
Automating the Nengo build process

Trevor Bekolay

Centre for Theoretical Neuroscience technical report. Sept 17, 2010

Abstract

Nengo is a piece of sophisticated neural modelling software used to simulate large-scale networks
of biologically plausible neurons. Previously, releases of Nengo were being created manually whenever
the currently released version lacked an important new feature. While unit testing existed, it was not
being maintained or run regularly. Good development practices are important for Nengo because it is a
complicated application with over 50,000 lines of code, and depends on dozens of third-party libraries. In
addition, being an open source project, having good development practices can attract new contributors.
This technical report discusses the creation and automation of a back-end for Nengo, and how it integrates
with the existing mechanisms used in Nengo development. Since the primary goal of the system was to
avoid disturbing developers’ workflow, the typical development cycle is made explicit and it is shown
that the cycle is not affected by the new automated system.

1 Introduction

Nengo is the neural modelling software built by the Centre for Theoretical Neuroscience (CTN). It is based
on the neural engineering framework (NEF)1, which describes a method of building spiking neural network
models that represent information, perform computation, and behave dynamically.

Nengo is currently used by researchers at the University of Waterloo, McGill, Yale, and Stanford. In
order for it to be more widely used, Nengo is released as free software, under the Mozilla Public License
Version 1.1.2

As more researchers begin to use and contribute to Nengo, it becomes more important to enforce good
development practices. However, as a piece of software used for research, it is unlikely that many of those
who wish to contribute to Nengo will have the time to read through extensive documentation detailing
proper practices; the onus falls on the CTN, as the group most involved with Nengo, to closely monitor and
maintain the quality of our codebase.

For these reasons, a number of tools were recently created and integrated into the development process
of Nengo. Most of the tools are designed to run automatically, though some are simply available for those
who find them useful.

This report begins with a discussion of the development environment that a typical researcher would use
prior to the work described in this paper. Section 3 introduces Apache Ant, the build system that Nengo
now uses. This section goes over the several options now available through the build scripts, such as running
unit tests, creating a distribution folder, and running static analysis tools. Section 4 details the set-up and
configuration of Hudson, a continuous integration server that was deployed on a CTN server. Section 5
concludes by discussing how the development environment has changed for a typical researcher.

1Eliasmith, Chris, and Charles H. Anderson. Neural engineering: computation, representation, and dynamics in neurobio-
logical systems. MIT Press, 2003. http://compneuro.uwaterloo.ca/.

2A full copy of the Mozilla Public License can be viewed at http://www.mozilla.org/MPL/

1

Trevor Bekolay 2 of 15

2 The development environment

Nengo is a Java application (with Python bindings through the Jython library). Its code is stored in a
Subversion (SVN) server. A minimal environment for developing Nengo would consist of the following three
elements.

1. Text editor (e.g. vi, emacs)

2. Java development kit, version 1.5 or later

3. Subversion (SVN) client

While this means that one could use only command-line utilities if preferred, it should be noted that some
of Nengo’s features – the graphical interface and plotting tools – require a graphical environment. However,
simulations can be performed and data can be collected solely through the command line.

A more typical choice for a developer is to use the Eclipse IDE,3 which is particularly well suited to
developing Java applications. With a normal installation of Eclipse for Java developers, along with an SVN
plugin such as Subversive,4 Eclipse can replace all three of the elements above – it includes a sophisticated
text editor that eases development through syntax highlighting and auto-completion, it compiles code con-
tinuously as it is changed, and it can do all common SVN tasks through a convenient graphical interface.
For that reason, any developer capable of running Eclipse is recommended to use it, and most researchers
currently contributing to Nengo use it as their development environment.

Figure 1: A screenshot of the Eclipse IDE, with Subversive installed.

3Eclipse is open source software available at http://www.eclipse.org/
4Subversive is available at http://www.eclipse.org/subversive/

Trevor Bekolay 3 of 15

2.1 Typical workflow

When a researcher wishes to make a change to the Nengo codebase, the following steps are typically followed.
Note that there are no controls or procedural guidelines that dictate that these steps be followed in this order.

