Firstly,
because time spent on the optimization algorithm is time not spent evaluating hyperpa-
rameter configurations. Secondly, because slow algorithms are tedious to use. Slowness
presents an adoption barrier to practitioners who could benefit from automatic algorithm
configuration. Figure 3 shows how many seconds the algorithms in question took to produce
recommendations.

4. Discussion

Several lessons learned from the screening benchmarks seem likely to transfer to more
computationally expensive real-world configuration problems.

Our “vanilla” Gaussian Process SMBO was very effective: all three variants were perfect
or near-perfect on all problems and they also converged fastest. We explore harder problems
in future work, where there is room for more sophisticated modeling to make a difference.
In terms of speed, the optimization runs were so short that the GP’s O(n3) training time
was negligible. Instead, optimization of the surrogate turned out to dominate time spent
within the SMBO iterations. Precise optimization of the acquisition function was critical
to success on Branin and Har6. Neither UCB nor EI outperformed the other.

4



Preliminary Evaluation of Hyperopt Algorithms on HPOLib

0 10 20 30 40 50
N. of iterations

1265

1270

1275

1280

1285

1290

1295

1300
A

v
e
ra

g
e
 m

in
-t

o
-d

a
te

warm-up

LDA-On-Grid

ei_hmc

ei_ml2

ucb
tree
anneal
tpe
rand

0 20 40 60 80 100
N. of iterations

0.240

0.245

0.250

0.255

0.260

0.265

0.270

A
v
e
ra

g
e
 m

in
-t

o
-d

a
te

warm-up

SVM-On-Grid

ei_hmc

ei_ml2

ucb
tree
anneal
tpe
rand

0 10 20 30 40 50
N. of iterations

0

2

4

6

8

10

A
v
e
ra

g
e
 m

in
-t

o
-d

a
te

warm-up

Branin

ei_hmc

ei_ml2

ucb
tree
anneal
tpe
rand

0 20 40 60 80 100
N. of iterations

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

A
v
e
ra

g
e
 m

in
-t

o
-d

a
te

warm-up
Hartmann-6

ei_hmc

ei_ml2

ucb
tree
anneal
tpe
rand

Figure 2: Best-value-to-date at each SMBO iteration, averaging over 10 optimization runs.
After an initial “warm-up” period, the GP-based algorithms (ei ml2, ei hmc, ucb)
make the most rapid convergence to the global optima. (Best viewed in colour.)

The ei hmc algorithm was no better than ei ml2 and ucb despite being many times
slower (Fig. 3). Our hope was that model averaging would help escape local optima in
Har6, but this was never observed. Perhaps we were simply not patient enough: in order
to maintain a reasonable optimization speed we kept the number of model components
very small (8), and tried to compensate by at least decorrelating them (many HMC steps
between samples). There appears to be a tradeoff between model accuracy (sampling e.g.
length scales) and optimization accuracy, in that it seems doing both enough is prohibitively
expensive even in these very small problem domains. Further work is required to understand
how and when to benefit from HMC.

Although even SMAC is not as accurate as the GP-SMBO in these benchmarks, our own
tree results are much worse. Our implementation is both slow and ineffective, suggesting
that more engineering is necessary. Sample efficiency and variance estimation are paramount
in SMBO, perhaps non-Bagging ensemble methods might be more effective.

Har6 is challenging for SMBO approaches because it appears that a good surrogate
model of the -3.2-valued local optimum completely hides the -3.32-valued optimum. Our
three GP variants got stuck at -3.2 on three of ten runs (although ucb and ei ml2 got stuck
on different runs), and even hundreds of additional iterations made no progress. RBF-GP
surrogates are susceptible to inefficient modeling of many response surfaces. Further work

5



Bergstra Komer Eliasmith Warde-Farley

0 10 20 30 40 50
N. of iterations

0

1

2

3

4

5

6

7

8
S
e
a
rc

h
 i
te

ra
ti

o
n
 (

se
co

n
d
s)