1. Check out a new copy of the Nengo codebase from the SVN repository, or
SVN update the current local working copy of Nengo.

2. Implement desired change or new feature.

3. Test the change locally by running a few simulations to ensure that Nengo works as expected.

4. Commit the changes to the SVN repository, dealing with merge conflicts if necessary.

2.2 Ideal workflow

Nengo uses the JUnit unit testing framework to ensure that new code does not adversely affect existing
functionality. While it does not adhere to the test-driven development workflow espoused by “extreme
programming,” unit testing is still an important method of ensuring code correctness.

Ideally, Nengo developers would follow the below steps to ensure that unit testing stays up to date. Tasks
that differ from the typical workflow are bolded.

1. Check out a new copy of the Nengo codebase from the SVN repository.

2. Implement desired change or new feature.

3. Write one or more unit tests to make explicit what the new change should do in the
majority of situations, including edge cases and failure cases.

4. Run all unit tests to ensure old functionality is not affected.

5. Have code reviewed by a researcher familiar with that portion of the Nengo code.

6. Commit the changes to the SVN repository, dealing with merge conflicts if necessary.

7. Check out a fresh copy of the Nengo codebase from the SVN repository.

8. Run all unit tests again to ensure that Nengo builds and runs properly from a fresh
checkout.

The goal of the work described in the rest of this report is to automate as many of these tasks as possible.
For those tasks that cannot be automated, tools are integrated to make the tasks as easy to accomplish as
possible.

3 Apache Ant build scripts

Compiling a complicated large-scale application like Nengo is non-trivial to do from the command line because
of the size of the codebase and a number of dependencies on third-party libraries. Eclipse makes building
Nengo easier for developers working on their own machines, but Eclipse is not an appropriate environment
for creating releases of Nengo. Extending Eclipse to do other tasks as part of the build process is also difficult
because it may require that all developers change their Eclipse installation.

Trevor Bekolay 4 of 15

The traditional solution to this problem is a makefile. However, makefiles are platform dependent,
meaning a makefile would have to be made for each operating system we would expect Nengo to be developed
on.

The alternative system, which is used in many open source Java projects, is Apache Ant.5 Ant is a
platform independent build system like make. Ant build scripts are XML documents that define a number
of targets – actions that a developer might want to perform – and how to perform those targets. The
conventional name for an Ant build script is build.xml, placed in the root of a project folder; Nengo follows
this convention by including a build.xml file in the root directories of both the simulator and simulator-ui
projects.

Using Ant is also convenient for developers using Eclipse, as it has tools for running Ant build scripts
installed by default. After checking out Nengo, a developer can right-click on build.xml in either the
simulator or simulator-ui projects and choose any Ant target to run.

Figure 2: A screenshot showing Ant build script integration in Eclipse.

Table 1 gives a full listing of all the targets available to developers working on the simulator project.
Table 2 gives a full listing of all the targets available to developers working on the simulator-ui project.
These tables are current as of the writing of this report.

Targets marked as “internal” are targets that are not meant to be directly run by developers; they are
automatically run at appropriate times through dependencies. For example, the build target requires that
the init target be run first. The build target depends on the init target, so Ant will automatically run
init before running build. In Ant, a target is marked as internal simply by not providing a description.

5Apache Ant is open source software available at http://ant.apache.org/

Trevor Bekolay 5 of 15

Target Description
init Internal target
clean Internal target
javadoc Generate JavaDoc
build Build simulator. Produces .class files in the ${dest.build} directory.
test Run JUnit tests and produce reports.
findbugs Run the FindBugs code analysis tool.
cpd Run the Copy-Paste Detector code analysis tool.
pmd Run the PMD code analysis tool.
checkstyle Run the CheckStyle code analysis tool.
cobertura Do unit testing and generate Cobertura code coverage reports.
all Generate all artifacts: javadoc, junit tests, FindBugs, CPD, PMD, CheckStyle, and

Cobertura.

Table 1: Targets provided by simulator/build.xml.

Target Description
init Internal target
clean Internal target
javadoc Generate JavaDoc
build-simulator Internal target
build Build simulator-ui. Produces .class files in the ${dest.build} directory.
test Run JUnit tests and produce reports.
findbugs Run the FindBugs code analysis tool.
cpd Run the Copy-Paste Detector code analysis tool.
pmd Run the PMD code analysis tool.
checkstyle Run the CheckStyle code analysis tool.
cobertura Do unit testing and generate Cobertura code coverage reports.
all Generate all artifacts: javadoc, junit tests, FindBugs, CPD, PMD, CheckStyle,

and Cobertura.
dist Create a distribution folder.

Table 2: Targets provided by simulator-ui/build.xml.

Trevor Bekolay 6 of 15

3.1 Building Nengo

Compiling all of the Nengo code and handling all of the third-party dependencies is handled by the Ant
target build in both simulator and simulator-ui.

simulator:init
The init target creates the directories that will receive output from other targets. Ant does not
automatically create directories that do not yet exist – if you attempt to to use simulator/build as
the destination for compiling the simulator code and it does not exist, Ant will fail. The directories
set up by the init target are the following – these are defined in simulator/build.properties. Note:
variables in Ant are called “properties,” and are used with the syntax ${var name}.

� ${dest.artifacts} = simulator/artifacts

� ${dest.build} = simulator/bin

� ${dest.instrumented} = simulator/bin-instrumented

� ${dest.test} = simulator/bin-test

simulator:build – depends on simulator:init
The build target compiles all of the .java files in the simulator/src/main directory and places the
generated .class files in simulator/bin. Of particular importance is that this target does not compile
the source code in simulator/src/test.

simulator-ui:build – depends on simulator-ui:init and simulator-ui:build-simulator
The build-simulator target simply calls the build target in the simulator project. simulator-ui is
designed to be an interface into simulator, so it requires it to be compiled before simulator-ui can
be compiled. Other than this dependency, init and build do the same things as in the simulator
project, only within the simulator-ui directory.

3.2 Unit testing

There are two Ant targets related to unit testing. These targets do identical work in simulator and
simulator-ui.

test
The test target compiles the code found in src/test. It then runs all of test cases found in those
compiled classes using batchtest, provided by the JUnit Ant task.6 It produces reports in two formats:
XML, which are output to artifacts/xml/junit, and HTML, which are output to artifacts/html/junit.
HTML is generally more readable for developers, but the XML reports are easily parsed by other anal-
ysis tools.

cobertura
Cobertura is a tool used to determine code coverage – how much code the unit tests are actually testing.
The report generated by Cobertura is extremely detailed, telling a developer whether each line of code
is tested or not. The Cobertura target is more complicated than other code analysis targets, because
it must “instrument” all of the source code – that is, it must recompile source files with additional
information that is used by Cobertura to determine is a line of code is executed. Running the unit
tests with these instrumented classes adds significantly to the time it takes for unit tests to run. The
majority of time take on a full build (that is, the time taken to run the all target) is taken by the
cobertura task. For full details on Cobertura, see its website at http://cobertura.sourceforge.net/.

6See http://ant.apache.org/manual/Tasks/junit.html for more details.

Trevor Bekolay 7 of 15

3.3 The dist target

Prior to the work described in this report, creating a “release” of Nengo was done manually whenever a useful
new feature was added, and the code was determined to be stable. The dist target essentially codifies that
process by performing all the tasks that were previously done manually. It introduces an additional level of
control to the release process, as all of the tasks done for a release are now explicitly available to anyone
with access to the SVN repository.