JIT compilation

LDA-On-Grid

ei_hmc

ei_ml2

ucb
tree
anneal
tpe
rand

0 20 40 60 80 100
N. of iterations

0

2

4

6

8

10

S
e
a
rc

h
 i
te

ra
ti

o
n
 (

se
co

n
d
s)

JIT compilation

SVM-On-Grid

ei_hmc

ei_ml2

ucb
tree
anneal
tpe
rand

0 10 20 30 40 50
N. of trials

0

5

10

15

20

25

30

35

S
e
a
rc

h
 i
te

ra
ti

o
n
 (

se
co

n
d
s)

JIT compilation

Branin-Hoo

ei_hmc

ei_ml2

ucb
tree
anneal
tpe
rand

0 20 40 60 80 100
N. of trials

0

10

20

30

40

50

60

S
e
a
rc

h
 i
te

ra
ti

o
n
 (

se
co

n
d
s)

JIT compilation

Hartmann-6

ei_hmc

ei_ml2

ucb
tree
anneal
tpe
rand

Figure 3: Time spent within each optimization algorithm. Several algorithms’ time is neg-
ligible on the scale of GP-SMBO approaches. (Best viewed in colour.)

is necessary to determine whether the Har6 function is representative of the challenges of
hyperparameter optimization more broadly.

The anneal algorithm was better than rand as a black box optimizer, and fast enough
to provide gradient-free surrogate optimization within SMBO iterations.

5. Conclusion

HPOLib provides an opportunity for machine learning and optimization experts to (a)
agree on what the problem of hyperparameter optimization is, and (b) measure research
progress toward solving that problem. In response to HPOLib’s creation, Hyperopt has
been extended with a range of new search algorithms, including the fast-to-run anneal and
three slow-but-efficient GP-SMBO variants. These algorithms perform very well on the four
fast-running screening problems in HPOLib, and we look forward to evaluating them on a
broader range of optimization problems in future work.

Acknowledgements
This research was supported by the NSERC Banting Fellowship program, the NSERC
Engage program and by D-Wave Systems.

6



Preliminary Evaluation of Hyperopt Algorithms on HPOLib

References

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305, 2012.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian,
D. Warde-Farley, and Y. Bengio. Theano: a CPU and GPU math expression compiler.
In Proceedings of the Python for Scientific Computing Conference (SciPy), June 2010.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter opti-
mization. In NIPS*24, pages 2546–2554, 2011.

J. Bergstra, D. Yamins, and D. D. Cox. Hyperopt: A Python library for optimizing the
hyperparameters of machine learning algorithms. In SciPy’13, 2013.

G. Desjardins, J. Bergstra, and LISA Lab. Deep learning tutorial: Hybrid Monte-Carlo.
http://www.deeplearning.net/tutorial/hmc.html, 2010.

K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-
Brown. Towards an empirical foundation for assessing bayesian optimization of hyperpa-
rameters. In NIPS workshop on Bayesian Optimization in Theory and Practice, 10 De-
cember 2013.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In LION-5, 2011. Extended version as UBC Tech report TR-
2010-10.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python,
2001–. URL http://www.scipy.org/.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical
Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto, 1993.

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine
learning algorithms. In Neural Information Processing Systems, 2012.

J. Snoek, K. Swersky, R. Zemel, and R. Adams. Input warping for bayesian optimization
of non-stationary functions. In ICML, 2014.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Automated selec-
tion and hyper-parameter optimization of classification algorithms. CoRR, abs/1208.3719,
2012.

C. Zhu, R. H. Byrd, and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN
routines for large scale bound constrained optimization. ACM Transactions on Mathe-
matical Software, 23(4):550–560, 1997.

7

http://www.scipy.org/

	Introduction
	Hyperopt Optimization Algorithms
	Experiments
	Discussion
	Conclusion