As part of this change, files that were previously included with releases of Nengo but were not checked
into the SVN repository (e.g. example script files) are now tracked by the SVN repository, in the directory
simulator-ui/dist-files. Not only does this mean that anyone with SVN access can create a release of
Nengo if desired, it means that we can make a release of Nengo based on any version in the SVN repository
after SVN revision 989. For more details on this change and other reorganizations done as a result, see
http://ctnsrv.uwaterloo.ca:8080/sventon/repos/Nengo/info?revision=989.

The dist target only exists in simulator-ui/build.xml.

dist
The dist target does the following.

� Creates a new folder, nengo-x, where x is replaced with the current SVN revision number. For
example, if one checks out SVN revision 995 and runs the dist target, it will create a nengo-995
directory at the same level as the simulator and simulator-ui directories.

� Creates nengo-x.jar, a file that contains all of the non-test classes in simulator and simulator-ui,
and places it in the nengo-x folder.

� Copies the source code for simulator and places it in nengo-x/api/src.

� Generates the Javadoc for simulator and places it in nengo-x/api/docs.

� Generates the files nengo.bat and nengo, used to launch Nengo on Windows and non-Windows
systems, respectively. The files are based on templates that have the SVN revision number inserted
into them so that the appropriate nengo-x.jar file is launched. Those files are copied into the
nengo-x folder.

� Copies any files in simulator-ui/dist-files to the nengo-x folder.

� Uses chmod to set nengo-x/nengo and nengo-x/external/pseudoInverse to executables files (i.e.
adds the ‘x’ flag to their permissions). Note: this does not always seem to work properly.

3.4 Code analysis

A common practice in development teams is to perform code reviews. The purpose of a code review is to
ensure that at least two pairs of eyes have looked at all of the code that gets checked in to the source code
repository. This practice does not guarantee high quality code, but it catches many mistakes early enough
to fix easily.

Code reviews are difficult to organize for Nengo for several reasons. The developers of Nengo are not
necessarily all in one physical location. In addition, the researchers that develop Nengo tend to be in
specialized fields, and for that reason focus on small portions of the Nengo codebase – there are few people
who have good knowledge of all of the code in Nengo.

Unit testing alleviates some of the need for code reviews, because they at the very least ensure that Nengo
is functional and performing the operations that the unit tests exercise. In an effort to further scrutinize
code automatically, static code analysis tools were applied to the Nengo codebase. These tools can be run
using a number of Ant targets, all of which operate identically on simulator and simulator-ui.

Trevor Bekolay 8 of 15

Note that, unlike code reviews, the reports generated by these tools should not be taken as a list of
problems to fix; they may indicate some areas of code that should be cleaned up or refactored, but attempting
to fix all of the errors and warnings brought up by these tools is not a useful exercise. Reviewing the output
from these tools when new code is checked in, however, can improve the coding style of a Nengo contributor.

findbugs
The findbugs target runs the FindBugs static analysis tool. FindBugs looks for three main types of
issues.

1. Correctness An apparent coding mistake. For example, FindBugs identified a code path in
ca.nengo.config.ui.NewConfigurableDialog.showDialog that will always result in a null-pointer
exception.

2. Bad practice Violations of what is commonly accepted as good programming practice. For exam-
ple, FindBugs identified that the clone() function in ca.nengo.model.nef.impl.DecodedOrigin
does not call super.clone(), which can cause issues with creating clones of DecodedOrigin.

3. Style Confusing code that may cause programming errors in the future. For example, FindBugs
identified that the static field ca.nengo.util.impl.NodeThreadPool.myNumThreads is written to
in a certain method, which may cause issues with other instances of the class.

For more details on FindBugs, see its website at http://findbugs.sourceforge.net/.

cpd
The cpd target runs the Copy-Paste Detector static analysis tool. It searches through Nengo’s codebase
looking for chunks of code that are exact duplicates of other chunks of code. The motivation behind
this is that duplicate code should never need to occur; where duplicate code seems necessary, it is
almost always a better choice to extract that logic into a helper function. For more details, see the
Copy-Paste Detector’s website at http://pmd.sourceforge.net/cpd.html

pmd
The pmd target runs the PMD static analysis tool. PMD is similar in scope to FindBugs, searching
code for issues such as possible bugs, suboptimal code, and overcomplicated expressions. The specific
items that it looks for are different from FindBugs, however, so despite some overlap between the issues
they find, having both is still useful.

checkstyle
The checkstyle target runs the CheckStyle static analysis tool. Unlike the other tools that look through
code for possible errors, the CheckStyle tool simply looks at the structure of the text that makes up
the code, ensuring that the programming style matches a set of rules. For example, CheckStyle can
check to ensure that there are no “tab” characters in the code, and that all indentation is done with
spaces. CheckStyle necessitates the creation of a set of rules that Nengo programmers should follow.7

4 The Hudson continuous integration server

Having the Ant build scripts available is helpful to developers who wish to do things like run unit tests,
create release versions of Nengo, and analyze source code. However, the vast majority of developers are not
concerned with these things – nor should they be bothered with them. Instead, we can automate the running
of these tasks using a continuous integration server.

The idea of a continuous integration server is that every time code is committed to the SVN repository,
a fresh checkout is done and the code is built and tested automatically. In this way, even if a developer does
not follow best practices for development, other developers can see if the latest version of the code in the

7This set of rules has not yet been decided upon; CheckStyle is currently set up to use the conventions outlined by Oracle
at http://www.oracle.com/technetwork/java/codeconv-138413.html.

Trevor Bekolay 9 of 15

repository will build successfully and pass all of the unit tests. The continuous integration server can, in
fact, run any Ant target upon an SVN commit, so static code analysis reports can also be generated.

Continuous integration is one of the tools created as a result of the Agile Software Development method-
ology. Eclipse does this on a local scale; when a programmer makes a change to source code in Eclipse, it
will rebuild the project in the background, giving nearly immediate feedback on how the source code changes
affect the project. A continuous integration server does this for the whole project; when a programmer makes
a change to source code in the the repository, the project is rebuilt and analyzed.

After evaluating the available options, it was determined that the Hudson continuous integration server
would be the best option.8 Hudson is a Java servlet, which means that the server that will be used for
continuous integration needs to have a servlet container set up. Tomcat 6 was chosen as the Java servlet
container that is the most robust and easy to set up. Hudson also integrates with a number of SVN repository
browsers to easily view the code present in an SVN repository and see how files have changed over time.
Sventon9 was chosen as the best SVN repository browser for our needs.

4.1 Server set-up

The server chosen to set Hudson up on is the main SVN server for the Centre for Theoretical Neuroscience.
This server is publicly accessible at http://ctnsrv.uwaterloo.ca/, but many of the features are restricted
to lab members through password protection.

The SVN server uses a version of Ubuntu Desktop as its operating system. To set it up for Hudson, it
required the following general steps.

1. Install a Java development kit (JDK).

While Java 1.6 has been available since December 2006, it was decided to put JDK 1.5 on the server.
This is because Nengo does not explicitly use any features of Java 1.6, and some researchers are forced
to use Java 1.5 in their computing environment. Using JDK 1.5 on this server means that we can catch
errors that occur from developers with Java 1.6 on their local machines using features introduced in
1.6.

2. Install Tomcat 6.

3. Download the latest version of Hudson and place it in Tomcat’s “webapps” directory.

A complete list of the commands performed on the server is included as Appendix A.

One important note is that the server already has Apache 2 installed on it, duplicating some of the
functionality of Tomcat 6 (serving static websites, for example). It is possible to integrate these two closely,
such that Apache forwards requests to certain URLs to Tomcat and handles the rest itself. However, since
Tomcat by default only handles requests from port 8080, the potential benefit of removing :8080 from URLs
that Tomcat handles was not seen as worth the extra set up time.

4.2 Hudson

Hudson is a piece of software that can monitor various sources, such a source code repositories, and build and
test software projects when certain conditions are met (e.g. new code is committed, six hours have passed).
While Hudson can be extended greatly through plugins to perform many complicated functions, its use in
the Nengo project is relatively straightforward. Hudson monitors the SVN repository continually. When a

8Hudson is open source software available at http://hudson-ci.org/.
9Sventon is open source software available at http://www.sventon.org/.

Trevor Bekolay 10 of 15

new commit is made, Hudson runs the all targets for both simulator and simulator-ui, which runs JUnit
tests, generates a coverage report for those tests, produces Javadoc, and runs all of the static analysis tools.
It then calls the dist target in simulator-ui, producing a nengo-x directory tagged with the SVN revision
number. This directory can then be used as a release version of Nengo.

Figure 3: The main Nengo project screen in Hudson.

Hudson provides a web interface through which options can be modified and builds monitored. The main
Nengo project page, found at http://ctnsrv.uwaterloo.ca:8080/hudson/job/Nengo/, gives an overview of
the project. Everything that a typical developer would want to do can be accessed through this screen.

Whenever Hudson detects a change to the SVN repository, it does a fresh checkout of all of the code
contained in it. It puts all of that in a “Workspace” folder. It then runs the Ant tasks described above. Any
files created by Ant can also be seen in the workspace. Clicking on the Workspace link in the middle column
shows the current workspace folder, which is usually in a post-build state, with nengo-x, simulator, and
simulator-ui directories. When navigating through the workspace through the web interface, zip files can
be created at any point, containing all of the files and folders contained in the current directory.

Keeping the whole workspace for each Nengo build would take a lot of hard drive space; even with
zip compression, the workspace takes up over 100 MB of space. Further, since those files and all previous
revisions are already in the SVN repository, it’s redundant information. However, the artifacts produced by
the build process (compiled classes, reports, etc.) are kept so that, if one wants to know about the state of
Nengo at a certain point, or wants to get a release of a specific build of Nengo, it can just be downloaded
from Hudson rather than regenerated from scratch. The artifacts for the current build can be accessed by
clicking on the Last Successful Artifacts link in the middle column. With zip compression, the artifacts for
a build take up approximately 20 MB of space, much less than keeping the whole workspace.

Trevor Bekolay 11 of 15

Unit testing results can be seen by clicking the Latest Test Result link in the middle column. The coverage
report, produced by Cobertura, can be seen by clicking the Coverage Report link. Details on the results of
running the static analysis tools can be seen by clicking on the appropriate link in the left column. Plugins
for Hudson also produce graphs showing how those analysis reports have changed over time in the right
column.

A brief list of recent changes to the SVN repository can be seen by click on the Recent Changes link in
the middle column. More details on changes to the SVN repository can be seen by clicking on the Sventon
link on any of the changes listed in Hudson.

4.3 Sventon

Figure 4: Viewing a previous revision of a directory in Sventon.

Sventon is an SVN repository browser implemented as a Java servlet. Because it’s a Java servlet, it can
be run in a very similar manner as Hudson, making its inclusion as part of the server set up natural.

Sventon allows a developer to look through an SVN repository, from the first revision to the HEAD, and
anywhere in between. Sventon provides an easy-to-use interface to many of SVN’s useful functions, such as
blame, which lists which developer is responsible for committing each line of code in a file.

Sventon also can show the difference between any two revisions of a file in a number of different presen-
tation styles, including the side-by-side diff.

The Nengo repository can be viewed with Sventon at http://ctnsrv.uwaterloo.ca:8080/sventon/.

5 The development environment revisited

Despite the addition of Ant build scripts and the Hudson continuous integration server, the workflow for a
Nengo contributor has not significantly changed. In fact, a developer does not have to change the way they
contribute to Nengo at all. However, there are still some areas that require developer intervention, and it is
those tasks that developers should be aware of and encouraged to perform.

Trevor Bekolay 12 of 15

Recall that the “ideal workflow” listed in section 2.2 added several new steps. Below, we examine how
the changes described in this report have made these steps either automatic or easier to perform.

3. Write one or more unit tests to make explicit what the new change should do in the
majority of situations, including edge cases and failure cases.

This is the one task that cannot be reasonably automated. Writing test cases requires that a developer
take the time to appropriately test their code. This is made somewhat easier with the Ant scripts, as
the test target allows developers to run all unit tests at once and see the results. In addition, small
changes were made to the Eclipse project file that allows developers to run individual unit tests from
within Eclipse.

4. Run all unit tests to ensure old functionality is not affected.

Again, a developer can now run the test target in the Ant build scripts. However, because Hudson
will automatically run these tests when new code is committed, this step is not necessary. If the newly
committed code breaks a unit test, developers will be notified, and the code either fixed, or rolled back
to a previous version.

5. Have code reviewed by a researcher familiar with that portion of the Nengo code.

As discussed in section 3.4, code reviews are not reasonable for most changes made to Nengo. However,
unit testing and the integration of static analysis tools provide many of the same benefits as code
reviews.

7. Check out a fresh copy of the Nengo codebase from the SVN repository.

8. Run all unit tests again to ensure that Nengo builds and runs properly from a fresh
checkout.

These two steps are performed by Hudson automatically once code is committed to the SVN repository.

With the integration of Ant build scripts and the Hudson continuous integration server, we have gotten
very close to the ideal workflow without adding an additional burden on researchers contributing to Nengo.

Additional work needs to be done in encouraging developers to write unit tests for the code that they
commit to the Nengo SVN repository, because this task cannot be automated. Possible ways to do this
include writing an easy-to-follow guide on writing unit tests, posting it on the website, and sending a link
to researchers that contribute to Nengo. Another resource to prepare would be some template test classes
that can be used as a starting point for writing new unit tests.

More experienced Nengo developers should also consider writing unit tests for currently untested portions
of code. The Cobertura coverage report helps these developers identify code that needs unit testing.

Trevor Bekolay 13 of 15

A Setting up ctnsrv.uwaterloo.ca

The machine that serves the ctnsrv.uwaterloo.ca domain runs Ubuntu Desktop with Apache 2 and Subver-
sion server software installed. Hudson was determined as a good choice for a continuous integration server for
Nengo, so the server needed to have Java 1.5, Tomcat 6, Hudson and Sventon installed in it. The commands
that accomplished this are given below. If these tools need to be set up on another similar server, these
commands should be used as a guideline.

A.1 Setting up Tomcat

The first step is to install Java 1.5.

Open up /etc/apt/sources.list with a command such as

sudo pico /etc/apt/sources.list

To the bottom of this file, append

deb http://us.archive.ubuntu.com/ubuntu/ jaunty multiverse
deb http://us.archive.ubuntu.com/ubuntu/ jaunty-updates multiverse

In a terminal window, run the following commands

sudo apt-get update
sudo apt-get install sun-java5-jdk

Accept if prompted.

The next step is to download and install Tomcat 6. The location of Tomcat’s distribution tar file may
have changed since the writing of this report.

cd ~
wget http://apache.parentinginformed.com/tomcat/tomcat-6/ \

v6.0.29/bin/apache-tomcat-6.0.29.tar.gz
tar xvzf apache-tomcat-6.0.29.tar.gz
sudo mv apache-tomcat-6.0.29 /usr/share/tomcat6

Next, we will create a file in /etc/init.d so that Tomcat 6 will start automatically when the computer
boots up.

Create a new text file, /etc/init.d/tomcat6, with a command such as

sudo pico /etc/init.d/tomcat6

Paste the following text into that file.

Trevor Bekolay 14 of 15

Tomcat auto-start
#
description: Auto-starts tomcat
processname: tomcat
pidfile: /var/run/tomcat.pid

export JAVA_HOME=/usr/lib/jvm/java-1.5.0-sun
export JAVA_OPTS="-Xmx1024M -Xms256M -server -Djava.awt.headless=true"
export TOMCAT_HOME=/usr/share/tomcat6
export CATALINA_OPTS="-DHUDSON_HOME=/srv/hudson"

case $1 in
start)

/bin/su tomcat6 $TOMCAT_HOME/bin/startup.sh
;;

stop)
/bin/su tomcat6 $TOMCAT_HOME/bin/shutdown.sh
;;

restart)
/bin/su tomcat6 $TOMCAT_HOME/bin/shutdown.sh
/bin/su tomcat6 $TOMCAT_HOME/bin/startup.sh
;;

esac
exit 0

Next, we will set the appropriate permissions on this file and then create necessary symbolic links to it.

sudo chmod 755 /etc/init.d/tomcat6
sudo ln -s /etc/init.d/tomcat6 /etc/rc1.d/K99tomcat
sudo ln -s /etc/init.d/tomcat6 /etc/rc2.d/S99tomcat

Finally, we must create a user, tomcat6, that Tomcat will be run as, so that it only has access to the files
that we say it should have access to. In this process, we will also create a folder for Hudson and give the
tomcat6 user access to it.

sudo useradd tomcat6 -g nogroup -d /usr/share/tomcat6/ -p’*’ -r
cd /srv
sudo mkdir hudson
sudo chown -R tomcat6:nogroup hudson
cd /usr/share/tomcat6
sudo chown -R tomcat6:nogroup webapps temp logs work conf
sudo /etc/init.d/tomcat6 start

At this point, Tomcat should be running. To test this, open a browser window and navigate to either
http://localhost:8080 or http://ctnsrv.uwaterloo.ca:8080.

If you see a tomcat and some text, then Tomcat is running properly.

One area of Tomcat that may be useful for future administration is the Tomcat Manager. To access it,
we must first edit Tomcat’s list of users.

Trevor Bekolay 15 of 15

sudo pico /usr/share/tomcat6/conf/tomcat-users.xml

Paste the following into this file, changing the asterisks to the appropriate password.

<?xml version=’1.0’ encoding=’utf-8’?>
<tomcat-users>
<role rolename="manager"/>
<user username="ctnuser" password="*****" roles="manager"/>

</tomcat-users>

Use that username and password to log into the manager at http://localhost:8080/manager/html or
http://ctnsrv.uwaterloo.ca:8080/manager/html.

A.2 Integrating Tomcat with Apache

It is possible to integrate Tomcat with Apache, so that rather than using port 8080, and URLs that begin
with http://ctnsrv.uwaterloo.ca:8080, Apache can forward any URLs that match a certain pattern to
Tomcat.

This is done with the mod_jk module. Details on mod_jk can be found at http://tomcat.apache.org/
connectors-doc/.

This process was not seen as essential for the goal of using Hudson internally.

A.3 Setting up Hudson and Sventon

Hudson and Sventon are distributed as WAR files. If Tomcat 6 is set up properly, and you are able to access the
manager at http://ctnsrv.uwaterloo.ca:8080/manager/html, then you can deploy those WAR files simply
by downloading them to your local machine, and uploading them to the server through the manager interface
(under the heading “WAR file to deploy”).

The latest Hudson WAR file can be found at http://hudson-ci.org/latest/hudson.war. The latest Sven-
ton WAR file can be found at http://www.sventon.org/.

You can also do this manually through the command line.

Assuming that hudson.war and sventon.war are in your home directory
cd ~
sudo mv hudson.war /usr/share/tomcat6/webapps
sudo mv sventon.war /usr/share/tomcat6/webapps
cd /usr/share/tomcat6/webapps
sudo chown tomcat6:nogroup hudson.war sventon.war

After deploying these WAR files, Hudson should be available at http://ctnsrv.uwaterloo.ca:8080/hudson
and Sventon should be available at http://ctnsrv.uwaterloo.ca:8080/sventon.

